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Abstract

Base station cooperation in heterogeneous wireless nieggwdtetNets) is a promising approach
to improve the network performance, but it also imposes aifsignt challenge on backhaul. On the
other hand, caching at small base stations (SBSs) is corsdides an efficient way to reduce backhaul
load in HetNets. In this paper, we jointly consider SBS caghand cooperation in a downlink large-
scale HetNet. We propose two SBS cooperative transmissioenses under random caching at SBSs
with the caching distribution as a design parameter. Usingstfrom stochastic geometry and adopting
appropriate integral transformations, we first derive atttlbale expression for the successful transmission
probability under each scheme. Then, under each schemeomsder the successful transmission
probability maximization by optimizing the caching disuition, which is a challenging optimization
problem with a non-convex objective functidBly exploring optimality properties and using optimization
techniques, under each scheme, we obtain a local optimai@oin the general case and global optimal
solutions in some special cases. Compared with some existiching designs in the literature, e.g., the
most popular caching, the i.i.d. caching and the unifornhiay; the optimal random caching under each
scheme achieves better successful transmission prdpgi®liformance. The analysis and optimization

results provide valuable design insights for practicalNtgs.
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I. INTRODUCTION

Due to the explosive growth of mobile data traffic, the demi@anavireless communication ser-
vices has been shifting from connection-oriented sensces as traditional voice telephony and
messaging to content-oriented services such as multimsda@al networking and smartphone
applications. Recently, heterogeneous networks (HejNi&tsn which dense small base stations
(SBSs), e.g., pico BSs and femto BSs, are deployed alongthatlexisting macro base stations
(MBSs) are considered as an attractive solution to meet\beiacreasing mobile data traffic
demand. In order to address the additional intercell ieterice caused by such deployment,
BS cooperation in HetNets has been proposed as one of thiosslto effectively mitigate the
interference at mobile stations, but it also imposes onifsogmt challenge on the backhaul.

BS joint transmission, consisting of non-cohere2it-[11] and coherent]2] joint transmis-
sions, is one of the much studied BS cooperation schemesrircoherent joint transmission,
BSs cooperate by jointly transmitting the same data to a waiout prior phase alignment.
In contrast, in coherent joint transmission, BSs jointigngmit the same data to a user with
prior phase alignment, assuming that stringent synchatioiz can be done and perfect channel
state information (CSI) is available at all cooperative B8sthese strict requirements can
be satisfied, coherent joint transmission achieves betidbmnance. Otherwise, non-coherent
joint transmission is more preferable, especially, in tighoaded scenarios5]. Due to its low
complexity and requirement, BS non-coherent joint trassion in large-scale HetNets has been
widely considered and extensively studied using some tffetools from stochastic geometry
[7]1-[11]. The number of BSs jointly serving a user located at theior(geferred to as the typical
user) is fixed in 7], and is variable in§]-[10]. In particular, in [/], the BSs with the strongest
average received powers at the typical user form the BS cabtpe set. In 8] and [9], the BSs
with instantaneous received power at the typical user aBouge thresholds (one for each tier)
form the BS cooperation set, and the optimization of thestmoé&ls is considered ir®]. In [10],
the BSs within a circle of a tunable radius centered at the@yuser jointly serve the typical
user, and the optimization of the radius is considered11 the authors consider a user located
at macro cell edge and propose a cooperation scheme to $erueser by its geographically
nearest MBS and SBS, under certain conditions. Note thatptim-coherent joint transmission
for HetNets in []-[11] imposes a significant challenge on the backhaul.

In practice, the backhaul has increasingly become a bettlerwhich limits the potential of
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BS joint transmission in HetNets. In order to alleviate tlaekhaul load caused by the BS joint
transmission, the authors il3] purpose a BS silencing scheme in large-scale HetNets,evher
the typical user is served by its nearest BS and the nearbykB&g silent to facilitate the
transmission. Referenc&d| further shows that compared with joint transmission, Bi§rgiing
yields a lower complexity and a lighter backhaul load, atd¢bst of coverage probability.

Caching at SBSs has been proposed as a promising approaemfanrkably reducing backhaul
load by prefetching popular files into storages at SBSs igelacale small cell networks or
HetNets [L4]-[20]. In [14]-[17], the authors consider caching the most popular files at each
SBS, which we in this paper refer to as “most popular cachM&Q)”. In [18], the authors
consider random caching with uniform distribution at SB&ssuming that file requests follow
a uniform distribution, which we call “uniform caching (UC)in [19] and [20], the authors
consider random caching with files being stored at each SB&nimi.d. manner, which we
refer to as “i.i.d. caching (IIDC)”. The MPC scheme conseatkin [14]-[17] does not provide
any spatial file diversity. In contrast, the caching designgL8-[20] can provide file diversity.
However, the UC scheme id@] only provides caching probabilities of files and does n@tcsiy
how multiple different files can be efficiently stored at e&®BS based on these probabilities.
The IIDC scheme in19] and [20] may waste storage resources, as multiple copies of the same
file may be stored at one SBS. Hence, the caching desigrisfjr[20] may not yield the best
network performance.

As a result, some other works have considered optimal cgatésigns in large-scale small
cell networks or HetNets2[1]-[25]. In [21] and [22], the authors consider random caching at
SBSs, and analyze and optimize the cache hit probabiliy, tlhe probability that a randomly
requested file from the typical user is stored at its servig) R1] and successful offloading
probability (i.e., the probability that the typical user associated with the SBS tier and its
downlink signal-to-interference-plus-noise ratio isgr than a threshold) [22]n [23], the
authors consider random caching and multicasting at SB&slange-scale small cell network,
and analyze and optimize the successful transmission pilapai.e., the probability that a
randomly requested file from the typical user can be sucaigséceived). In p4], the authors
propose a hybrid caching design (consisting of identicehay in the MBS tier and random
caching in the SBS tier) and a corresponding multicastirgigiein a large-scale HetNet, and
analyze and optimize the successful transmission prabali [25], the authors investigate how

channel selection diversity affects the optimal randomhioag design. Note that, none of the
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above works 14]-[25] has considered SBS cooperation.

In [26]-[28], the authors jointly consider SBS caching and cooperaitiolarge-scale small
cell networks or HetNets. Specifically, i2€], the SBSs storing the requested file and within
a circle of a certain radius centered at the typical useltljoserve the typical user. In2[], a
certain number of SBSs (i.e., with the same distances toyhieal user) storing the requested
file jointly serve the typical user. The optimal caching desi in R6], [27] are obtained by
maximizing the successful transmission probability. 28]] the authors propose a partion-based
combined caching design, where a certain number of SBSsgttne requested file jointly
serve the typical user. However, i2€], the cache size of each SBS is assumed to be one,
and thus, the impact of the cache size in practical netwoaksat be addressed; i27], the
distances between the cooperative SBSs and the typicalavsdixed and identical, and thus,
the stochastic nature of geographic locations of cooper&BSs cannot be all captured; the
combined caching design i28] cannot reflect the popularity differences among some fdas,
hence may not yield the best possible performance.

Therefore, further studies are required to reveal how SRB8ing and cooperation can jointly
and optimally affect the network performance of HetNetsthiis paper, we address these issues.
Our main contributions are summarized below.

« We propose two SBS cooperative transmission schemes uaddom caching at SBSs
with the caching distribution as a design parameter. Spadfj the first scheme adopts
non-coherent joint transmission, and the second scheraetigtly combines non-coherent
joint transmission and BS silencing.

« We analyze the successful transmission probability. SB$emtion and random caching
make the analysis very challenging. By using tools from lsastic geometry and adopting
appropriate integral transformations, under each schemejerive a tractable expression
for the successful transmission probability.

« We consider the successful transmission probability mepdtion by optimizing the caching
distribution, which is a very challenging optimization ptem with a non-convex objective
function. By exploring optimality properties and using iagization techniques, we obtain
a local optimal solution in the general case and global agtisolutions in some special
cases, under each scheme.

« By numerical results, we show that the optimal caching itistions are influenced by

multiple system parameters jointly, such as the file pojtylahe cache size and the number
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Fig. 1. lllustration of SBS cooperation under Scheme 1 arite®e 2. The MBS tier corresponds to a Voronoi
tessellation, determined by the locations of all the MBSse Tolor of the typical user corresponds to the file

it requests|Ci ,,|= |C2|= 3, |C2.n|=2, M =2 and N = 10.

of cooperative SBSs, ettn addition, we also show that under each scheme, the optimal
caching design achieves a significant gain in the successfiasmission probability over

some existing caching designs in the literature, e.g., MAEZ; and UC.

1. SYSTEM MODEL

We consider a downlink two-tier HetNet where a tier of MBSe awerlaid with a tier of
much denser SBSs, as shown in Fig.The locations of the SBSs and MBSs are spatially
distributed as two independent homogeneous Poisson pamoegses (PPP9)s and ¢, with
densities\s and A\, (As > An), respectively. For the ease of illustration, we use suptscs and
m to distinguish the SBS tier and the MBS tier. The transmisgiowers at each SBS and MBS
are Ps and P, (Ps < Pn), respectively. We assume that users are also distribetsatding to an
independent homogeneous PPP and focus on studying a tygial, located at the origin. We
adopt universal frequency reuse for each BS over the entguéncy band. Each BS equally
divides its total bandwidth to serve all the users assatiati¢h it. The available bandwidths
of each SBS and MBS fou, are represented by and W, (Ws > Wy,), respectively. The

typical useru, and all BSs are equipped with a single antefiizue to large-scale path-loss,

1In the traditional connection-based HetNets, a user iscis®al with the specific BS, which provides the maximum nesmbi
signal strength29], [30]. The transmit power disparity of SBSs and MB33%  Pn) will lead to the association of more users
with the MBS than the SBS. Thus, the available bandwidth ef $IBS foru, is in general less than that of the MBS.

2Note that, the analytical framework developed in this pager be extended to the multi-antenna scenario.
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a transmitted signal from an MBS (SBS) with distancis attenuated by a factorm (r—°s),
whereany, > 2 (as > 2) is the path-loss exponent for MBSs (SBSs). For small-saden§, we
assume Rayleigh fading channels.

Denote byN = {1,2,---, N} the set of N € N files in the HetNet, wher&N denotes the
set of natural numbers. For ease of analysis, we assumelth@¢sahave the same size. File
n € N is requested with probability,, € (0, 1), wheresz:1 a, = 1. In addition, without loss
of generality (w.l.0.g), we assume that > a; > --- > ay.

We assume that each MBS is equipped with no cache but is cath&cthe core network via
optical fibers with high capacity. Thus, each MBS can retiall files from the core network.
In this paper, we ignore file downloading costs at MBS. Eacl$ $Bequipped with a cache of
size M (in files), whereM < N, and can serve any files stored locally. To provide spatial fil
diversity (which can improve performance of dense wirelestsvorks) 3], we adopt a random
caching scheme at SBSs. In particular, each SBS stufradifferent files out of allN files in
N with a certain probability. Lefl,, denote the probability of file: being stored at an SBS.

DenoteT £ (T),,cnr» Which is termed as the “caching distribution”. Then, we é{23]:
0<T, <1, 1)

ZneN T, = M. 2)
Let &, denote the set of the SBSs which store fileNote thatds,, = 0 if 7,, = 0, and
o, £ U nen®s.». By [31], we know thatds ,, is also a homogeneous PPP with densif¥,.

In the following illustration, we suppose, requests filen. Assume all MBSs are active.
First, we introduce some notations. According to the distabetween each SBS andg, let
C., denote the set ofy’s K nearest SBSs i®s,,, and letC, denote the set ofy’s K nearest
SBSs in®s. DenoteC,,, 2 CN s, andCy 2, \ C2.,. Now, we propose two cooperative
transmission schemes.

« Scheme 1: If7;, = 0 (i.e., file n is not stored at any SBS)y, is served by its nearest
MBS. If T, > 0 (i.e., file n is stored at some SBSs), all SBSsdn, (|C:.,| = K) jointly
transmit filen to u,. In both cases, all SBSs ibs \ C, ,, are assumed to be active to serve
other users.

« Scheme 2: IfC,,, = 0, the nearest MBS will serve,, and all SBSs inbs are assumed to

be active to serve other users.df,, # 0, all SBSs inC,,, C C, jointly transmit filen to
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ug, and all SBSs irC, _,, are silenced to facilitate the transmission of fildo «,, and all

SBSs in®s \ C, are assumed to be active to serve other users.

Fig. 1 illustrates the SBS cooperation scenario under the twonsebeNote that, under each
scheme, we refer to an SBSéh,, or C,,, as a serving SBS and an SBSdg\ C; ,, or &5\ C,
as an interfering SBS. Similarly, when, is served by its nearest MBS, we refer to the nearest
MBS as the serving MBS and other MBSs as interfering MBSsukmsthat CSI is not known
at any BS. Thus, we cannot adopt prior phase correction gberative SBSs, and will now
instead consider non-coherent joint transmissign [

Remark 1 (Comparison between Scheme 1 and Schenw®n cooperative SBSs i ,,
(under Scheme 1) ang,,, (under Scheme 2) jointly transmit the same dataowe have the

following statements.

1) The number of serving SBSs under Scheme 2 (Cg,,|) is a random variable with the mean
of T,, K, while the number of serving SBSs under Scheme 1 (k§.js fixed. Assuming
T, < 1, the average number of serving SBSs under Scheme 2 is alwsgltes than that
under Scheme 1, and the average received signal power ustlem® 2 is weaker than
that under Scheme 1.
2) The numbers of interfering SBSs under the two schemesharsame. The average inter-
ference power under Scheme 1 is stronger than that undenfeche
T, =1foraln=1,---,M andT, =0foralln=M+1,M+2,---,N (i.e., the
MPC design is adopted at all SBSs), Scheme 1 and Scheme 2 bdhensame scheme.
We consider an interference-limited network and negleetithckground thermal nois2§).
We now derive the instantaneous received signal-to-ieterice ratio (SIR) at,. Let h,; and
r., denote thdading and distance between B tier x € {s, m} andu,, respectivelyLet [,
and s denote the indexes of the serving MBS and SBS:@frespectively.Thus, under each
scheme, ifu, is served by its serving MBS, the SIR &f is given by
Pl g 7

N Z Ps|hs’l‘2’f’s_7las+ E Pm‘hm,l|27';7ol‘m.
1€ds le®m\{im}

Tm 3)

Otherwiseu, non-coherently combines desired signals from serving S8S&cumulating their

June 29, 2021 DRAFT



amplitudes 82], and the SIRs at,, under Scheme 1 and Scheme 2 are given by
2

> V/Pohsira

lsecl ,M

Vsi,n= o _a (4)
1 > PS|hsl‘ DY Pm‘hml‘2 "
le®s\Ci,n €D
2
Z Vv Pshs AsT _aS/z
ZSECQ n (5)
Ts n= —Qs —CVm ’
’ > PS|hsl‘2 + > Pm‘hml|2
le®s\Co €D

In this paper, we employ the successful transmission pibtyafSTP) [24] as the system
performance metridzach file is transmitted at a target bit rat€bps).«, successfully receives
file n if the channel capacity between the serving MBS or SBSswgrekceedsr. Let ¢y, (T)
denote the STP under Scheme = 1,2. Then we have:

sy (T)=) (Pt [mm > 7] L [T, = 0] + Pr[r, > 7] 1 [T, > 0]), (6)
Gana(T)=Y _ an (Pr[rm > 7, Cop = 0] + Z Prire, >7.Con=k), (7

wherer, = Wylog, (1 + vm) represents the channel capacity between the serving MBS@nd
under both schemes,, = Wilog, (1 + 7s,.,) andrs, = Wslog, (1 + 7s,.,) represent the channel
capacity between the serving SBSs andunder Scheme 1 and Scheme 2, respectivig),
denotes the indicator function, ard , = |C2.,| denotes the number of the SBSs storing file

in CQ,”'

[1l. A NALYSIS AND OPTIMIZATION OF PERFORMANCE UNDERSCHEME 1

In this section, we first analyze the STP under Scheme 1 fovengiaching distributiol

of the random caching scheme. Then we maximize the STP bynizg T.

A. Analysis of Successful Transmission Probability

In this part, we analyze the STR,u,(T) under Scheme 1 using tools from stochastic
geometry. Wheny, is served by its serving MBS, as in the traditional connechased HetNets,
Pr [ > 7] can be calculated using the method 1#][ When, is served by its serving SBSs,
different from the traditional connection-based HetNdlere are three types of interferers,

namely, i) all the other SBSs storing the desired fileugfbesides its serving SBSs, ii) all
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the SBSs without the desired file af),, and iii) all the MBSs. By carefully handling these
distributions,Pr [7s, > 7] in (6) can be calculated. Thus, we have the following theorem.
Theorem 1 (STP under Scheme The STPy., (T) of ug is given by

¢sch1(T) = Zne/\f an(¢m1 [Tn = 0] + ¢51(Tn>1 [Tn > O]), (8)
wherevy, andys, (1,,) are given by
m = /000 exp (—Bm,s(am, as, 1, 0m, u))du, (9)
/OO exp( BS m(as,am,jjn,es7 )) d’U,7 K = 1,
Vs, (Th) = 0s w1
/ / / eXp( Bsm(Oés am7Tn7m,u>> (K__1)!dtl~~~dtK_1du7 K > 2.
(10)

Here,f, £ 27/Wm — 1, 0, £ 27/Ws _ 1 and

or2ax/oy 21 A 0P, \ 2% ooy
By y(an ay, T,0,u) 2 T cse (2 ) —2 1) (%)
vl 0y, T, 6,u) Qy e (O‘y) /\%/ay ( Py ) T

+u (<% - 1) i—:%c <am) 0%/ 4 o Fy (—a% 11— %;—9)) : (11)
where (z,y) = (s,m) or (m,s) and,F;(a,b; c;d) denotes the Gaussian hypergeometric func-
tion [33].3

Proof: See Appendix A.

In Theoreml, ¢, represents the STP of each file whenis served by its serving MBS and
s, (1),) represents the STP of filewhenu, is jointly served by its serving SBSs & ,,. Based
on Theoreml, we have the following remark.

Remark 2 (Properties of Theoret). From Theoreni, a few observations are in order.

1) ¢ increases Wit%. That is, the STP of a file transmitted by the nearest MBS ikdtig
when the MBS density is larger or the SBS density is smaller.

2) 1), (T),) increases Wlthﬁ That is, the STP of filex transmitted by the serving SBSs
in Cy,, is higher when the SBS density is larger or the MBS densitymalter.

3) s, (T,) is an increasing function df,,. That is, the STP of files transmitted by the serving
SBSs inC, , is higher when the probability of storing file at an SBS is larger.

Next, to obtain some simpler expressions {Qr,, (T) in Theoreml, we consider the sym-

metric case wheres = a,, = a. We have the following corollary.

*Note that, wher = 4, we have; Fy (—2,1;1 — 2; —0) = V@ arctan(v/0) + 1.

June 29, 2021 DRAFT



10

Corollary 1 (STP under Scheme 1 fat = oy = a): Whenas = am = «, the STPYyq,, (T)
is given by @) with ¢, ands, (T,,) given by

1
Bm,s(a7 «, 1a ema 1)’

1
Bsm Oé @ Tn,937 )

Cdbe 1
Vs, (T, / / dty -+ dig Ko, (13)
0s

(BS"’“ <O" S T 1))

where B, (o, oy, T, 6, u) is given by (1).

wm:

(12)

Proof: Corollary1 can be easily proved by using the equam? e " e = a " (n—1)\.

We omit the details due to page limitation.

In Corollary1, we obtain a closed-form expressionf,,, (T) whenK = 1 andas = am = a.
In this case,ys, (7,) is concave and thus.,, (T) is concave. Later, we shall see that the
concavity greatly facilitates the optimization of., (T) when K = 1 andas = am = a.
Furthermore, wherk' > 2 and as = am = «, we obtain a simpler expression ¢f.,, (T) than
that of Theorem 1, which can be used to facilitate the nurakgealuation ofiq,, (T).

Fig. 2(a) plots the STR).,, (T) versus the target bit rateand verifies Theorer. In addition,
as expected, we see that the SR, (T) decreases with the target bit rateand increases with
the number of cooperative SB$S. Besides, the marginal STP gain of including one more SBS

into joint transmission decreases with

B. Optimization of Successful Transmission Probability

The caching distributiorl" significantly affects the STP under Scheme 1. We would like to
maximize ., (T) in (8) by optimizing T. Note that, when studying Scheme 1, we focus on
the region in whichys, (1) > ¥n. In this region,u, prefers receiving files from SBSs, as SBSs
can offer a higher STP than the nearest MBS. Specifically, axe hthe following problem.

Problem 1 (Optimization of STP under Scheme 1):

w:ch1ém,rax wsch1 (T) (14)
st (1),(2).

Here, T* denotes the optimal solution ang,, = .., (T*) denotes the optimal value.
As the structure of).,, (T) in Probleml is very complex. To obtain design insights, we first
analyze the optimality properties of Problein
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Fig. 2. STPysen, (T) versusr. M =2, N =10, T4 =0.9,7, = 0.8,75 = 0.3, T,, =0 for n = 4,5,--- | N,
Am = s507= M2, As = zgz= m ™%, Py =43 dBm, Ps = 23 dBm, a5 = oy = 4, Wiy = 0.2 MHz, Ws = 20
MHz, anda,, = #L,V with Zipf exponenty = 0.8. In the Monte Carlo simulations, we choose a large
spatial window, which is a square ®6* x 10* m?, and the final simulation results are obtained by averaging

over 10* independent realizations.

Lemma 1 (Optimality Properties of Probletyt There existsVy € {M, M+1,---, min{ [MW —

Tin
1, N}} such that the optimal solutidB* to Probleml satisfiesl > 77 > 75 > --- > T} > Ty,
and Ty, = Tysyo = --- = Tx = 0, whereTy, € (0,1) is the root toys, (z) = ¢m.*

Proof: See Appendix B.

Remark 3 (Interpretation of Lemnig: From Lemmal, a few observations are in order.

1) A file of higher popularity should be stored at the SBS tiéhva higher probability (i.e.,
stored at more SBSs), and some files of low popularity may eostbred. In addition,
the Ng most popular files are stored at the SBS tier and their caghialgabilities are no
smaller thanly,.

2) From @), we see that), is independent of. From @) and @), we know thatys, (7,)

increases withK. Hence, asK increasing, the root of equatiof, () = ¥, i.e., Ty,

M
Tin

decreases witli(, implying thatmin H W -1, N} is nondecreasing witlk'. That is, as
more SBSs jointly serving,, more files can be stored at the SBS tier.

3) WhenN = M, we havel =1forn=1,--- M, andT} =0 forn =M+ 1, M +
2,---, N, i.e., the optimal caching reduces to MPT]

In general, it is difficult to show the convexity of the objeetfunctioniy.,, (T). However, the

constraint set is obviously convex. In addition, due to tigtidator functionl|e] in vy, (T), the

4T, can be calculated by the bisection method due to the moruitymif s, (z) w.r.t. z.
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12

objective functionyy., (T) is not differentiable w.r.tT, which means that we cannot directly
apply the standard gradient projection method 23] [to obtain a local optimal solution of
Problem1 numerically. In the following, we construct an equivalenblgem of Probleml by
making use of the optimality properties in Lemrha

From Lemmal, we know that theV; most popular files are stored in the SBS tier. Thus, to

solve Probleml, we can introduce an auxiliary variablg < {M,M +1,- --,min{ Hﬂ —
1,N }} and rewrite the STR),,, (T) in (6) as

@Dschl(T, NS):PS(Ta Ns) + 7Dm(]\fs)a (15)

WhereP5<T,Ns) é qu,vil anwsl (Tn>| Pm(NS) é Z;}@V:Ns—i-l anwmu TTL 2 ﬂh for n = 17 o ‘7NS)
and7, =0 forn= Ns+1,Ns+2,---, N. Note thaty,, (T, Ns) is differentiable w.r.t.T, for
any givenNs. Thus, we have an equivalent problem of Probleras follows.

Problem 2 (Equivalent Problem of Probleb):

A
¢:ch1 :I,}’l"?“v}j ¢sch1 (T7 NS)

s.t. NSG{M,M%—l,---,min{[%-‘—1,N}}, (16)
Tin
T, <T,<1,n=1,--- Ns, (17)
T7,=0, n=Ns+1,Ns+2,---, N, (18)
Ns
ST, - (19
n=1

Here, T* and Ng denote the optimal solution and, = s, (T Ng) denotes the optimal
value.

Note thatT* and ¢}, given by Problem2 are the same as those given by Problém
Therefore, instead of solving Probleinwe can solve Probler®. Problem2 is a mixed discrete-
continuous optimization problem with two main challeng@se is the choice of the number of
different files stored at the SBS tier, i.éV; (discrete variables), and the other is the choice of
the caching distributioA™ (continuous variables) of the random caching scheme foSB® tier.
We thus propose an equivalent alternative formulation obRm 2 which naturally subdivides
Problem2 according to these two aspects.

Problem 3 (Equivalent Problem of Proble®):

schy

{0y = H]l\?x P&(Ns) + Pm(Ns) (20)
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s.t. (16),
where
P5(Ns) = max Ps(T, Ns) (21)
s.it. (17),(18), (19).

Here, T*(Ns) denotes the optimal solution to the optimization 21)(for given Ns, Pz (Ns) =
Ps(T*(Ns), Ns) denotes the optimal value of the optimization 1) for given N, N} denotes
the optimal solution to the optimization irl§), and vy}, = Pi(Ng) + Pm(Ng) denotes the
optimal value of the optimization in1¢). Note thatT*(Ng) = T*, whereT* is given by
Problem2.

For given Ng, the problem in 21) is a continuous optimization of a differentiable function
Ps(T, Ns) over a convex set. In general, it is difficult to show the cotityeof s, (7,,) in
(10) and hence the convexity @s(T, Ns). SincePs(T, Ns) is differentiable, we can apply the
standard gradient projection method, e.g., Algorithm 12ig|,[to obtain a local optimal solution
to the optimization in Z1).

From Corollaryl, we know that wheri' = 1 andas = am = «, 15, (T},) is concave, implying
that Ps(T, Ns) is concave, and Slaters condition is satisfied, implying #ieng duality holds.
In this case, we can obtain a closed-form optimal solutioth& convex optimization in21)
using KKT conditions.

Lemma 2 (Optimal Solution to Probler®]) for K = 1 andas = ay = «): When K = 1 and

M

as = am = a, for any givenNg < min { [TTJ -1, N}, the optimal solution to the optimization

in (21) is given by

min{max{cL i —c ,Th},l},nzl,“‘JV
Ti(Ny) = 2 ) S
O,n:Ns+1,Ns+2,"‘,N

wherec; £ 2ra ! cse (2ra) 02 (14 AmAS (PP )2 ), 63 & —2mat ese (2ma™) 62 +

oF (=207, 151 — 2071 —0s), 5 £ 2ma ese (2mat) 0207 (1 4+ A A H(PsPa )2 ), Ty = o

and v* satisfies
s 1 anC
Zmin{max{—( "1—01),ﬂh},1}:M.
— Co v*

Proof: Lemma2 can be proved in a similar way to Lemma 6 @4]. We omit the details

due to page limitation.

June 29, 2021 DRAFT



14

Algorithm 1 Optimal Solution to the Problerd

. *
1 iy, < 0.

2: CalculateTyy, using Lemma2 (when K = 1 andas = am = «) or the bisection method (wheR > 2 or
Qs 7 am).

3: for N = M to min{[%_‘ —LN} do

4:  Obtain T*(Ny) and PZ(Ng) by solving the optimization in2Q1) using Lemma2 (when K = 1 and

as = am = «) or the gradient projection method (whé > 2 or as # am).

5. if Yy, <Ps(NS) + Pm(NNg) then

6: schy PL(NE) + Pm(Ng) and T* < T*(NY)
7:  endif

8: end for

Given solutions obtained using the standard gradient gtiofe method or Lemma&, the op-
timization in (16) is a discrete optimization over the %M, M+1,---, min { Hﬂ -1, N}}

of cardinality min { {%W — 1,N} — M + 1. The discrete optimization problem id) can be

solved directly using exhaustive search of complexiyV).
Finally, combining the above discrete part and continuars, pve can obtain a global (when
K =1 andas = ay, = «) or local (whenK > 2 or as # an) optimal solution to Problen3 as

summarized in Algorithmil.

[V. ANALYSIS AND OPTIMIZATION OF PERFORMANCE UNDERSCHEME 2

In this section, we first analyze the STP under Scheme 2 fovengiaching distributiol

of the random caching scheme. Then we maximize the STP bynizig T.

A. Analysis of Successful Transmission Probability

In this part, we analyze the ST®,,,(T) in (7), using tools from stochastic geometry. It
is more challenging to calculate,.,,(T) than to calculate).,, (T) under Scheme 1, as the
number of the serving BSs af, i.e., Cs,, is a random variable. Specifically, @, ,, = 0, u, is
served by its nearest MBS, or otherwise by tig, SBSs inC,,,. Thus, to calculate)s,(T),
we first need to calculate the probability mass function (p)nir [Cy,, = k], £k =0,1,--- | K
of Cy,,. Under the random caching scheme, each SBS stores filiéh probability 7;,, and we
haveC,,, C C, and|Cy|= K. Thus, (s, follows the binomial distribution with parametét
and 7, i.e., Pr[Cy, = k] = (})TF(1 — T,)*~*. Note that, we have’r [y > 7, (s, = 0] =
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Pr [t > 7] Pr[Cy,, = 0] and Pr [7s, > 7, Cy,, = k] = Pr[rs, > 7|Cs,, = k] Pr[Cy,, = k]. Since
Pr[m > 7] is already given by Theorert, it remains to calculat®r|rs, > 7|C5,, = k], which
depends on the joint p.d.f. of the distances betweerktberving SBSs and,. To calculate this
joint p.d.f., we consider the following two cases: i) thergsek SBSs out of thel — 1 nearest
SBSs storing file: and theKk'-th nearest SBS does not store filgii) there existk —1 SBSs out
of the K — 1 nearest SBSs storing file and the K-th nearest SBS stores fite By carefully
handling these two cases, the joint p.d.f. of the distanetwden thek SBSs andu, can be
obtained.Then, based on this joint p.d.®r [r5, > 7|C2,, = k| can be calculated by following
similar steps as in the derivation @t, (7,) in (10). Thus, we have the following theorem.
Theorem 2 (STP under Scheme 2lte STP.,,(T) of u, is given by

wschg (T) - ZnE/\/ anwms (Tn)a (22)

whereyns(T,,) is given by
A K K (K\ K—k
() 2 (=T om+ 00 () T80 T (23)

Here, ¢, is given by ©) and s, = (1 — £) gu1 + £qi2 With ¢, 1 andg,» given by

1 1 poo 0 w1
/ / / exp —Bs,m Qs, m, 1, - 37%,114 (K_l)'dtl-..dtkdu, /{:1,~.~,K—17
Qos = 0 0 Jo Zi:l t .
0, e
(24)
IS UK71
_B 1,6 ——d Pt
By exp (—Bsm (as, am, 1,0s,u)) (K —1)! " ’
Ak,2 = 1 1 poo 0 w7t
/ / / exp | —Bsm | as,am, 1, ks “as o U K |dt1"'dtk—1dua k=2 K,
0 0o Jo T+t ° (-1
(25)

where B, , (o, oy, T, 0, w) is given by (L1).
Proof: See Appendix C.

In Theorem2, ¢ms(7),) represents the STP of fike andvs, . represents the conditional STP
of file n, given thaty, is jointly served by the”;,, = £ SBSs inC,,,. Based on Theorem 2, we
have the following remark.

Remark 4 (Properties of Theorem Brom Theorem 2, a few observations are in order.

1) From @3), (24) and @5), we easily see thaps, ,, > s, -1 for all k = 2,---, K, which
means that including one more SBS into joint transmissi@hdgi a higher STP.
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2) If 1,1 > ¥m, Yms(T5,) is an increasing function df,,. That is, a file of higher probability
being stored at an SBS has a higher STP. Furthermotg, if,1 — ¥s, 1 < Vs, k — Vs, k-1
forall k =1,---,K — 1, wherews, o = ¥m, ¥ms(T},) is concave 27] and thus,, (T)
is concave. Later, we shall see that the concavity greatljitites the optimization of the
STP ¢sn, (T). Note that, the condition’s, x+1 — Vs, 1 < Vs, — Vs, k-1 iIMplies that the
marginal STP gain of including one more SBS into joint traission is decreasing and is
smaller than the marginal STP gain of using an SBS instealeohearest MBS.

3) If K =1, ¢¥ms(T),) is linear and thusy.,, (T) is linear. Later, we shall see that the linearity
greatly facilitates the optimization of the STR.,,(T) when K = 1.

Next, to obtain some simpler expressions fQr,,(T) in Theorem2, we consider the sym-
metric case wheres = a,, = a. We have the following corollary.

Corollary 2 (STP under Scheme 2 fat = am = a): Whenas = an = «, the STPygq, (T)
is given by @2), whereg,; andg» in (24) and @5) can be simplified as

1 1
dty - - dtg
[ ok

Bs,m (O{, O[, 17

Q1= (26)
0, k=K,

1
(Bs,m(aa Oé, 17 957 1))K

Uh,2= /l.../l dby -ty — k=2 K. (27)
t( =)

BS m (O{, «, 17 —x
' 1+E§;11 ti 2

) )

Here, B, ,(a,, oy, T, 0, u) is given by (1).
Proof: Corollary 2 can be proved in a similar way to Corollaty We omit the details due
to page limitation.

In Corollary 2, we obtain a closed-form expressionf,,, (T) whenK = 1 andas = am = a.
Furthermore, wherk’ > 2 andas = am = «, we obtain a simpler expression 0f.,, (T) than
that of Theorem 2, which can be used to facilitate the nurakgealuation ofi,, (T).

Fig. 3 plots the STR).,, (T) versus the target bit rateand verifies Theorer. As expected,
we see that the STB,,, (T) decreases with the target bit rateand increases with the number of
cooperative SBSK'. Besides, the marginal STP gain of including one more SBSdabperation

transmission decreases with.
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Fig. 3. STP¢en, (T) versusr. M =2, N =10,7; =0.9,7» = 08,73 =0.3, T,, =0 for n = 4,5,--- | N,

m~2, Py =43 dBm, Ps = 23 dBm, as = am = 4, Wiy = 0.2 MHz, Wy = 20

_ 1 —2 _ 1
Am = g0 M7, As = gz

MHz, anda,, = % with Zipf exponenty = 0.8. In the Monte Carlo simulations, we choose a large
ne
spatial window, which is a square 06* x 10* m?, and the final simulation results are obtained by averaging

over 10* independent realizations.

B. Optimization of Successful Transmission Probability

The caching distributioriT" significantly affects the STP under Scheme 2. We would like to
maximize vy, (T) in (22) by optimizing T. Note that, when studying Scheme 2, we focus on
the region in whichys, 1 > ¥m. In this region,u, prefers receiving files from SBSs, as SBSs
can offer a higher STP than the nearest MBS. Specifically, axe lthe following problem.

Problem 4 (Optimization of STP under Scheme 2):
¢:Ch2 £ m’%X 7~psch2 (T) (28)
st. (1),(2).
Here, T* denotes the optimal solutiotty;, = s, (T*) denotes the optimal value, ang.,, (T)
is given by @2).
Note that, different froms.,, (T) in (8), ¥sa,(T) is a differentiable function ofl’. Using
KKT conditions,we obtain the following optimality properties of Problein

Lemma 3 (Optimality Properties of Probled): If 7* is an optimal solution to Problem,

then there existg € R such that
s (T3) < v, if T =0,
antns (TF) = v, if TF € (0,1), (29)

an"/’lins(Trt) >V, if Ty =1,
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Algorithm 2 Optimal Solution to the Problem

Lif K=10rs, py1 —VYsy ko < Vsy o — sy -1 forallk=1,---, K — 1 then
2 £ Lo = iy s anvins (), v = g ot
31 while f=1do

4: V4 b

5: CalculateT}; using Lemma3, n=1,---,N.

6: if SN T = M then

7: f+0

8: dseif SN T > M then

9: Vp < V

10: ese

11: Vub < V

12: end if

13:  end while
14: else
15:  CalculateT;’ using gradient projection method,= 1, - --

16: end if

where g () 2 2ms@ with o () given by @3). Furthermore, we havée > Ty > Ty >
->Ty > 0.
Proof: See Appendix D.

From Lemma3, we see that a file of higher popularity should be stored aSB8 tier with
a higher probability (i.e., stored at more SBSs). In additiwe know that all files satisfying
T* € (0,1) must have the same, v, (1), which is less than or equal t@,v,(T*) for the
files not stored at the SBS tier and greater than or equal¢g, (1) for the files always being
stored at the SBS tier.

Whenvs, k11— Vs, 1 < Ysy ks — Vs, -1 forallk =1,---, K —1, from Remarkd4, we know that
¥ms(T,) is a concave function df},, and thusy..,,(T) is a concave function df'. In this case,
Problem4 reduces to a convex optimization problem. In particulasjfrRemark4, we know
that whenK = 1, ¥ms(7},) is a linear function off},, and thus.,(T) is a linear function of
T. In this case, Problem reduces to a linear programming problem. Thus, in these ages;
global optimal solutions to Probler can be obtained. In addition),(7},) is a monotonic
decreasing function of}, when s, 11 — Vs, 1 < Vsy k — U, -1 forallk=1,---, K — 1 and

is a constant wheri' = 1. Thus, in these two cases,in Lemma3 can be easily obtained by
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Fig. 4. Comparisons between Scheme 1 and Scheme 2 wiliere25 and~y = 0.8.

the bisection method, aril* can be then determined bg9). Therefore, in these two cases, we
can use Lemma& to obtain global optimal solutions to Proble4n

When s, k11 — Vs, > Vsy b — Usy k-1 forall k =1,--- K — 1, it is difficult to determine
the concavity ofyms(7,,). In this case, a local optimal solution to Problehtan be obtained
using gradient projection metho@3.

Finally, we can obtain a global (wheR = 1 or s, y+1 — Ys, & < Vs, s — Vs, -1 foOr all
k=1,.---,K —1) or local (Whenys, 11 — Vs, 1 > Vs, — sy -1 foral k =1,--- K — 1)

optimal solution to Problerd as summarized in Algorithm 2.

V. NUMERICAL RESULTS

In this section, we first compare the two proposed cooperdatansmission schemes under
the optimal caching designs. Then, under each scheme, wpaterthe optimal caching design
with three baseline caching designs, i.e., MR@][IIDC [19] and UC [L8]. Specifically, under
Scheme 1, Algorithni is used to obtain a local or global optimal caching distidtouto Problem
1. Under Scheme 2, Algorithm 2 is used to obtain a local or dlopéimal caching distribution

to Problem4. Unless otherwise stated, our simulation environmeninggttare as followst = 1

Mbps, Am = s552= %, As = o= m %, Py = 43 dBm, Ps = 23 dBm, Wy, = 0.2 MHz, Ws = 20
MHz, as = am =4, N = 100 anda,, = # where~ is the Zipf exponent.
ne

A. Comparisons Between Scheme 1 and Scheme 2

In this part, we compare the two cooperative transmissiberses under the optimal caching

designs. Fig4 illustrates the STP under each scheme versus the numbeopé@iive SBSg(

June 29, 2021 DRAFT



20

o
©

Yy

o
3

o

o)

a
o
o
&

== Optimal caching |
: | ——MPC
0.55 —*=—Optimal caching | | 0.4 —=—|IDC
——MPC -e-ucC

—=—|IDC

o
w

- --UC
: Number of different files stored at SBSs

Successful Transmission Probability
o
o

Successful Transmission Probabilit

: Number of different files stored at SBSs

o
N

1 2 3 4 2 3 4
Number of Cooperative SBSs, K Number of Cooperative SBSs, K
(a) Scheme 1 (b) Scheme 2

Fig. 5. Comparisons between the optimal caching and baselinder various number of cooperative SBSs

at M = 25 and~ = 0.8.

and the target bit rate, respectively. From Figd(a), we observe that the STP under each scheme
increases with/(, since largerk leads to higher desired signal power and lower interference
power. In addition, whenk is large, e.g., /X > 2, the marginal STP increase w.r& under
Scheme 1 becomes small. This is because the average deagmed ower from an SBS far
from the typical user is weak, and the advantage of incotpayat in the joint transmission is
negligible. While, for allK = 1,---,5, the marginal STP increase w.rkl under Scheme 2 is
large. This is because wheti =1, - - -, 5, the nearest’ SBSs are still close to the typical user,
including one more SBS in the joint transmission greatlyeases the desired signal power, and
silencing one more SBS significantly reduces interfereroseep. Furthermore, wheRA is small,
Scheme 1 outperforms Scheme 2, implying that including oaeer8BS in the joint transmission

is preferable in this region; wheR is large, Scheme 2 outperforms Scheme 1, implying that
silencing one more SBS is preferable in this region. From &), we observe that the STP
under each scheme decreases witn addition, whenr is small, Scheme 1 outperforms Scheme
2, implying that SBS joint transmission is preferable irstregion. Whenr is large, Scheme 2

outperforms Scheme 1, implying that SBS silencing is pedfier in this region.

B. Comparisons Between the Optimal Caching Designs andliBase

In this part, under each cooperative transmission schermeecompare the optimal caching
design and three baseline caching designs. From %-ig, we can observe that the optimal

caching design outperforms all three baselines under eaopecation transmission scheme.

June 29, 2021 DRAFT



21

[

[

o
©
o
©

=% Optimal caching
-0 MPC 1

o
)
o
)

=#—Optimal caching

-e-IIDC b
MPC
041 —=uc 041 DG

o
)
3

0.2

' : Number of different files stored at SBSs d¢ : Number of different files stored at SBSs

Successful Transmission Probability
Successful Transmission Probability

o
o

0 20 80 100 0 20 80 100

40 60 40 60
Cache Size, M Cache Size, M

(a) Scheme 1 (b) Scheme 2
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In the following, similarly, for the the optimal caching dgs under Scheme 2, we denote
max{n € N : T > 1072} by N, indicating the number of different files stored at SBSs.eNot
that, here we choosl) 2 as the lower bound instead 6fto accommodate the calculation error
by the numerical algorithm.

Specifically, Fig.5 illustrates the STP versus the number of cooperative SBSErom Fig.

5, we observe that under the optimal caching, a lafgdeads to a largeiNS (up to N), which
means that the larger the number of cooperative SBSs, the files should be stored at the
SBS tier. Since MPC stores only thid < N¢ most popular files at each SBS tier, the optimal
caching can achieve higher file diversity and thus outperoMPC. As UC cannot exploit the
file popularity to improve the performance, and IIDC may stotultiple copies of the same file,
leading to storage waste, the optimal caching outperfor@sadd IIDC.

Fig. 6 illustrates the STP versus the cache sidés We can see that witld/ increasing,
the performance of all designs increases. This is becaudé axreases, each SBS can store
more files, and the probability that a requested file is stateithe cooperative SBSs increases.
Furthermore, we see that whe increases)N¢ increases (up t&V), implying that the larger the
cache size, the more files will be stored at the SBS tier. Initiatd when M/ becomes sufficiently
large, the STP gap between the optimal caching and MPC or WdGnbes much smaller.

Fig. 7 illustrates the STP versus the Zipf exponentWe can see that the performance of
the optimal caching, MPC and IIDC increases withwhereas the STP of UC stays flat with

~ since it does not exploit any file popularity. In additionr @ large~, the optimal caching
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Fig. 7. Comparisons between the optimal caching and baselinder various Zipf exponentat K = 3 and

M = 25.

reduces to MPC, implying that only a small number of the magiypar files should be stored
at the SBS tier in this region. While for a small the optimal caching reduces to UC, implying

that a large number of files should be stored at the SBS tidnignrégion.

VI. CONCLUSION

In this paper, we jointly considered SBS caching and codjgeran a downlink large-
scale HetNet. Based on a random caching design, two coometeinsmission schemes were
proposed. Utilizing tools from stochastic geometry, weiskl tractable expressions for the
STP under each scheme. Then, under each scheme, we coddiger8TP maximization. By
exploring optimality properties and using optimizationheiques, a local optimal solution in the
general case and global optimal solutions in some specsalscaere obtained for each scheme.
Under each scheme, compared with some existing cachingrdesi the literature, e.g., MPC,

IIDC and UC, the optimal caching design achieved better S@ffopmance.

APPENDIX A: PROOF OF THETHEOREM 1

To prove Theorend, we rewrite 6) as follows:

Ysen, (T)= Z an (Pr [Wmlogy (1 +vm) > 7] 1 [T}, = 0] + Pr [Wslogy (1 + s, ) > 7] 1[T,, > 0] > (30)
neN

S b5, (T)
where~, and~s, ,, are given by 8) and @), respectively. Based or8Q), we calculatey,, and

s, (T,), respectively.
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Calculation of,

Consider the case thaf, is served by its nearest MBS. First, we rewrite the SIR expres

“m_where Xp £ Puliminrni™ Is 2 3 ce, Pslhs s and I,

sion in @) asym = Tt Tsi

Zl@m\lm Pm|hml\ +7". Conditioning onry, ;,, = r, we have:

Ve (7) £ Pr Wi logy(1 + ym) > T|rm 1, = 7]

am

(a) r
:E157Im [Pr [Xm Z em(IS + Im)|7"m7lm = T]] E[S Im |:eXp ( (IS + Im)>:|

P
(b) rem rom
=Er [exp (— iz IS)} Er, [exp (—P—Hmlm)}, (31)

A A
7LIS(Z’T)|2:7;mm Om *L:Im(zar)lz:zg‘mm 0,

wheref,, £ 27/"m _1, (a) is obtained by noting tha¥,, is an exponential random variable with
mean Byr—°m, i.e., Xy ~ exp (r“"0n Py '), and (b) is due to the independence of the Rayleigh
fading channels and the independence of the homogeneows PRR, ) and L, (z,r) repre-
sent the Laplace transforms of the interferedg@nd I,,, respectively. To calculatér, ., , (r)
according to 81), we first calculateC, (z,r) and £, (z, ), respectively, as follows:

o5 ) o Lo (o)

leds leds

(©) > 1 B 272 2 2/as
=exp (—27T/\5/0 (1 - m) vdv) = exp ( o csc (as) As (2Ps) , (32)

L1, (z,7)=E lexp (_Z Z Pm|hml|2 am)] :E[ H exp( ZPm|hml| am)]

L1 (z,7)=E

1€Pm\Im 1€DPm\Im
(d) > 1
=exp <_27TAm\/1: <1 — m) ’Udl})
2 2 I
o (ot (o (- 2 ) )Y, @
am am rom

where (c) and (d) are obtained by utilizing the probabiligngrating functional of PPR3]].
Substituting 82) and @3) into (31), we obtainyr, ., , (r) as follows:

2 2 2 0 P 2/as
1/Jm,rm 1 (r):exp (—i cse (_ﬂ—) /\s ( m s) T2(¥m/0¢s>
slm s o Pm

X exp <—7T/\m7°2 (2F1 (—1,1;1 - l,—Hm) - 1)) ) (34)
am Om

Now, we calculate)y, by first removing the condition ofr, ., (r) onryy, = r. By noting
that the p.d.f. ofrm,, is fr,, (r) = 27 mr exp(—mAmr?) [34], we have:

z/’m:/0 Vi (r)frm,Lm (r)dr
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By using the change of variable= 7 \nr? and using the definition 0B, , (., a,, T, 0,u), we

can gety, in Theoreml.

Calculation of, (7,)

Consider the case thag requesting filen is jointly served by the SBSs ity ,,. There are three
types of interferers, namely, i) all the other SBSs storitefi besides the SBSs i, ,,, ii) all
the SBSs not storing file, and iii) all the MBSs. Thus, we rewrite the SIR expressioidnas

2
_ Xs, /P —as/2 - 2 —as
Tsin = Ig ntls —n+Im’ WhereX51 leecm Pshs igr S,ls B Zlefbs,n\cl,n P5|hsvl| si

23 o, P |hs|*rp® and Im £ 3 g Plhmg|* g™ with @5, £ @4\ @5, denoting

the homogeneous PPP Wlth dengity— 7},) \s generated by SBSs not storing file
For notation simplicity, we denote hy;, - - -, X the distances between ti#¢ SBSs inC, ,,
andu,, where X, particularly denotes the distance between Hih nearest SBS i@, ,, and
ug, 1.6.,0 < X, < X fork=1,---, K —1. DenoteX = (Xj)s=1... x- Conditioning onX = x,

wherex £ (zy)5-1...x, We have:
Vs, x (T, x) £Pr [(Wslogy(1+7s,.n) > TIX =x%] = Er i ts niin [Pr[Xs, > 0s(Isn + Is,—n + Im)|X = X]]

WE, . lexp(=B0sLsn) B, _, [exp (—B0sLs—n)] Egy [exp (— B0 Im)], (35)

A
:ﬂlsyn(zyx)b:/ses éﬂlsy,n (2,%)| =805 =Ly (2,%)]2=p0s

where (a) follows fromXs, ~ exp(56s) [28 and § = Ps—l/(z,f:l 9:,;“5). To calculate
Vs, x (T, x) according to 85), we first calculate’;, , (z,x), L1, _,(z,x) and Ly, (z,x), respec-

tively. Similar to @2) and 33), we have:

2 2 Ps
Ly, , (z,x)=exp <—7T/\3Tn7"§( <2F1 ( T 1;1— a—s; _jcofé> - 1)) , (36)
272 27 9
Lr, _,(z,x)=exp (—(1 - Tn)a— cse (a—)/\s(zPs) /O‘S) , (37)
2
Ly, (z,x)=exp <—2ai cse (2—7T> /\m(sz)Q/o‘m> . (38)

Substituting 86), (37) and @8) into (35), we obtainys, x(7,,,x) as follows:

2 2 Osx .
Vo x (T, x)=exp | —mAToad (oF) [ —— 11— =5 - 22— ) 1
Qs Qs Zk 12
2/as
272 2 0
x exp [ —(1 —Tn)i csc (—ﬂ-) As < > e )
As Zk 1T
2/am
272 2 Os P,
X exp 2T ese <—7T>/\ $ . (39)
m om Fs Zk I
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Now, we calculateys, (7,,) by removing the condition ofs, x(7,,,x) on X = x. Note that, the

p.d.f. of X is given by

Ixi (k) if K=1,
et = 4 (40)

le,m,XKfl\XK (Ila e 7IK*1|xK)fXK (SCK), If K Z 27

where fy, (zx) = 22T 2K 1—mATusk 0 < 24 < oo, is the p.d.f. of Xx [34], and

K1)

Fxumxie s xe (@, axoiloi) = [, 25, 0 < 2 < xk, is the conditional joint p.d.f. of
K

X1,---, Xg_1, conditioned onXx = xxand is calculated by noting that giveYy, = xk, the

K —1 SBSs are uniformly distributed in a circle of radiug centered at,, [35]. Thus, by 39)

and @0), we have:

| s x(@x oo if =1,
dJSl (Tn): OIK 00
/ / s, X (T, X) fxy oo Xpe | Xx (X1 T 12K ) fx e (T )y - - - dag, if K>2.
0 0
By using the changes of variables= t\sT,, 2%, tx = ;”’Ti k=1,---,K —1, and the definition
K

of B, (v, oy, T, 6, u), we can getys, (7,,) in Theoreml.

APPENDIX B: PROOF OF THELEMMA 1

From Q) and (0), we know thatyn, > 0, ¢s,(0) = 0 and1s, (7},) is an increasing function
of 7,,. Note that we consider the regiafy, (1) > v¥n,. Thus, there exists a rodt, € (0,1)
such thatys, (Ti,) = ¥m. Suppose the optimal solutiob* satisfies0 < 7%, < Ty, for some
n* € N. DenoteN* £ {n € N|0 < T < 1}.% Note thatT* = 0 for all n € N'\ N'*. Since
Yonen' T = 2 pen+ T = T + 3 eniviuey I = M, and Ty € (0,1] for all n € N'F, there
existse, € [0,1) for all n € N'* satisfying} > 4\, € = Tpy- ande, + 157 € (0,1] for all
n € Nt \ {n*}. SinceT}. > 0, there existsn* € N\ {n*} such thate,+ > 0. Now, we
construct a feasible solutidh’ to Probleml by choosingl,. =0, T, = 0 for all n € N\ N'F,
and7, = T* + ¢, for all n € N*\ {n*}. Note that7 , > T*,, ase,+ > 0. Then, by the

optimality of T*, we have:
e (T') = Yaon, (T) == (i = ¥ (T ) + 30 an(s, (T) = 0, (T)) < 0. (41)

Since0 < T < Ty, andT, = TF + ¢, > T for all n € N* \ {n*}, by the monotonicity of
Vs, (x) Wt , we haveym — s, (1) = s, (Tin) — s, (T72) > 0 and s, (T,,) — s, (1) > 0.

°Note that, we haveV'" # () due to the constraints irlY and Q).
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In addition, sinceT), > T for all n € N\ {n*} with strict inequality for at leash™, we
gt Y- cnr ey @n(¥s, (1) — s, (T7)) > 0. Thus, we havels, (T) — ¢, (T*) > 0, which
contradicts41). Therefore, by contradiction, we can prove that the optsoaition to Problent,
i.e., T*, satisfiesT* = 0 or T € (Tiy, 1] for all n € N, implying N'* = {n € N|T},, < TF < 1}
and N: 2 |N+|e {M,M+ 1mmHTAﬂ — 1,N}}.

Suppose these exis € N andn, € N\ NT (i.e,, Ty € (T, 1] and T, = 0) such that

/

ny >y (i.e.,a,, < az,). We construct a feasible solutidi by choosingl’, =77 , T, =T}
and7, =T for all n € N'\ {n,7,}. Then, by the optimality ofl*, we have:
Yseny (T7) = Wy (T*)=(any — an, ) (Wm — s, (T}7,)) < 0. (42)

SinceT}; € (Tin,1], by the monotonicity of)s, (z) w.r.t. z, we haveyy, — vs, (1) < tm —
Vs, (Tyn) = 0. In addition, by noting that,,, —a,, < 0, we havey,u,, (T') =, (T*) > 0, which
contradicts 42). Therefore, by contradiction, we prove that for alle N+ andn; € N\ N,
we haven; < n;. Thatis, we haveV'™ = {1,--- N} and NV \N T = {N¢+1,N; +2,---, N}.
Considerni,ny, € N7*, ny < ny (i.€., an, > ayn,)- Supposel;;, < T;,. By the monotonicity
of s, (z) W.rt. 2, we haveys, (T7;) < s, (T7%,). Now, we construct a feasible solutidh to
Problem1 by choosingl’, =Ty, T, =T;:, andT, = T; for all n € N'\{ni,ny}. Thus, by

na!? n

/

the optimality of T*, we have

wSChl (T,) - 7vZJschl (T*):(a’nl - anz)(dJS] (T’:Zz) - ¢S1 (T;:1 )) < 0. (43)

Sincea,, > a,, andws, (T3:) < ¥s, (T7%,), we haveyya, (T') — s, (T*) > 0, which contradicts
(43). Therefore, by contradiction, we prove that for any,n, € N*, n; < n,, we have
1>1T; >T;, > Ty, we havel > Ty > Ty > --- > T;(,S* > Tw. By noting that7r = 0 for all

n e N\NT, implying Tz 41 = Tnz42 = - - - = Ty = 0. Therefore, we prove Lemmih

APPENDIX C: PROOF OF THETHEOREM 2
To prove Theoren®2, we rewrite {) as follows:

K

Yseny (T)=Y _ an | Prlrm > 7] Pr[Cop = 0]+ Y _Pr(rs, > 7|Cop = k| Pr[Cop = K] |, (44)
nenN T k=1 »

where ¢, is already given by9) and Pr[Cy,, = k] = (§)T%5(1 — T,,)5*, k = 0,1,-- -, K.

Thus, it remains to calculates, .. Let /s x denote thei'th nearest SBS ifd,. We consider two
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cases, i.e., i) SB& ; does not store file, i.e., s x ¢ Cs, and ii) SBSIs x stores filen, i.e.,
ls k € Cy,. Then, we have:

Vs, k=P1 [Wslogy(1 4+ vs,.n) > T, ls, x & C2.n|Con = k| + Pr[Wslogy (1 +7s,.n) > 7,ls i € Con|Ca .y = K]

=Pr {WS log, <1 + 52 ) > Tlls ik & Con, Cop = k} Pr(ls x ¢ Co.n|Capn = k]
Is + Im
é%,l
+ Pr [WS log, ( + jAn 1 ) > 7lls.x € Con,Cop = k] Pr[ls x € C2.n|Con = K|, (45)
m
é‘]k,2

where X, = }EISECQ»@ vV Pshs ,r s_laS/2 Is = Zle@ ¢ Fs |hs|*rg s and Iy & > lcdn Prnlhm,|?

—Oém Note that PI'[SK ¢ CZn|C2n = ]{3] =1- % and Pr[lva - CZ,n|C2,n = ]{,‘] = %,

k; =1,---, K. Thus, it remains to calculatg,; and g ».

In the following, we focus on the calculation qf ;. Note that,g;» can be calculated by
following similar steps. We omit the details due to page taton. Whenk = K, the case that
lsx ¢ Co, andCsy,, = k cannot happen. In this case, we ggt = 0. Now, we calculatey ; for
the case thak x ¢ Cy, andCy,, =k, k=1,---, K — 1. Let X, ---, X}, denote the distances
between thek SBSs inC,, andu, and let X, denote the distance between théh nearest
SBS inC, anduy. DenoteX = (X1, ---, X, Xx). Further conditioning oiX = x, we have:

qkﬂlyx(x)éPr [WS log, ( > > 71X =x,lsx & ConyCap = k]

Is —|—Im
:EIS,Im [Pr [ng > 6‘5([5 + Im)|X =X, ls,K ¢ CQ,na CQ,n = k]]

oo () o (2 o),

2L (2%)]

=rs /(T m;as)es éﬁlm(Z’X)‘Z:Psil/(zi’czl m;as)es

wherex £ (z,,---, 24, ), and (a) follows from that\s, ~ exp ( 1/<ZZ LT ) 95> [26].
To calculatey ; x (x) according to 46), we next calculatel, (2, x) and L, (z,x), respectively.
Similar to 32) and @3), we have:

2 2 Ps
L1, (z,x)=exp (—77)\317%( (2F1 (—a—s, 1;1— a—s, _i‘;‘;) — 1)) , (47)
2
L1 (z,x)=exp (—ii csc <C2y—ﬂ-) )\m(sz)Q/o‘"‘) . (48)

Substituting 47), (48) into (46), we have:
asy —1
qr1,x (x)=exp (—m\sx%( (2F1 (—O%, 1;1 — O%, - (Zf—l (Z() ) ) - 1))
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o e () (rar (5, ) ) “9)

Now, we calculatey, ; by removing the condition of; x(x) on X = x. Note that, the p.d.f.

of X is given by

Ix(X) = fx, o xoxx (1, Tr) o (TR0), (50)

wherefx, (zx) = 2((351);{ g™t () < 1y < o0, is the p.d.f. of X [34], and fx, . x,|xx

(X1, mp) = H’“ 2 0 < x; < xg, is the conditional p.d.f. ofy, - - -, X}, conditioned on

21;1;

Xk = xx and is calculated by noting that givefy = x, thek SBSs are uniformly distributed

in a circle of radiusrx centered at, [35]. Thus, by 49) and 60), we have:

T
Qk1/ / /lex ) fx (x)dzy - - - depdrk.

,1=1,---,k, and the definition of

By using the changes of variablas= t\sz% andt; =

xK

B, (0, oy, T, 6, u) in (11), we can gely,; in Theorem 2.

APPENDIX D: PROOF OF THELEMMA 3

The Lagrangian of the optimization i”22) is given by

LT AN )= antms(Ta) +Y  ATut D WM =Y T,). (51)

where),, > 0 andn, > 0 are the Lagrangian multipliers associated with { is the Lagrangian
multiplier associated with2), A £ (\,)ner, andn = (0, )ner. Thus, we have:

OL(T,X,n,v)
oT,

= antms(Tn) + Ao = 0o — V. (52)

If T* is an optimal solution of Probled, based on KKT conditions, i.e., (i) primal constraints:
(1), (2), (i) dual constraints}\, > 0 andn, > 0 for all n € N, (iii) complementary slackness
MTF =0 andn, (1 —T¢) =0 for all n € N, and (iV) a,¥ns(TF) + X\ — 1, — v = 0 for all

n € N, we have: (a) ifl* = 0, then), > 0, n, = 0, and a, (7)) — v = — X\, implying
anms(T) < v; (D) if TF = 1, then )\, = 0, , > 0, and a,¥ns(T) — v = 1n,, implying
s (T) > v; (€) if 0 < TF < 1, then), = 0, 1, = 0, anda, (1) = v. Therefore, we can
prove @9). In addition, by following similar steps as in the proof oélamal, we can prove
thatl > 77 > T5 > --- > Tx > 0. We omit the details due to page limitation.
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