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Abstract—This paper proposes a novel approach for detecting
groups of people that walk ‘“together” (group mobility) as
well as the people who walk “alone” (individual movements)
using wireless signals. We exploit multiple wireless sniffers to
pervasively collect human mobility data from people with mobile
devices and identify similarities and the group mobility based
on the wireless fingerprints. We propose a method which initially
converts the wireless packets collected by the sniffers into people’s
wireless fingerprints. The method then determines group mobility
by finding the statuses of people at certain times (dynamic/static)
and the space correlation of dynamic people. To evaluate the
feasibility of our approach, we conduct real world experiments
by collecting data from 10 participants carrying Bluetooth Low
Energy (BLE) beacons in an office environment for a two-week
period. The proposed approach captures space correlation with
95% and group mobility with 79% accuracies on average. With
the proposed approach we successfully 1) detect the groups and
individual movements and 2) generate social networks based on
the group mobility characteristics.

Keywords—crowd mobility, human mobility, internet of things,
social networks.

I. INTRODUCTION

Human mobility analytics has attracted attention for many
promising service domains such as public transport [[1]], public
safety [2]], [3]], and smart cities. As a result of the advancements
of the emerging technologies in Internet of Things (IoT) and
communications, human mobility information can be perva-
sively collected through mobile devices, RFIDs, and sensors
for further human activity inference [4].

Can we know if there exist groups of people who are
walking fogether or people who are always walking alone?
Comparing to individual activity inference, group mobility
emphasizes crowd behaviour [3f, [6] more from social per-
spectives and opens up new opportunities for enhancing human
well-being. For example, if we can detect students walking
alone or together in a campus, it will be very helpful for
understanding social isolation at an earlier stage. Another
example is understanding the characteristics of people in
certain areas. For instance, if we know that the people who visit
a tourist attraction at different times mostly consist of families,
couples, or singles, we can do planning of new events based on
this knowledge. Thus, to answer these questions and possible
others, this paper proposes a novel approach for detecting
groups of people that walk together (group mobility) and the
people who walk alone (individual movements) using wireless
signals. Wireless sniffers are deployed in targeted areas for
collecting wireless signals (e.g., Wi-Fi/Bluetooth signals) from
mobile devices carried by people. We transform the collected
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Fig. 1. Using multiple sniffers for human movement detection.

wireless packets to wireless fingerprints of people’s movement
and determine if these fingerprints are similar to each other in
terms of their mobility statuses (i.e., static/dynamic) and their
correlation of space transition. Figure [I] shows an example of
wireless signals received during a person’s movement which
can be used for fingerprints. When he/she moves from one area
to another that are covered by different sniffers, the wireless
signal strengths vary. Our key idea is to detect if there exist a
group of people who have similar wireless fingerprints during
their movements. This enables detecting movement groups for
surveillance or profiling in certain areas. Moreover, for certain
scenarios such as university campuses, we can further identify
people’s long-term group behaviours and social interactions in
crowds.

The proposed approach consists of the phases of sampling
and aggregation, wireless fingerprinting, movement detection,
space correlation, and group mobility decision. The aim of the
approach is to capture groups of people that move together or
alone. We evaluate our approach with a real-world experiment
by collecting data from 10 participants carrying Bluetooth
Low Energy (BLE) beacons in an office environment for two
weeks. The results of the real-world experiment show that the
proposed approach captures similarity (space correlation) with
95% and group movements with 79% accuracies on average.
With the proposed approach, we successfully detect the group
movements and generate social networks based on the group
mobility characteristics.

While mostly computer vision-based studies [7], 8] aimed
to tackle group mobility detection using cameras, our approach
has the following unique features benefited by leveraging
wireless signals captured from people’s devices. First, our
approach does not require any priori knowledge in the sense
that no training stage is required. Second, since our approach
does not rely on any localization technology, it is flexible to
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indoor and outdoor environments and to various conditions
such as darkness, blind spots, and behind the walls. Third,
compared to the camera-based approaches, our approach has
much lower computational cost because of the smaller sizes
of collected wireless data. In our experiments, computation of
the data collected from 10 people for one day takes less than
2.5 min with a personal computer.

Recently, many research work has paid attention to develop
computational methods and understand human behaviour using
smartphones and wearable devices. The work in [9]] is based
on collecting data from students’ smartphones to understand
how behavioral differences and environmental factors affect
students’ learning during college. Extracting feature patterns
of human walking behaviour based on smartphones data is
presented in [10]. In [11]], multiple smartphones collaborate to
find out the conversation groups nearby. The system in
exploits continuous audio sensing to identify the person you
are talking with in order to avoid the awkward situation of
forgetting his/her name. A group-based navigation system is
designed in to help users find a particular person in a
social venue. Compared to these approaches, our approach is
more flexible and does not require a mobile application to be
pre-installed in users’ smartphones.

II. GROUP MOBILITY DETECTION
A. Mobility Sensing System

The mobility sensing system consists of four components:
beacons, wireless sniffers, a network gateway, and a back-end
server, as shown in Fig. |Zl Each user carries a Bluetooth
Low Energy (BLE) beacon which periodically broadcasts
advertising packets. Wireless sniffers are deployed randomly
in the targeted sensing environment. Wireless sniffers have
the capability to capture BLE advertising packets. Each BLE
advertising packet contains a unique ID and Received Signal
Strength Indicator (RSSI). Wireless sniffers report these cap-
tured packets to the network gateway and then to the back-end
server for further human mobility data analytics. While we
implement a beacon based sniffing system as a prototype for
opt-in data collectionﬂ our group mobility detection approach
is applicable to the Wi-Fi-based solutions using Wi-Fi sniffers
and wireless mobile devices of people (e.g., smartphones).

!For experimental purpose, we collect data only from a specific set of BLE
beacons carried by voluntary participants.
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Figure [3]illustrates an overview of our algorithm which in-
cludes the processes of mobility data preprocessing (sampling
and aggregation), wireless fingerprinting (sniffer fingerprints),
movement detection (dynamic/static statuses), and space cor-
relation. The mobility data preprocessing is to eliminate noise
from raw data. The wireless fingerprinting is to represent the
collected data with a list of sniffers sorted by RSSIs. The
movement detection is to reduce the search space by detecting
if a person is static or dynamic so that the movement detection
is done for the smaller set of data (data collected during the
person’s movement). The space correlation is to extract the
levels of the mobility dependency between people for detecting
group and individual mobility. Notice that the proposed method
can be applied to arbitrary deployment in the sense that one
can deploy any number of sniffers randomly or strategically.
Below, we describe each of these processes in detail.

B. Mobility Data Preprocessing

The mobility data preprocessing phase starts with adding
signals from multiple sniffers on top of each other for the
same time window. Fig. [@}a shows an example raw RSSI
data collected from 7,7y for a short time period of 150
sec for a short distance deployment (about 10m between the
sniffers). As it can be seen, the RSSIs change in a way that
the sniffer with stronger signals differs by time. One way of
understanding the movement from one sniffer to another could
be extracting peak points to find the times where a beacon is
very close to particular sniffers. However, this brings other
complexities and problems caused by real life challenges. As
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Fig. 4. RSSI measurements: (a) Raw data, (b) aggregated by 5 sec, and (c) extracted after aggregation.

it can be seen in Fig. E|-a, raw data has much noise which can
be due to many reasons including the inefficiencies of wireless
transmission, antenna orientation, interference, physical obsta-
cles (e.g., walls), instability of the carried mobile devices, and
so on. Therefore, finding exact points when a person passes
by a sniffer has challenges in real world data such as having
multiple peak points close to each other, high variances, and
sometimes even not having any peak point when someone is
close to a sniffer.

To analyze the data by eliminating noise and variances in
the RSSIs, the values are aggregated by a sampling time ¢. %
is a parameter that can be set according to the distance between
the sniffers and expected walking time, such that ¢, should
contain at most one movement (from 7; to 7o or vice versa).
In addition to eliminating noise and variances, data sampling
and aggregation provide efficiency in the computation and
discretization of the measurements for enabling the latter
phases of the approach. Considering t; = 5 sec as an example,
Fig. @}b shows the aggregated signals. In this figure, the times
when RSSI of one 7 is higher are more visible. To visualize the
differences between the RSSIs more clearly, the two signals
are extracted from each other as shown in Fig. f}c. Sniffer
w1 represents the values of 7y after my is extracted from
it. This provides a more visible and symmetric view on the
signal strength differences in various times. For instance, in
T = [0,10] sec, RSSI of 7 is higher than the RSSI of .
As RSSI values grow higher when the person with the mobile
device is closer, we can infer that the person is closer to 7y
compared to 7o at that time period.

C. Wireless Fingerprinting

As the multiple sniffers deployed are identical to each
other, the RSSIs give us an insight on to which 7 a person is
closer to. The wireless fingerprinting is based on the fact that
RSSIs are inversely proportional with distance from person P
to the sniffer 7. For each time interval T' (|T| = t,), wireless
sniffer fingerprint of the person P consists of the list of sniffers
S{FD = {1, 2, ..}, where the sniffers are listed in descending
RSSTI order such that the sniffer with the highest RSSI is placed
at the beginning of the list, while the one with lowest RSSI
is placed at the end. A sniffer’s appearance in this list means
that the sniffer received signal(s) from the wireless device of
P during the time interval 7. As it can be seen in Fig. [3]
the number of sniffers at each time interval may or may not

be the same. Furthermore, the sniffer with higher RSSIs may
alter as this case is shown in the third time interval. The
outcome of this phase is time series data where each time
interval includes a list of sniffers as the wireless fingerprints.
The wireless fingerprints are created for every person that is
observed by the system.

D. Movement Detection and Space Correlation

Using the wireless sniffer fingerprints created in the previ-
ous phase, we define the status of person P at any time interval
T as follows.

Static if f(SE k)= f(SiTev,k);
Dynamic otherwise,

Status(P,T) = {

where 1 < k£ < n and n is the number of sniffers. The
function f(SE k) gives the first k& element of the list SL.
In our approach, we assume k& = 1 based on the observation
that the sniffers that are not close to a person has either fewer
RSSIs or no RSSI with some randomness. On the other hand,
the closest sniffer (w with on average higher RSSIs) is the
most reliable source of input as this sniffer can receive more
wireless packets. Moreover, one can simply suggest that if 7
with highest RSSI changes for P, this is possibly because of
a movement which makes P closer to a different 7. Hence,
setting k£ = 1 means that if the 7 with the highest RSSI stays
the same, P is static.

Now, let us define the space correlation between multiple
dynamic people. Considering the above assumption, dynamic
means that f(S7,k) # f(Sf. k). We define a space

correlation between two people fDZ and P; as follows.

true  if (f(S?'»k) = f(ng,kD/\
(£0SF k) = F(ST) oK) )

otherwise,

C<Pi>Pj) =
false

where 1 < k£ < n and n is the number of sniffers. Similar to the
status definition, we assume k = 1 considering the correlation
based on the closest sniffer for the pair (P;, P;).

For each pair (P;,P;) for any time interval T, if
Status(P;,T) = Status(P;,T) and C(P;,P;) = true,
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Fig. 5. The experimental setup in the office environment: 3 sniffers, 10
people (from 4 rooms & 1 external).

the pair is considered to have a movement together. The
computation is iterated for all pairs so that the movement
group sets G = { Py, Ps, ...} are created for any time interval.
For detected movements with the set G, |G| = 1 for alone
movements and |G| > 1 for together movements. In summary,
the approach detects group mobility as well as individual
movements based on the aforementioned phases of data pre-
processing, wireless fingerprinting, and using the movement
status and space correlation information.

III. EXPERIMENTAL STUDY
A. Experimental Setup

For the experiments we implement a packet sniffing pro-
gram in Python for Raspberry Pi platforms. We use BLE sens-
ing technology as an example for the prototype of our system.
The software consists of 3 components: packet monitor, packet
filter and decoder and data reporter. The packet monitor
captures all types of BLE packets. The packet filter and
decoder parses only BLE advertising packets and drops other
types of BLE packets. The data reporter sends newly arrived
packets to the crowd mobility database (CouchDB) through the
gateway for performing data analytics. The designed software
components are running as background processes on Raspberry
Pi version 3 which has a built-in BLE module.

After setting up the system and preliminary analysis, we
conduct two types of experiments: (a) controlled experiment
for collecting ground truth and (b) real-world experiment to
collect data from people for a longer period of time. In the
controlled experiment 10 beacon nodes are carried together
(all put in a small box) and one person performs 10 and 20
sec walks and 5 sec runs (in 2.5 minutes time in total) between
2 sniffers which are placed about 10 m away from each other.
Our purpose is to understand if the results for the beacons are
similar and consistent with each other. While they are different
beacon nodes, they are at any time placed next to each other,
therefore the expectation is to have similar results. Later, we
conduct a real-world experiment in the office environment,
where we collect Bluetooth data from 10 participants who
carry beacons for a two-week period (during work hours). The
two participants carry 2 beacons at the same time to help us

understand how accurate the results are. We want to know how
frequent the group movements occur as opposed to individual
movements in the office environment. Moreover, we aim to
see the reflection of the setting of the office such as people
who stay in the same room or people who stay alone as well
as people who mostly walk together (e.g., going to meetings
together).

Fig. [B] shows the experimental setup and the setting of
the office environment. 3 sniffers are located in the corridors
where people mostly walk without interruptions. The gateway
is placed such that each 7 can transmit their arrived packets and
later the data is forwarded to the backed server (in the office
room) through the gateway. Rooms have different sizes (4
people, 2 people, single room) and one participant is called as
an external member since the office room of the participant is
out of the range. However, the external member walks through
these corridors from time to time due to working in the same
group and also for going to lunch. Lastly, there exist a meeting
room on the middle which can be used by any participants. The
experimental setup (e.g., locations of the sniffers) is static in
controlled and real-world experiments for this initial evaluation
of the feasibility of our approach and simple comparison
of the results from the different experiments. On the other
hand, we believe that the approach can be easily applied to
various indoor and outdoor setups including different types of
conditions and obstacles.

The default parameters in our experiments are as follows.
The distance between 7 and 7 is 10.5 m and between w9 and
w3 18 9.5 m. t, is empirically set as 20 sec. The advertising
interval of the beacons are set as 100 msec and the transmission
power of the beacons is set as 4 dBm. While the approach
does not rely on high transmit power or very short advertising
interval, we observe that for weak transmission powers packet
arrival rate may decrease even when the person is closer to the
7 (e.g., 2 m from the 7). For the controlled experiment which
takes 2.5 min, we observe 40% packet arrival (~ 1 MB JSON
file) for weak transmission power of -12 dBm compared to
strong transmission power of 4 dBm (~ 2.5 MB JSON file).
Experimental results do not involve any processes for filtering
out or averaging results from multiple runs.

B. Metrics

We define the first metric for analyzing the results based on
the space correlation of wireless fingerprints. Similaritg score
is defined for the set of wireless fingerprints S5, S;7 of a
pair (P;, P;) (when both have fingerprint for a particular time
interval T') for any duration A = {T3,75,..,T,,} () can be
a short or a long duration). The maximum possible points
is defined as the case when they have both the exact same
fingerprints (e.g., S;i = {7r2,771,773}755j = {mo,m, 73}
for all time intervals in A except when both P; and P;
have no measurements. The matching reward depends on the
precedence such that the first match (e.g., both fingerprints
start with ms) is rewarded with 7 points, second match (e.g.,
both fingerprints has second element 7;) is rewarded with 2
points, and the third match is rewarded with 1 point. Note
that the third match reward is not used for the controlled
experiment as there are only 2 sniffers in this experiment.
Moreover, for a particular time interval 7', a match cannot
occur after a mismatch. For instance, if the first sniffers in the
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We analyze the number of movements (our second met-
ric) detected based on the group sizes such as individual Fig. 7. The 10 beacon experiment: group movement similarity scores of all

movement, 2 people movements, 3 people movements, and
so on. To understand if the group movements reflect the
social setting in the office environment, we define the metric
movement intersections. The metric movement intersections
(M) is defined as follows.

B ”M(R) ﬂM(Pj)H
MICES ) = i

where M (P;) is the set of all detected movements of P; and
M(P;) N M(P;) is the set of common movements of P; and

7.

The above metric takes alone walks into account, such that
even when only P; walks alone (|G| = 1), M1 decreases (since
the divisor M (F;) is the set of all movements of P;). In order
to observe pairs in the group movements, we define another
metric called together movement intersections (T' M), where
together movement means the group movements of the size at
least 2, as follows.

[M(B) N M(B)|
TMI(F;, P;) =
BB = e

where T M (P;) represents the together movements of P;. As
it can be seen, similarity score produces symmetric results for
the pairs (similarity score of (P;, P;) is equal to (P;, F;)),
while M1 and T'M1 depends on the perspective of P; or P;
as the divisor changes.

C. Performance results

1) Experiment 1: 10 beacons together: We compare the
RSSI measurements collected from 10 beacons that are placed
all together while moving between 2 sniffers. After walking
back and forth between the sniffers, we stop data collection
process and visualize the signals from both sniffers by placing
them on top of each other. The raw data we observe have

pairs of beacons.

similar patterns from measurements of different beacons such
that the peak points, where the signals are much stronger,
are placed in similar time frames. These patterns becomes
more clear after the sampling and aggregation phase. Fig. [6]
shows the signal patterns after sampling and aggregation for
3 randomly picked beacons (beacon Bj, By, and Bg) out
of the 10 beacons. We observe for each time frame which
sniffer received stronger signals (e.g., T = [0,20] is shown
at 0'" sec, T = [20,40] is shown at 20*" sec, and so on).
As you can see in Fig. [f] while the overall signal strengths
differ from one beacon to another, for every time frame, the
sniffer with stronger signal is the same for all 3 beacons. This
shows that for this scenario wireless fingerprinting of the 3
beacons results in the exact same set of fingerprints. Similarly,
dynamic/static status of the beacons are the same and they
have high space correlation as these phases are products of the
wireless fingerprints. The resulting set of wireless fingerprints
is as follows.

WF(B) :{{Wl»@}v {m1, ma}, {me, w1}, {m1, ma}, {2, 71},
{77277“}’ {7T1,7T2}, {7T277T1}}7

where W F(By) is the wireless fingerprints of B;. Note that
WF(B;) = WF(By) = WF(By).

We expect the produced wireless fingerprints to be similar
to each other since the beacons are carried together. If the pro-
duced signals does not have the similarity, than one can say that
the approach cannot produce consistent and reliable results.
On the other hand, if the wireless fingerprints are the same
(during these multiple walks in the controlled experiment), this
proves that they also produce the same movement detection
and space correlations (as they are solely based on fingerprints)
and therefore consistent group mobility results even when
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using different mobile devices. To see if the produced wireless
fingerprints are similar to each other, we compare all possible
pairs of beacons (45 pairs) based on the similarity score. Fig.
shows the similarity scores of the 45 pairs. We observe almost
100% similarities for every pair, meaning that the wireless
fingerprints are almost exactly the same and the 10 beacons
are marked as together during all time intervals as they are
expected to be. The average similarity score (average of all
pairs) is 99.4% for t, = 20 sec, 89.5% for t; = 10 sec, 83.8%
forty, = 5 sec, 78.7% for t, = 2 sec, and 71.1% for t, = 1 sec.
We proceed with using 20 sec as the aggregation time since
it provides the most reliable results with an expected level of
granularity.

2) Experiment 2: Group mobility detection: Based on our
proposed approach, we detect the group movements in the
controlled experiment as well as the real-world experiment.
The goal is to successfully detect the people walking together
or alone. As shown in Fig. [B}a, 4 different movements (out
of 6) are detected. The system missed capturing the back and
forth running in 5 sec. This shows the trade-off between cap-
turing all the movements vs. reliable and consistent capturing
of expected movements. We also observe that (as shown in
Fig. [8}a) the system does not only capture the movements, but
also successfully mark all beacons as together. The group size
of each of the 4 movements is equal to 10. Hence, we observe
that the approach successfully captures group mobility of the
10 beacons.

Fig. B}b shows the movements detected in one day real-
world experiment. There exist more than 300 alone walks
while around 20 movements of 2 people together. Fig. [B}b
shows the movement detections for the two-week period. This
figure demonstrates more significant outcomes in terms of the
difference between alone walks and together walks with group
sizes of 2, 3, 4, 5, and 6. Moreover, there exist no group
mobility behavior for more than 6 people, even though it is
theoretically possible as the 10 participants work in the same
environment.

To see the reflection of the experimental setting described
in Sec. [II-A] (Fig. B) on the detected group mobility, we
analyze the results of the two-week period based on the group
movement intersection metrics (M1, T M) and visualize the
results in social networks. Note that the measurements using
these metrics are pairwise relative. For instance, between 2
different pairs, one pair having a very high M I compared to
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Movements detected for (a) 10 beacons together, (b) 1 day measurement (c) 2 weeks measurement (10 people).
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Fig. 9. Movement intersections (MIs: including alone walks) for 10 people
in 2 weeks (values in the range [0,1]).

0.21337

Fig. 10. Together movement intersections (TMIs: excluding alone walks) for
10 people in 2 weeks (values in the range [0,1]).



the other does not show that the pair with the higher M1
has more group movements, but it shows that when the pair
walks they mostly prefer to walk together. For the visualization
purpose, the intersections between pairs which are less than
0.1 are omitted. Furthermore, the resulting graph is actually a
directed graph where each pair has two edges with different
weights. We took the average of these two edge weights and
visualized the network as a nondirected graph for simplicity.
Fig. [9] shows the social network created based on M Is. In this
figure nodes represent people (e.g., 2 represents P), edges
represent pairs that have more than 0.1 M I, and edge weights
represent M Is. The nodes representing the people who are
working in the same room are marked with the same color (5
colors in total). We observe that the people who work in the
same room tend to walk together with each other as opposed
to walking with people from other rooms. In particular, the
group movement tendency is clearly seen for Pi, P», Ps, P4
and the highest M I is observed between P, and Ps, followed
by P, and P;. There is only one exception to the working
rooms, which is the pairwise relations of the external member
Ps. While Ps does not work in the same room, he/she has a
tendency to walk together with P;, Ps, and Ps (e.g., going for
lunch together).

Fig. [10) illustrates the social network created based on the
T M I's which exclude the alone walks from calculations. In this
figure edges represent pairs that have more than 0.1 TM s,
and edge weights represent T'M Is. The outcome is a more
complete graph of group movement relations. However, by
looking at the T'M I values between pairs specifically, we
observe the similar pattern of group movement tendencies such
that the people who are located in the same office rooms
have more group movements together. The highest interaction
stays between P, and Ps, followed by P» and P;. Another
observation is related to the alone movement tendencies. For
instance, the difference of M1 and T'M1I results for Py and
Py are very significant since Py and Py mostly prefer to
walk alone. As the alone movements are excluded, their T'M [
value goes up to 0.49.

In order to analyze the reliability of the results for the real-
world experiments, we ask P; and P» to carry 2 beacons at
the same time throughout the experiment. For each person, the
2 beacons have different types, one is larger, and one of them
are older, while the other one is new with full battery. We
analyze the beacons’ similarity scores as well as T'MIs. In
the ideal case for each person, both the similarity scores and
the T'M I values should be exactly the same (100% accuracy).
The resulting similarity scores are 94.80% for P;’s beacons,
95.97% for P»’s beacons, and the average accuracy is 95.39%.
The results for T'MIs are 0.78 for P;, 0.80 for P, with the
average accuracy of 79%.

IV. CONCLUSION

This paper proposes a new approach to detect group
mobility using multiple wireless sniffers. We propose a method
which creates wireless fingerprints from the collected mobility
data and captures group movements of people as well as
their individual walks. We implement a prototype system
which collects human mobility data from BLE beacons. The
performance evaluation based on the controlled and real world
experiments shows that the proposed approach determines the

individual movements as well as the group mobility character-
istics with accuracies of 95% for space correlation and 79%
for group mobility.
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