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Mitigation of Phase Noise in Massive MIMO
Systems: A Rate-Splitting Approach

Anastasios Papazafeiropoulos, Bruno Clerckx, and Tharm Ratnarajah

Abstract—This work encompasses Rate-Splitting (RS), provid-
ing significant benefits in multi-user settings in the context of
huge degrees of freedom promised by massive Multiple-Input
Multiple-Output (MIMO). However, the requirement of massive
MIMO for cost-efficient implementation makes them more prone
to hardware imperfections such as phase noise (PN). As a result,
we focus on a realistic broadcast channel with a large number
of antennas and hampered by the unavoidable PN. Moreover, we
employ the RS transmission strategy, and we show its robustness
against PN, since the sum-rate does not saturate at high signal-to-
noise ratio (SNR). Although, the analytical results are obtained
by means of the deterministic equivalent analysis, they coincide
with simulation results even for finite system dimensions.

Index Terms—Rate-splitting, massive MIMO, regularized zero-
forcing precoding, phase noise, deterministic equivalent analysis.

I. INTRODUCTION

Massive Multiple-Input Multiple-Output (MIMO), known
also as large MIMO, is one of the promising technologies for
Fifth Generation, (5G) networks [1]. The key concept takes into
account the law of large numbers. Specifically, a base station
(BS) with a large number of antennas enables fast fading, intra-
cell interference, and additive Gaussian noise to averaged out
as the number of antennas tends to infinity [2]–[4].

Inevitable phase noise (PN) occurs in communication
systems even after applying calibration and compensation
techniques [5]. It is a fundamental bottleneck of wireless
communications that cannot be estimated with infinite precision.
PN includes phase drifts from the Local Oscillators (LOs) that
present a multiplicative nature with regards to the channel
vector. Note that phase drifts accumulate within the channel
coherence time. PN contributes to inaccurate Channel State
Information at the Transmitter (CSIT), and degrades further the
spectral efficiency. Moreover, its effect becomes more severe in
massive MIMO systems involving a large number of antennas.
In fact, the more cost-efficient massive MIMO are, the more
prone to hardware impairments, such as PN, are. Actually,
PN has been considered in some works such as [6]–[8] to
assess the realistic performance of communication systems, but
none of them has accounted for its mitigation. Unfortunately,
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the majority of massive MIMO literature has assumed perfect
hardware, despite the existence of PN. It is conjectured that if
we follow the same path, the gap between theory and practice
will increase, and misleading conclusions will be made during
the design and evaluation of 5G systems.

This work tackles the challenge of mitigating PN by
leveraging the Rate-Splitting (RS) approach. According to
RS, we can split one’s User-Element (UE) message into a
common part and a private part. RS outperforms conventional
broadcasting because it does not experience any ceiling effect.
Henceforth, we denote by NoRS all the conventional techniques
to contrast with the RS technique. We aim at showing the
robustness of RS in massive MIMO systems by a deterministic
equivalent (DE) analysis, when PN is accounted. In particular,
this work shows the robustness of the RS method in realistic
Time-Division-Duplex (TDD)-based massive MIMO with PN
and imperfect CSIT. Note that both pilot contamination and
PN contribute to imperfect CSIT.

The remainder of this paper is structured as follows. Sec-
tion II presents the system model. Moreover, we present the
PN and the RS approach. Next, in Section III, we provide the
uplink training phase with PN, while Section IV shows the
corresponding downlink transmission. Section V exposes the
design of the precoder of the common message, and mainly,
the achievable rates in the presence of PN in terms of a DE
analysis. The numerical results are placed in Section VI, while
Section VII summarizes the paper.

Notation: Vectors and matrices are denoted by boldface lower
and upper case symbols. (·)T, (·)∗, (·)H, and tr(·) represent the
transpose, conjugate, Hermitian transpose, and trace operators,
respectively. The expectation operator is denoted by E [·]. The
diag{·} operator generates a diagonal matrix from a given
vector, and the symbol , declares definition. The notations
CM×1 and CM×N refer to complex M -dimensional vectors
and M ×N matrices, respectively. Finally, b ∼ CN (0

¯
,Σ) and

b ∼ N (0
¯
,Σ) denote a circularly symmetric complex Gaussian

variable with zero-mean and covariance matrix Σ and the
corresponding real Gaussian variable, respectively.

II. SYSTEM MODEL

We consider a Broadcast (BC) channel, where the BS has
M antennas and serves simultaneously K single-antenna UEs.
Moreover, we assume that the channel hk ,

[
h1
k, . . . , h

M
k

]
∈

CM×1 between the BS and UE k is a frequency-flat channel,
expressed by

hk = R
1/2
k wk, (1)
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where Rk =E[hkh
H

k]∈CM×M is a deterministic Hermitian-
symmetric positive-definite matrix representing versatile effects
such as the path loss to each antenna. Note that wk ∈ CM×1

is an uncorrelated fast-fading Gaussian channel vector drawn
as wk ∼ CN (0

¯
, IM ). Hence, we have that hk ∼ CN (0

¯
,Rk).

A. Phase Noise

The PN expresses the distortion in the phase due to the
random phase drift in the signal coming from the LOs of the
BS and UE k, and it is induced during the up-conversion of the
baseband signal to passband and vice-versa. Mathematically, it
is described by a discrete-time independent Wiener process [6],
[9]. Specifically, the PNs at the LOs of the mth antenna of the
BS and kth UE are modeled as

φm,n = φm,n−1 + δφmn (2)

ϕk,n = ϕk,n−1 + δϕkn , (3)

where δφmn ∼ N (0, σ2
φm

) and δϕkn ∼ N (0, σ2
ϕk

). Note that
σ2
i = 4π2fcciTs, i = φm, ϕk describes the PN increment

variance with Ts, ci, and fc being the symbol interval, a
constant dependent on the oscillator, and the carrier frequency,
respectively.

We assume that the PN processes are considered as mutually
independent, if each antenna has its own oscillator, i.e., a
Separate Local Oscillator (SLO) at each antenna. In the case
that we have just one Common LO (CLO) connected to all BS
antennas, there is only one PN process φn. In our analysis, we
focus on both SLOs and CLO scenarios, but in all cases, we
assume i.i.d. PN statistics across different antennas and UEs,
i.e., σ2

φm
= σ2

φ and σ2
ϕk

= σ2
ϕ ,∀ m, k.

Actually, the PN is expressed as a multiplicative factor to
the channel vector as

g̃k,n = Θk,nhk, (4)

where Θk,n , diag
{
ejθ

(1)
k,n , . . . , ejθ

(M)
k,n

}
= ejϕk,nΦn ∈

CM×M is the total PN with Φn , diag
{
ejφ1,n , . . . , ejφM,n

}
being the PN sample matrix at time n because of the
imperfections in the LOs of the BS, while, ejϕk,n is the
PN induced by UE k. Basically, g̃k,n represents the effective
channel vector at time n. Clearly, the effective channel, given
by (4), depends on the time slot of symbol n due to the time-
dependence coming from the PN.

B. RS Approach

RS is a very promising method in multi-user transmissions
with imperfect CSIT, since it achieves unsaturated sum-rate with
increasing SNR despite the presence of imperfect CSIT [10]–
[12].

According to this method, the message intended for UE k
is split into two parts, namely, a common and a private part.
The common part, drawn from a public codebook, should be
decoded by all UEs with zero error probability. The private
part is to be decoded only by UE k. Note that the messages

intended for the other UEs consist of a private part only. In
mathematical terms, we have

x =
√
ρcfcsc︸ ︷︷ ︸

common part

+

K∑
k=1

√
λρkfksk︸ ︷︷ ︸

private part

, (5)

where sc is the common message and sk is the private
message of UE k, while fc denotes the precoding vector of the
common message with unit norm and fk is the linear precoder
corresponding to UE k. Note that λ is the normalization
parameter regarding the precoder given by

λ =
K

E [tr FHF]
. (6)

According to the decoding procedure, the common message is
decoded by each UE, while all private messages are treated as
noise. Next, each UE subtracts the contribution of the common
message in the received signal and is able to decode its own
private message.

III. UPLINK PILOT TRAINING PHASE WITH PN

By assuming TDD, we consider coherence blocks with
duration of T channel uses. Each block is split into τ ≥ K
uplink pilot symbols and T−τ downlink data symbols. The CSI
is acquired during the uplink training phase, while we exploit
channel reciprocity for the downlink channel. During this
phase, we assign a pilot sequence of τ symtbols to UE k, i.e.,
ωk , [ωk,1, . . . , ωk,τ ]

T ∈ Cτ×1 with ρUE
up =

[
|ωk,n|2

]
,∀k, n.

Note that the sequences among different UEs are mutually
orthogonal.

The received uplink vector at the BS at time n ∈ [0, τ ]
ytr
n ∈ CM×1, accounting for the PN, is given by

ytr
n =

K∑
k=1

g̃k,nωk,n + zBS
n , (7)

where zBS
n ∼ CN

(
0
¯
, σ2

BSIM
)

is the Additive White Gaussian
Noise (AWGN) at UE k. As mentioned, hk is assumed to
be constant during the coherence time T , while it changes
independently afterwards.

Concatenation of all the received signal vectors during the
training phase results in a new vector ψ ,

[
ytr

0
T
, . . . ,ytr

τ
T
]T ∈

CτM×1. Simlar to [13], the Linear Minimum Mean-Square
Error (LMMSE) estimate of the channel of UE k during the
training phase is given by

ĝk,n = E [g̃k,nψ
H] (E [ψψH])

−1
ψ

=
(
ωH

k∆
tr
k ⊗Rk

)
Σ−1ψ, (8)

where

∆tr
k , diag

{
e−

σ2ϕ+σ2φ
2 , . . . , e−

σ2ϕ+σ2φ
2 τ

}
(9)

Σ ,
K∑
j=1

Xj ⊗Rj + σ2
BSIτM , (10)

D|ωj |2 , diag
(
|ωj,1|2, . . . , |ωj,τ |2

)
, (11)

[Xj ]u,v , ωj,uω
∗
j,vρ

UE
up e

−
σ2ϕ+σ2φ

2 |u−v|. (12)
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Proof: The proof is ommited for the sake of limited space.

The LMMSE estimation enables us to write the current
channel at the end of the training phase as

g̃k,τ = ĝk,τ + ek,τ , (13)

where ek,τ is the Gaussian distributed zero-mean estimation
error vector with covariance given by R̃k = Rk − R̂k.

We have ĝk∼CN
(

0
¯
, R̂k

)
with R̂k = (ωH

k∆
tr
k ⊗Rk) Σ−1(

∆tr
k

H
ωk ⊗Rk

)
.

The dependence of the estimated channel on time n necessi-
tates a continuous computation of the applied precoder in the
downlink at every symbol interval, which is computationally
prohibitive due to its complexity. Therefore, we assume that
the precoder is designed by means of the channel estimate once
during the training phase and then is applied for the whole
duration of the downlink transmission phase. For example, if
the channel is estimated at n0 = τ , the applied precoder is
denoted by fk , fk,n0+1.

IV. DOWNLINK TRANSMISSION UNDER PN

Based on channel reciprocity, the received signal by UE k
during the transmission phase n ∈ [τ + 1, T ] is given by

yk,n = hH

kΘ
∗
k,nx + zUE

k,n, (14)

where zUE
k,n ∼

(
0, σ2

UE

)
is the Additive White Gaussian Noise

(AWGN) at UE k.
During the downlink transmission phase described by (14),

we set hH

kΘ
∗
k,τ = g̃H

k,τ . If we solve with respect to hH

k and
make the necessary substitution, we result in

hH

kΘ
∗
k,n = g̃H

k,τΘ̃k,n. (15)

where Θ̃k,n , diag

{
e
−j
(
θ
(1)
k,n−θ

(1)
k,τ

)
, . . . , e

−j
(
θ
(M)
k,n −θ

(M)
k,τ

)}
.

Consequently, if we set gk,n = Θ̃∗k,ng̃k,τ (14) becomes

yk,n = gH

k,nx + zUE
k,n. (16)

The trace TPN of PN is given by

TPN = tr Θ̃k,n

=

M∑
l=1

e
−j
(
θ
(l)
k,n−θ

(l)
k,τ

)
. (17)

From (17), we get the following useful lemma.
Lemma 1: For CLO and SLOSs, we have

1

M
TPN −−−−→

M→∞

e
−j(δφ+δϕ) CLO setup

e−
δ2φ
2 n−jδ

ϕ

SLOs setup.
(18)

Proof: The proof is straightforward by means of the
application of the law of large numbers.

Remark 1: This lemma describes the effect of PN from both
BS and UE LOs.

A. SINR with PN and NoRS (Conventional Transmission)

The SINR of UE k, assuming equal power allocation, is
expressed by means of (16) as

SINRNoRS
k,n =

ρk
K λ|g

H

k,nfk|2

λ
∑K
j 6=k

ρj
K |g

H

k,nfj |2 + σ2
UE

. (19)

Note that we treat the multi-user interference as independent
Gaussian noise (the worst-case assumption) for the calculation
of the mutual information [13, Lemma 1].

The mutual information between the received signal and the
transmitted symbols is lower bounded by

RNoRS =

K∑
k=1

RNoRS
k

=
1

Tc

K∑
k=1

Tc−τ∑
n=1

RNoRS
k,n , (20)

where RNoRS
k,n = log2

(
1 + SINRNoRS

k,n

)
. In particular, we

compute the achievable rate of each UE for each time instance
of the data transmission phase as in [6], [13].

B. SINR with PN under RS

We allocate ρc = ρ (1− t) to the common message and
ρk = ρt/K to the private message of each UE, where t ∈ (0, 1].
The role of t is to adjust the fraction of the total power spent
for the transmission of the private messages.

The SINRs of both common and private messages are given
by

SINRc
k,n =

ρcλ|gH

k,nfc|2

λ
∑K
j=1

ρj
K |g

H

k,nfj |2 + σ2
UE

(21)

SINRc
n = min

k

(
SINRc

k,n

)
(22)

SINRp
k =

ρk
K λ|g

H

k,nfk|2

λ
∑K
j 6=k

ρj
K |g

H

k,nfj |2 + σ2
UE

. (23)

The achievable sum-rate is given by

RRS = Rc +

K∑
j=1

Rp
j , (24)

where, similar to (20), we have Rc = 1
Tc

∑Tc−τ
n=1 log2(1+SINRc

n)

and Rp
j = 1

Tc

∑Tc−τ
n=1 log2

(
1 + SINRi

j,n

)
corresponding to the

common and private achievable rates, respectively. Note that
SINRc

n = min
k

(
SINRc

k,n

)
and SINRp

j,n correspond to the
common and private SINRs, respectively.

V. DETERMINISTIC EQUIVALENT DOWNLINK

PERFORMANCE ANALYSIS WITH PN AND IMPERFECT CSIT

The DEs of the SINRs for NoRS and RS are such that
SINRk,n − SINRk,n

a.s.−−−−→
M→∞

01, while the deterministic rate

1Note that a.s.−−−−−→
M→∞

denotes almost sure convergence, and an � bn

expresses the equivalence relation an − bn
a.s.−−−−−→

M→∞
0 with an and bn

being two infinite sequences.
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of UE k is obtained by the dominated convergence [14] and
the continuous mapping theorem [15] by means of (20), (24)

Rk − R̄k
a.s.−−−−→

M→∞
0, (25)

where SINRk,n and R̄k are the corresponding DEs. However,
in order to present the main results, it is priority to design the
precoder for the common message.

A. Precoder Design

The RS method necessitates two types of precoders multi-
plying the private and common messages, respectively.

1) Precoding of the Private Messages: For the sake of
simplicity, we design the precoder of the private message by
using RZF in terms of the channel estimate Ĝn. Specifically,
we have

Fn =
(
Ŵ+diag

(
Ŵ
)

+Z+Mασ2
BSIM

)−1

Ĝ

= ΣĜ, (26)

where Σ ,
(
Ŵ+diag

(
Ŵ
)

+Z+Mασ2
BSIM

)−1

with Ŵ ,

ĜĜH. Note that Z ∈ CM×M is an arbitrary Hermitian
nonnegative definite matrix and α is a regularization parameter
scaled by M , in order to converge to a constant, as M , K →∞.
Also, α, Z could be optimized, but this is outside the scope
of this paper.

2) Precoding of the Common Message: Herein, we elaborate
on the design of the precoder fc of the common message in
the presence of PN by following a similar procedure to [11].
Specifically, since in the large number of antennas-regime the
different channel estimates tend to be orthogonal, we assume
that fc is written as a linear sum of these channel estimates in
the subspace including Ĝ. Mathematically, this is described by

fc =
∑
k

αkĝk. (27)

The target is the maximization of the achievable rate of the
common message Rc

k,n. This optimization problem is described
by

P1 : max
fc∈S

min
k
qk|gH

k,nfc|2,

s.t. ‖fc‖2 = 1
(28)

where qk = ρcλ

λ
∑K
j=1

ρj
K |g

H
k,nfj |2+σ2

UE

. The optimal solution {α∗k}
is provided by means of the following proposition. Note that
below, we are going to use the DE of TPN, given by Lemma 1.

Proposition 1: In the large system limit, the optimal solution
of the practical problem set by P1, where PN is taken into
account, is given by

α∗k =
1√

M
∑K
j=1

qk
1
M2 tr2 R̂k

qj
1
M2 tr2 R̂j

, ∀k. (29)

Proof: After deriving the DEs of the equation and the
constraint of the optimization problem described by P1, we

lead to an optimization problem with deterministic variables.
Specifically, applying [3, Thm. 3.7] to (28), we obtain

P2 : max
αk

min
k
qk

1

M2
|αk tr Θ̃k,n tr R̂k |2,

s.t.
∑
k

α2
k =

1

M
,

(30)

where P2 includes a complex expression by means of Θ̃k,n.
Use of Lemma 1 and [3, Thm. 3.7] transforms (30) to

P3 : max
αk

min
k
qkα

2
k

1

M2

{
tr2 R̂k CLO setup

e−σ
2
φn tr2 R̂k SLOs setup,

(31)

s.t.
∑
k

α2
k =

1

M
. (32)

Lemma 2 in [16] concludes the proof by enabling
us to show that the optimal solution, satisfying P3,
results, if all terms are equal. In such case, we have

qkα
2
k

1
M2

{
tr2 R̂k = qjα

2
j

1
M2 tr2 R̂j CLO setup

e−σ
2
φn tr2 R̂k = qjα

2
j

1
M2 e

−σ2
φn tr2 R̂j SLOs setup,

∀k 6= j

B. Achievable Deterministic Sum-Rate with RS in the Presence
of PN with Imperfect CSIT

In this section, we conduct a DE analysis of a practical
system with PN for both the RS and the NoRS strategies.
Specifically, we derive the DE of the kth UE in the asymptotic
limit of K,M for fixed ratio β = K/M .

Theorem 1: The downlink DEs of the SINRs of UE k at
time n corresponding to the private and common messages
with RZF precoding in the presence of PN and imperfect CSIT,
are given by

SINRp
k =

ρk
K λ̄

(
1
M tr Θ̃k,nδk

1+δk

)2

λ̄
∑K
j 6=k

ρt
K

Qjk
M(1+δj)

2 + σ2
UE

(33)

SINRc
k =

ρcλ̄
(
αk

1
M tr Θ̃k,n

1
M tr R̂k

)2

λ̄ρtK

(
1
M tr Θ̃k,nδk

1+δk

)2

+
∑K
j 6=k

ρt
K

Qjk
M(1+δj)

2 + σ2
UE

.

(34)

where

λ̄ = K

(
1

M

K∑
k=1

δ
′

k

(1 + δk)
2

)−1

,

and

Qjk�
δ
′′

j

M
+

∣∣∣δ′′

k

∣∣∣2 δ′′

k

M (1+δj)
2−2Re

{
1
M tr Θ̃k,nδkδ

′′

k

M (1+δj)

}
. (35)

Also, we have δk = 1
M tr R̂kT, δ

′

k = 1
M tr R̂kT̂

′
,

δ
′

j = 1
M tr R̂jT̂

′
, δ

′′

k = 1
M tr R̂kT̂

′′
, S =(

κ2
rUE

diag
(
R̂k

)
+ Z

)
/M , and ã = ασ2

UE where

∗ T = T(ã) and δ = [δ1, · · · , δK ]T = δ(ã) = e(ã) are
given by [17, Theorem 1] for S = S, Dk = κ̃rBSR̂k ∀k ∈
K,
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∗ T
′

= T
′
(ã) is given by [3, Theorem 2] for S = S,

K = IM , Dk = κ̃rBSR̂k,∀k ∈ K,
∗ T

′′
= T

′′
(ã) is given by [3, Theorem 2] for S = S,

K = R̂k, Dk = κ̃rBS
R̂k,∀k ∈ K.

Proof: Herein, we shall omit the proof of Theorem 1,
which is provided in [18] due to limited space.

Remark 2: Clearly, the PN affects both the numerator and
the denominator of the SINRs by putting an extra penalty to
the quality of the system. Its increase results in an obvious
decrease of the numerator, and an increase of the denominator
by means of an increase of Qjk.

C. Power Allocation

The optimal t is rather intricate to find it by maximizing (24)
after calculating its first derivative. Thus, we present a sub-
optimal, but effective solution by following [11]. Specifically,
we seek to fulfill the condition allowing RS to outperform
the conventional multi-user broadcasting. This condition is
accomplished by allocating a fraction t of the total power for
the transmission of the private messages RS to guarantee the
realization of almost the same sum-rate as the conventional BC
with full power. The remaining power is exploited to transmit
the common message, which will enable RS to boost the sum-
rate at high-SNR. The sum-rate payoff of the RS strategy over
the conventional BC (NoRS) is determined by the difference

∆R = Rc +

K∑
k=1

(
Rp
k − RNoRS

k

)
. (36)

The necessary condition and the power splitting ratio t
to achieve the outperformance are given by the following
proposition.

Proposition 2: We can write

Rp
k ≤ RNoRS

k . (37)

The equality holds when the power splitting ratio t is given by

t = min

{
K2M

λ̄
∑K
j 6=k

ρQjk
(1+δj)

2

, 1

}
, (38)

where m̄k = tr R̂k. As a result, the sum-rate gain ∆R becomes

∆R ≥ Rc − log2 e. (39)

Proof: See Appendix A.
Remark 3: According to (38), increasing the severity of the

PN results in less power allocated to the private messages.
Interestingly, at high SNR ρt becomes independent of ρ, while
the sum-rate increases with the available transmit power by
assigning the remaining power ρ− ρt to the common message.
On the contrary at low SNR, t = 1, which means that the
common message becomes useless. In such case, broadcasting
of only private messages takes place and RS degenerates to
NoRS. Generally, by increasing the PN, RS exhibits more its
robustness.

VI. NUMERICAL RESULTS

This section presents the numerical illustrations of the
analytical and Monte Carlo simulation results obtained for
both cases of perfect and imperfect CSIT. Specifically, the
bullets represent the simulation results. The black line depicts
the ideal sum-rate with RZF and no common message (NoRS),
i.e., perfect CSIT and hardware are assumed. The red and cyan
as well as the blue and green lines show the sum-rate with
NoRS as well as RS when perfect, imperfect CSIT are assumed,
respectively. The discrimination between “solid” and “dot” lines
designates the results with SLOs and CLO, respectively.

We consider a cell of 250 m × 250 m with K = 2 UEs,
where the randomly selected UE is found at a distance of 25m
from the BS. The pilot length is B = 2. Moreover, we assume a
Rayleigh block-fading channel by taking into consideration that
the coherence time and the coherence bandwidth are Tc = 5 ms
and Bc = 100 KHz, respectively. As a result, the coherence
block consists of T = 500 channel uses. In each block, we
assume fast fading by means of wk ∼ CN (0

¯
, IM ). Also, we

set Rk = Λk, i.e., we account for path-loss and shadowing,
where Λk is a M ×M diagonal matrix with elements across
the diagonal modeled as [13]

λmk =
10s

m
k −1.53

(dmk )
3.76 , (40)

where dmk is the distance in meters between the receive antenna
m and UE k, while smk ∼ N (0, 3.16) represents the shadowing
effect.

The power of the uplink training symbols is ρUE
up = 2 dB

and the variance of thermal noise is assumed σ2
BS = σ2

UE =
−174 dBm/Hz. Moreover, the PN is simulated as a discrete
Wiener process with specific increment variance. and for the
sake of simulations, we have set that the nominal values of
the uplink PN equal to the downlink PN, e.g., the receive PN
at the BS equals to the transmit PN at the BS.

A. Impact of Hardware Impairments on NoRS/RS-Comparisons

In the following figures, the metric under investigation is the
DE sum-rate in the cases of both NoRS and RS strategies. The
theoretical curves for the cases with imperfect are obtained
by means of Theorems 1, while the simulated curves are
obtained by averaging the corresponding SINRs over 103

random channel instances. Note that the curves corresponding
to perfect CSIT have been obtained, if we assume no channel
estimation phase, but PN is assumed only in the downlink stage.
Clearly, as can be shown from the figures, although the DEs are
derived for M , K →∞ with a given ratio, the corresponding
results concur with simulations for finite values of M , K2.
Note that t used in the simulation is obtained by means of
both exhaustive search and Proposition 2 for verification.

Fig. 1 provides the comparison of the sum-rate versus the
SNR in both cases of perfect and imperfect CSIT by considering
M = 100 and T = 500, while the PN is taken into account on

2Herein and without loss of generality, we consider the overall impact
of the PN. Specifically, we add up both PN contributions coming from BS
CLO/SLOs and UE LO.
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both the uplink and the downlink. The sum-rate with NoRS
under perfect CSI and ideal hardware monotonically increases
with the increase in the value of ρ. In the practical case where
the PN is considered, NoRS saturates after a certain value of
SNR in cases of perfect (no PN and no imperfect CSIT at the
uplink stage) and imperfect CSIT. Remarkably, RS proves to
be robust, since the sum-rate does not saturate. Moreover, when
imperfect CSIT is assumed, the degradation of the sum-rate in
all cases is obvious. Notably, the setting with SLOs behaves
better than the BS architecture with CLO because in such case
the phase drifts are independent and in the large system limit
they are averaged [13]. Of course, the employment of many
LOs (SLOs) results in higher deployment cost. In the presence
of PN, RS mitigates the multi-user interference. Thus, we have
no saturation.

Fig. 1. Sum-rate versus ρ (M = 100, K = 2, T = 500, δ = 10−4,
κ2 = 0).

Fig. 2 presents the comparison of the sum-rate versus the
SNR after decreasing the number of BS antennas to M/5 = 20,
while Fig. 3 shows the impact of the coherence time T , when
it is decreased to T/5 = 100 channel uses. In other words,
in both cases we have an equivalent decrease of 1/5 of M
and T . From the former figure, we conclude a decrease of the
sum-rate due to the corresponding decrease of M , as expected.
Furthermore, the difference between the SLOs and CLO setups
now is smaller because we have less independent LOs. The
latter figure exposes that a decrease regarding the number of
channel uses results in a small decrease of the sum-rate with
the saturation in the case of NoRS taking place earlier. Also,
the gap between the sum-rates with CLO and SLOs setups is
smaller now.

Figs. 4(a) and 4(b) illustrate the sum-rate versus the total PN
coming from the BS CLO/SLOs and the LOs of the UEs for ρ =
5 dB and ρ = 25 dB, respectively. According to both figures, it
can be noted that the various sum-rates decrease monotonically
with δ, however, in the first figure, where the SNR is small,
there is no improvement coming from the implementation
of RS. Hence, the NoRS lines coincide with the respective
lines corresponding to the RS strategy. Obviously, the expected

Fig. 2. Sum-rate versus ρ (M = 20, K = 2, T = 500, δ = 10−4).

Fig. 3. Sum-rate versus ρ (M = 100, K = 2, T = 100, δ = 10−4).

improvement appears in the second figure, where a higher SNR
is assumed. Moreover, as δ decreases, the gap between the
sum-rates corresponding to the SLOs and CLO setups narrows
because the degradation coming from the accumulation of PN
decreases.

VII. CONCLUSIONS

PN is inherent in any communication system. At the same
time, the rate of multi-user systems saturates in the cases of
imperfect CSIT with PN. For this reason, RS was proposed
to tackle the degradation from the multi-user interference
induced by imperfect CSIT. In particular, we extended the RS
method to the large system regime. We pursued the DE analysis
and obtained the downlink achievable rate after designing the
precoders for the common and private messages. Remarkably,
RS proved to be robust in the case of PN. Moreover, simulations
validated the results and showed their applicability even for
finite system dimensions.
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(a)

(b)

Fig. 4. (a) Sum-rate versus δ (M = 100, K = 2, T = 500, ρ = 5 dB). (b)
Sum-rate versus δ (M = 100, K = 2, T = 500, ρ = 25 dB).

APPENDIX A
PROOF OF PROPOSITION 2

First, we denote Ȳ = ρtλ̄
KM

∑K
j 6=k

Qjk
(1+δj)

2. If Ȳ > 1,
the private part of RS achieves the same sum-rate as the
conventional multi-user BC with full power, which means that
the equality in (37) nearly holds. Since the common message
should be decoded by all UEs, it is reasonable to allocate
less power to the common message, as their number increases
because the rate of the common decreases, i.e., the benefit of
common message reduces. Thus, during the power allocation
for the common message, the number of UEs should be taken
into account. Moreover, following a similar rationale as in [11],
we set Ȳ > K. We have

t =
K2M

λ̄
∑K
j 6=k

ρQjk
(1+δj)

2

. (41)

If we choose t as the smaller value between (41) and 1, the
inequality in (37) becomes equality. In the low-SNR regime
ρ→ 0, (38) gives t = 1. In other words, transmission of the

common message is not beneficial at this regime. However,
increasing the SNR, the transmission of the common message
enhances the sum-rate, when the sum-rate due to only private
messages tends to saturate. If we upper bound the rate loss
between the private messages of the NoRS and RS, we obtain
similar to [11]

K∑
j=1

(
RNoRS
j − Rp

j

)
≤ log2 e. (42)
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