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Abstract—In this paper, we investigate the detection problem of
binary faster-than-Nyquist (FTN) signaling and propose a novel
sequence estimation technique that exploits its special structure.
In particular, the proposed sequence estimation technique is
based on sphere decoding (SD) and exploits the following two
characteristics about the FTN detection problem: 1) the cor-
relation between the noise samples after the receiver matched
filter, and 2) the structure of the intersymbol interference (ISI)
matrix. Simulation results show that the proposed SD-based
sequence estimation (SDSE) achieves the optimal performance of
the maximum likelihood sequence estimation (MLSE) at reduced
computational complexity. This paper demonstrates that FTN
signaling has the great potential of increasing the data rate
and spectral efficiency substantially, when compared to Nyquist
signaling, for the same bit-error-rate (BER) and signal-to-noise
ratio (SNR).

I. INTRODUCTION

Recently, faster-than-Nyquist (FTN) signaling [1] re-
attracted the attention of the research community as a promis-
ing transmission technique that is capable of improving the
spectral efficiency in both wireless and wired communication
systems. FTN signaling refers to the transmission of pulses
beyond the Nyquist limit. Nyquist limit is the signaling
threshold beyond which intersymbol interference (ISI) be-
tween the received pulses is unavoidable. More specifically,
Nyquist showed that signaling at rates greater than 1/T of
T -orthogonal pulses, i.e., pulses that are orthogonal to an nT
shift of themselves for nonzero integer n, results in ISI at the
samples of receiver’s matched filter output [2].

On the contrary of what is widely known that the term FTN
was coined by J. Mazo in [3], it seems that the FTN signaling
term has been around even earlier as evidenced by the works
of Lucky [4] and Salz [5]. Moreover, the concept of violating
the Nyquist limit seems to appear even earlier as shown in
the work of Saltzberg in [6] (dual of Mazo’s formulation,
where the data rate was maintained the same while decreasing
the transmit pulse bandwidth). The recognition of Mazo’s
work comes from the fact that Mazo was the first to prove
that FTN signaling does not affect the minimum distance
of uncoded binary transmission, and hence the asymptotic
error probability, as long as the signaling rate is below a
certain limit, later became known as Mazo limit. In particular,
Mazo investigated the case of binary cardinal sine (i.e., sinc)
pulse transmission and showed that binary sinc pulses can be
accelerated to a signaling rate 1/(τT ). Such an acceleration
is while the minimum distance remains the same as long as

τ ∈ [0.802, 1], despite the ISI between the received pulses.
This means that up to 1

0.802 − 1 ' 25% more bits can be
transmitted in the same bandwidth at the same energy per bit
without degrading the bit error rate (BER).

The uncoded transmission of FTN signaling was viewed as
a trellis coding method in [7] and a truncated state Viterbi
algorithm (VA) was proposed as an efficient detection scheme
to reduce the computational complexity of full states VA
algorithms. Reduced state Bahl-Cocke-Jelinek-Raviv (BCJR)
algorithms were proposed to balance performance and com-
putational complexity in [8]. The works in [7], [8] are still
complex and are more suitable for severe ISI scenarios, i.e.,
very tight packing/acceleration of pulses in time, where other
conventional equalization techniques fail to give satisfactory
performance. For low ISI scenarios, the authors in [9] identi-
fied an operating region (that depends on the pulse shape, its
roll-off factor, and the time packing/acceleration parameter),
where perfect reconstruction of FTN signaling is guaran-
teed for noise-free transmission. For noisy transmission, they
proposed two novel algorithms (with the lowest complexity
reported in the literature so far) to detect FTN signaling on
a symbol-by-symbol basis. In [10], the authors extended the
frequency domain equalizer (FDE) in [11] to produce soft-
decision of the estimated data symbols while considering the
correlated noise samples after the receiver matched filter. The
authors in [12] proposed a novel algorithm to detect any
high-order quadrature amplitude modulation FTN signaling,
in polynomial time complexity, and efficiently works for
moderate values of the time packing/acceleration parameter.

In this paper, we explore novel reduced complexity sphere
decoding (SD)-based sequence estimation technique to detect
binary FTN signaling. The main contributions of this paper
are summarized as follows:
• In general, for ISI channels, the noise samples at the

receiver matched filter output are non-white. Hence,
we propose a generalized SD-based sequence estimation
(SDSE) that can handle such instances of colored noise.
This is mainly achieved by incorporating the whitening
filter into the standard SD algorithm. We then apply the
proposed SDSE to the detection of binary FTN signaling
that has colored noise samples after the receiver matched
filter.

• Simulation results show that the proposed SDSE achieves
the BER performance of maximum likelihood sequence
estimation (MLSE). Additionally, results show that FTN
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Fig. 1: Block diagram of FTN signaling.

can significantly increase the data rate, when compared to
Nyquist signaling, for the same BER and signal-to-noise
ratio (SNR).

The remainder of this paper is organized as follows. Section
II presents the system model of the FTN signaling and formu-
lates the MLSE problem to detect binary FTN signaling. The
proposed SDSE is discussed in Section III. Section IV provides
the simulation results of our proposed sequence estimation
techniques, and finally the paper is concluded in Section V.

Throughout the paper we use bold-faced upper case letters,
e.g., X , to denote matrices, bold-faced lower case letters, e.g.,
x, to denote column vectors, and light-faced italics letters, e.g.,
x, to denote scalars. Xi,j denotes the element in the ith row
and the jth column of the matrix X , and xi denotes the ith
element of vector x. [.]T denotes the transpose operator, I is
the identity matrix, E(.) is the expectation operator, ‖.‖p is the
p-norm, and N (., .) represents the Gaussian distribution. d.e
denotes rounding to the nearest larger integer within a given
set and b.c rounding to the nearest smaller integer in a given
set.

II. SYSTEM MODEL AND MLSE PROBLEM FORMULATION

Fig. 1 shows a block diagram of a communication system
employing FTN signaling. Data bits to be transmitted are gray
mapped to data symbols through the bits-to-symbols mapping
block. Data symbols are transmitted, through the transmit filter
block, faster than Nyquist signaling, i.e., every τT , where
0 < τ ≤ 1 is the time packing/acceleration parameter and
T is the symbol duration. A possible receiver structure is
shown in Fig. 1, where the received signal is passed through
a filter matched to the transmit filter followed by a sampler.
Since the transmission rate of the transmit pulses carrying the
data symbols intentionally violate the Nyquist criterion, ISI
exists between the received samples. Accordingly, sequence
estimation techniques are needed to remove the ISI and to
estimate the transmitted data symbols. The estimated data
symbols are finally gray demapped to the estimated received
bits.

The transmitted signal s(t) of the FTN signaling shown in
Fig. 1 can be written in the form

s(t) =
√
Es
∑N

n=1
an p(t− nτT ), 0 < τ ≤ 1, (1)

where N is the total number of transmit data symbols, an, n =
1, . . . , N, is the independent and identically distributed data
symbols, Es is the data symbol energy, p(t) is a unit-energy

pulse, i.e.,
∫∞
−∞ |p(t)|

2dt = 1, and 1/(τT ) is the signaling rate.
The received FTN signal in case of additive white Gaussian
noise (AWGN) channel is written as

y(t) = s(t) + w̄(t), (2)

where w̄(t) is a zero mean complex valued Gaussian random
variable with power spectral density σ2. A possible receiver
architecture for FTN signaling is to use a filter matched to
p(t); thus the received signal after the matched filter can be
written as

y(t) =
√
Es
∑N

n=1
ang(t− nτT ) + w(t), (3)

where g(t) =
∫
p(x)p(x−t)dx and w(t) =

∫
w̄(x)p(x−t)dx.

The noise of FTN signaling after the matched filter, i.e., w(t),
is zero-mean with a covariance matrix given by

Cov(w(t1), w(t2)) (4)

= E
[[
w(t1)− E(w(t1))

][
w(t2)− E(w(t2))

]]
= E

[ ∫ ∞
−∞

w̄(t1)p(t1 − nτT ) dt1∫ ∞
−∞

w̄(t2)p(t2 − n′τT ) dt2

]
=

∫ ∞
−∞

∫ ∞
−∞

E
[
w̄(t1)w̄(t2)] p(t1 − nτT )

p(t2 − n′τT ) dt1dt2. (5)

Since E
[
w̄(t1)w̄(t2)] = σ2δ(t1− t2), the covariance matrix of

the noise w(t) after the matched filter is written as

Cov(w(t1), w(t2)) = σ2

∫ ∞
−∞

p(t1 − nτT )p(t1 − n′τT ) dt1

= σ2 Gn,n′ , (6)

where Gn,n′ = g((n − n′)τT ) represents the ISI between
data symbols n and n′. As can be seen, the noise covariance
matrix is not diagonal, and hence, the elements of the noise
vector w, after the matched filter, are dependent. Assuming
perfect timing synchronization between the transmitter and the
receiver, the received FTN signal y(t) is sampled every τT and
the kth received sample can be expressed as

yk = y(kτT )

=
√
Es
∑N

n=1
ang(kτT − nτT ) + w(kτT )

=
√
Es ak g(0)

+
√
Es
∑N

n=1, n 6=k
an g((k − n)τT ) + w(kτT ). (7)

Finally, the received FTN signal after the matched filter and
sampler can be written in a vector form as

y = Ga+w, (8)

where a is the transmitted data symbols, w ∼ N (0, σ2G)
is the Gaussian noise samples with zero-mean and covariance



matrix σ2G, and the ISI matrix G is given as

G=



G1,1 G1,2 . . . G1,L 0 0 0
G1,2 G1,1 . . . . . . G1,L 0 0
. . . . . . . . . . . . . . . . . . . . .
. . . . . . G1,2 G1,1 G1,2 . . . . . .
. . . . . . . . . . . . . . . . . . . . .
0 0 G1,L . . . . . . G1,1 G1,2

0 0 0 G1,L . . . G1,2 G1,1


. (9)

The ISI length of FTN signaling is theoretically infinite;
however, it is practical to truncate it to a certain length L
that depends on the transmit and matched filters and the value
of τ [7], [8]. Hence, for a large value of N (i.e., long block
transmission) and high/moderate values of τ (non-severe ISI),
the ISI matrix can be sparse due to the fact that a given symbol
is affected only by L � N adjacent symbols. One can show
that the interference matrixG is invertible (the proof is omitted
due to space limitations); hence the received noisy data symbol
vector y in (8) can be rewritten as

G−1 y = a+G−1 w

z = a+ η, (10)

where z = G−1 y and η = G−1 w. The FTN detection
problem can be interpreted as follows. Given the received
samples z (or y), we want to find an estimated data symbol
vector â, to the transmit data symbol vector a, such that the
probability of error is minimized. After some mathematical
manipulations, the MLSE problem to detect binary FTN
signaling can be expressed as

OPMLSE : min
a

(z − a)T G (z − a)

subject to a ∈ {1,−1}N . (11)

The OPMLSE problem can be solved by a brute force search;
however, such extensive computational complexity hinders its
practical implementations.

III. BINARY FTN SIGNALING DETECTION USING THE
PROPOSED SDSE

In this section, we discuss the proposed SDSE that exploits
the following two characteristics of the FTN problem: 1) the
fact that the noise samples after the matched filter are non-
white, and 2) the structure of the ISI matrix (i.e., the possible
sparsity). These two features allow the proposed SDSE to
reach the MLSE performance at reduced complexity.

A. Main Idea of Standard SD Algorithm

The SD algorithm was originally proposed in [13] to opti-
mally solve the following integer least-square problem

â = arg min
a ∈ D

‖y −Ga‖22, (12)

where D is a subset of the integer lattice ZN . Such a least-
square problem appears in communication systems to detect

the data symbols vector a from the received vector y given
as

y = Ga+ η, (13)

where η ∼ N (o, σ2I) is a zero-mean Gaussian random
variable with covariance matrix σ2I and G is the channel
coefficient matrix. In other words, the SD algorithm was
originally proposed to find the closest point in a lattice, which
is equivalent to digital symbol detection in the presence of
white noise.

The main idea of sphere decoding is to search over those
lattice points that lie inside a hypersphere of radius d around
the received vector y. Hence, the search space and the required
computations are reduced when compared to the brute force
search required for the proper operator of MLSE. Clearly, the
closest lattice point inside the hypersphere is also the closest
lattice point in the whole lattice, and hence, the solution from
the SD algorithm is the optimal solution of MLSE.

It is important to carefully choose the radius d to avoid the
two extreme cases, i.e., 1) if d is chosen to be very large, then
there will be too many lattice points inside the hypersphere
to evaluate and 2) if d is chosen to be too small, then there
might be no points inside the hypersphere and no solution
can be reached. Generally, it is efficient to choose the initial
radius to be the distance between the received sample y and
the zero-forcing solution aZF [14], i.e., d = ‖y −GaZF‖22.

A lattice point lies inside a hypersphere centered at y of
radius d if and only if its radius d is chosen such that

d
2 ≥ ‖y −Ga‖22. (14)

In order to divide the problem into problems of lower dimen-
sions, we apply QR factorization of the channel coefficient
matrix G as G = QR, and write (14) as

d
2 ≥ ‖z −Ra‖22,

d
2 ≥

∑N

i=1

(
zi −

∑N

j=i
Ri,jaj

)2

, (15)

where z = Q
T
y. The property of the upper triangular R is

useful in the sense that the right-hand side (RHS) of the above
inequality can be expanded as

d
2 ≥ (zN −RN,N aN )2

+(zN−1 −RN−1,N−1 aN−1 −RN−1,N aN )2

+ . . . . (16)

As can be seen, the first term of the RHS of the above
inequality depends only on aN , the second terms depends on
{aN , aN−1}, and so on. As such, a necessary condition for
the received sample z (or y) to lie inside the hypersphere of
radius d is that

d
2 ≥ (zN −RN,N aN )2, (17)

which is equivalent to the N th data symbol aN belongs to the
following interval⌈

zN − d
RN,N

⌉
≤ aN ≤

⌊
zN + d

RN,N

⌋
, (18)



It is clear that (18) does not guarantee that the whole vector a
lies inside the hypersphere of radius d. To find all the lattice
points that lie inside the hypersphere centered at z (or y) with
a radius d, let us define d

2

N−1 = d
2− (zN −RN,N aN )2, then

from (16), we can impose the following constraints on the
(N − 1)th symbol aN−1

aN−1 ≥
⌈
zN−1 −RN−1,N aN − dN−1

RN,N

⌉
, (19)

aN−1 ≤
⌊
zN−1 −RN−1,N aN + dN−1

RN,N

⌋
. (20)

One can continue the process to find the constraints on the
intervals for other symbols aN−2, . . . , a1 until we found all
the lattice points a inside the hypersphere.

B. Proposed SDSE for Binary FTN Detection

As discussed earlier, one of the main characteristics of the
FTN detection problem in (10) is that the noise samples are
no longer white at the sampling intervals τT due to the non-
orthogonality between the transmit pulses. In this subsection,
we exploit such observation to propose a reduced complexity
SDSE1 that achieves the MLSE performance. In particular, this
is achieved through incorporating the whitening filter into the
SD algorithm. Before introducing the proposed SDSE, let us
reformulate the objective function of the MLSE optimization
problem OPMLSE in (11) as

(z − a)TRTR(z − a) = ‖R(z − a)‖22, (21)

where R is an upper triangular matrix and G = RTR is
the Cholesky decomposition of G. Hence, the optimal binary
detection of FTN signaling problem can be re-expressed as

min
a

‖R(z − a)‖22,

subject to a ∈ {1,−1}N . (22)

It is important to note that the Cholesky decomposition of G
as G = RTR results in the following interesting observation.
The vector R(z−a) which is equivalent to Rη = RG−1w
is the same as the whitening matched filter in [15]. This can be
verified from finding the covariance matrix of the noise vector
RG−1w which will be σ2I . Accordingly, the new detection
problem in (22) is equivalent to having the the received sample
z perturbed by a noise in a hypersphere.

If the ISI matrix G is sparse (this is especially true for
transmission of long blocks of data symbols, i.e., high values
of N , in a non-severe and moderate interference scenarios, i.e.,
high and medium values of τ ), then its Cholesky factorization
is often sparse as well [16, Chapter 6]. This means thatR is an
upper triangular matrix, where it contains at most L non-zero
elements in the first N −L rows, and L−1, L−2, . . . , 1 non-
zero elements for the last L−1, L−2, . . . , 1 rows, respectively.
In other words, the upper triangular matrix R can be viewed
as

1The proposed SDSE provides hard-decisions on the estimated data sym-
bols. In our future works, we will extend the proposed SDSE to provide
soft-decisions, and hence, enables its use with channel coding.

R = (23)

R1,1 R1,2 . . . R1,L 0 . . . . . .
R2,2 . . . . . . R2,L+1 0 . . .

. . .
. . .

. . .
. . .

0 R`,` . . . R`,`+L

. . .
. . .

. . .
. . .

RN−1,N−1 RN−1,N

RN,N


.

Hence, an equivalent MLSE optimization problem to detect
binary FTN signaling to the one in (22) can be written as

OPSD : min
a

∑N

i=1

∑min(L+i−1,N)

j=i
(Ri,j(zj − aj))2 ,

subject to a ∈ {1,−1}N . (24)

It is worthy emphasizing that the inner summation over j is
only for L elements (for the first N−L rows in R) or less (for
the last L−1 rows in R). This represents further reduction in
the complexity and memory requirements when compared to
the equivalent objective of the standard SD algorithm in (15),
where the summations are evaluated over N elements.

According to the objective of OPSD in (24) and in order
to guarantee that the lattice point lies inside a hypersphere
centered at z (or y) of radius d, the initial radius of the
proposed SDSE is chosen such that

d2 ≥
∑N

i=1

∑min(L+i−1,N)

j=i
(Ri,j(zj − aj))2

≥ (RN,N (zN − aN ))
2

+
(
RN−1,N−1(zN−1 − aN−1)

+RN−1,N (zN − aN )
)2

+ . . . . (25)

As can be seen, the first term in (25) depends only on the
last data symbol aN , the second term depends on the last two
data symbols {aN , aN−1}, and so on, until the last term that
would depend on the whole vector of the data symbols a. A
necessary condition for the N th data symbol aN to lie within
the hypersphere is

d2 ≥ (RN,N (zN − aN ))
2
, (26)

which is equivalent to the N th data symbol lies in the
following interval⌈

zN −
d

RN,N

⌉
≤ aN ≤

⌊
zN +

d

RN,N

⌋
. (27)

Similarly, one can find the interval which the (N − 1)th data
symbol belongs to as

aN−1 ≥

⌈
zN−1 −

d̂−RN−1,N (zN − aN )

RN−1,N−1

⌉
, (28)

aN−1 ≤

⌊
zN−1 +

d̂+RN−1,N (zN − aN )

RN−1,N−1

⌋
, (29)

where

d̂2 = d2 − (RN,N (zN − aN ))
2
. (30)



This process continues to find the interval boundaries for all
other symbols aN−2, aN−3, . . . , a1. It is worthy to emphasize
that exploiting the information in the noise covariance matrix,
leads to different radii ((25) versus (16)) and interval limits
((27), (28), and (29) versus (18), (19), and (20), respectively)
of the proposed SDSE when compared to a standard SD
algorithm.

The tree search of the proposed SDSE can be explained
as follows. All possible values of the N th transmit symbol
aN can be determined from the interval boundary as in (27)
and each one of these values will represent a node at the N th
level. We pick a node to branch, and we find a possible node
in the (N −1)th level, i.e., one of the values of the (N −1)th
data symbol aN−1 according to its interval in (28) and (29).
The branching process continues by selecting a node in each
level until reaching first level. Then, the distance of this new
found vector a to the received sample z is calculated and the
distance d in (25) is updated (i.e., reduced). For each level, we
branch only nodes where further branching will not increase
that distance. Everytime we reach the first level, we update
the distance d, and the process continues until all nodes are
either branched or pruned.

The proposed SDSE is formally expressed as follows:
Algorithm 1: Proposed SDSE

1) Input: Pulse shape p(t), G, and received samples y.
2) Perform Cholesky decomposition of G as G = RTR.
3) Set initial radius as d2 ≥ (RN,N (zN − aZFN

))
2.

4) Find all aN in the interval in (27).
5) For a given value of aN , find aN−1 at the (N − 1)th

level of the tree according to its interval in (28) and (29).
6) For a given value of aN−1, continue the branching

process until reaching a symbol a1 at the first level. If
for a given node at any level the new distance exceeds
the radius, then do not further branch at this node.

7) Update radius with the obtained candidate data symbol.
8) Repeat steps 5, 6, and 7 until all the nodes are either

branched or pruned.
9) Output: Estimated data symbols.

C. Complexity Discussion

As discussed earlier, the proposed SDSE requires factor-
ization of a sparse matrix (in case of non-severe ISI), while a
standard SD algorithm requires factorization of a dense matrix.
The number of required arithmetic operations to perform the
factorization in a standard SD algorithm is in the order of
N3 [16], while for sparse factorization this number in general
depends on the number of non-zero elements. For the positive
definite ISI matrix G, the number of required arithmetic
operations is in the order of N1.5 [16].

Another source of complexity reduction for the proposed
SDSE can be seen in the steps of calculating/updating the
radius. In particular, we do the summation over only L� N
terms (compared to N terms for the standard SD algorithm),
which represents a reduction in computational complexity and
memory requirements.
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IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
SDSE in detecting binary FTN signaling. We employ an
rRC filter with roll-off factors β = 0.3 and 0.5, and we
consider data symbols to be drawn from the constellation of
binary phase shift keying (BPSK). The spectral efficiency is
calculated as log2M

(1+β) τ , where M = 2 is the BPSK constellation
size.

A. Performance of the Proposed SDSE

Fig. 2 depicts the BER of binary FTN as a function of
Eb

No
for the standard SD algorithm, proposed SDSE, and the

MLSE for β = 0.3 and τ = 0.6 and 0.7. As can be seen in
Fig. 2, the proposed SDSE that exploits the information in the
noise samples covariance matrix outperforms the standard SD
algorithm and achieves the MLSE performance of OPMLSE.
Further and as expected, increasing the value of τ improves
the BER performance of both standard and proposed SDSE.
Fig. 2 reveals that the proposed SDSE can achieve 1

0.7 − 1 =
42.86% increase in the transmission rate at β = 0.3 and τ =
0.7 without harming the BER when compared to the Nyquist
signaling (i.e., no ISI case).

Fig. 3 plots the BER of binary FTN detection as a function
of Eb

No
for the proposed SDSE for roll-off factors of β = 0.3

and 0.5 and τ = 0.6 and 0.7. One can notice from Fig. 3
that increasing the value of β improves the BER performance
of FTN signaling. This is expected and can be explained as
follows: as the value of β increases, the rRC pulse amplitude
decays more rapidly in time domain, and hence, the ISI
between adjacent symbols are reduced. One can infer from
Fig. 3 that for τ = 0.7 and β = 0.3 or 0.5, the proposed SDSE
can enable the transmission of 1

0.7 − 1 = 42.86% more bits,
when compared to Nyquist signaling, in the same bandwidth
at the same energy per bit without degrading the BER. Further,
for τ = 0.6, 1

0.6 − 1 = 66.67% more bits can be transmitted
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β using the proposed SDSE and Nyquist signaling at BER = 10−4.

compared to the Nyquist signaling at β = 0.3 and 0.5, at the
expense of 1.5 dB and 1 dB, respectively, at BER = 10−4.

Fig. 4 compares the spectral efficiency in bits/s/Hz of the
proposed SDSE and Nyquist signaling for β ∈ [0, 1] and
BER = 10−4. The value of τ of the proposed SDSE, at
each value of β, is chosen to be the smallest value that
maintains BER = 10−4. As can be seen, the achieved spectral
efficiency of FTN signaling of the SDSE is significantly higher
than its counterpart of Nyquist signaling for the same value
of the excess bandwidth, BER, and SNR. In particular, at
β = 0 and 0.3, the SDSE improves the spectral efficiency by
approximately 25% and 38.85%, respectively, when compared
to Nyquist signaling for the same BER and SNR. Additionally,
it can be seen that the spectral efficiency of the proposed SDSE
surpasses the highest spectral efficiency of Nyquist singling (1
bit/s/Hz achieved at β = 0) for ranges of β ∈ [0, 0.45].

V. CONCLUSION

FTN signaling is a promising physical layer transmission
technique that has the potential of improving the spectral
efficiency if the appropriate mechanisms are in place in the
receiver to handle the associated ISI. In this paper, we have
proposed a novel sequence estimation techniques, namely
SDSE, to estimate the transmit data symbols of binary FTN
signaling. Simulation results show that the proposed SDSE
achieves the MLSE performance at reduced computational
complexity. Results additionally revealed that up to 42.86%
increase of the data rate at β = 0.3, compared to the Nyquist
signaling, is possible without increasing either the bandwidth
or the energy per symbol (i.e., power). Additionally, results
showed that the spectral efficiency of the proposed SDSE for
β ∈ [0, 0.45] is higher than the maximum spectral efficiency
of Nyquist signaling of 1 bit/s/Hz that is achieved at β = 0.
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