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Abstract—Caching at mobile devices, accompanied by device-
to-device (D2D) communications, is one promising technique to
accommodate the exponentially increasing mobile data traffic.
While most previous works ignored user mobility, there are some
recent works taking it into account. However, the duration of user
contact times has been ignored, making it difficult to explicitly
characterize the effect of mobility. In this paper, we adopt the
alternating renewal process to model the duration of both the
contact and inter-contact times, and investigate how the caching
performance is affected by mobility. The data offloading ratio, i.e.,
the proportion of requested data that can be delivered via D2D
links, is taken as the performance metric. We first approximate
the distribution of the communication time for a given user by beta
distribution through moment matching. With this approximation,
an accurate expression of the data offloading ratio is derived.
For the homogeneous case where the average contact and inter-
contact times of different user pairs are identical, we prove that
the data offloading ratio increases with the user moving speed,
assuming that the transmission rate remains the same. Simulation
results are provided to show the accuracy of the approximate
result, and also validate the effect of user mobility.

I. INTRODUCTION

The mobile data traffic is growing at an exponential rate,
among which mobile video accounts for more than a half [[1].
Caching popular contents at helper nodes or user devices is a
promising approach to reduce the data traffic on the backhaul
links, as well as improving the user experience of video stream-
ing applications [2], [3]. In comparison with the commonly
considered femto-caching system, caching at devices enjoys a
unique advantage, i.e., the devices’ aggregate caching capacity
grows with the number of devices [2]. Moreover, device
caching can promote device-to-device (D2D) communications,
where nearby mobile devices may communicate directly rather
than being forced to communicate through the base station
(BS)[4].

Recently, caching in D2D networks has attracted lots of
attentions. In [S], the scaling behavior of the number of
D2D collaborating links was identified. Three concentration
regimes, classified by the concentration of the file popularity,
were investigated. The outage-throughput tradeoff and optimal
scaling laws of both the throughput and outage probability
were studied in [6]. Two coded caching schemes, i.e., cen-
tralized and decentralized, were proposed in [7], where the
contents are delivered via broadcasting.
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So far, an important characteristic of mobile users, i.e., the
user mobility, has been ignored in previous studies of D2D
caching networks. There are some works starting to consider
the effect of user mobility. Effective methodologies to utilize
the user mobility information in caching design were discussed
in [8]. In [9], the effect of mobility was evaluated in D2D
networks with coded caching, with the conclusion that mobility
can improve the scaling law of throughput. This result was
based on the assumption that the user locations are random
and independent in each time slot, which failed to take into
account the temporal correlation.

The inter-contact model, which considers the temporal
correlation of the user mobility, has been widely applied [10],
where the timeline for an arbitrary pair of mobile users are
divided into contact times and inter-contact times. Specifically,
the contact times denote the time intervals when the mobile
users are located within the transmission range. Correspond-
ingly, the inter-contact times denote the time intervals between
contact times [11]. This model has been used to develop
device caching schemes to exploit the user mobility pattern
in [12]]. The throughput-delay scaling law was developed by
characterizing the inter-contact pattern of the random walk
model [[13]. In these works, it was assumed that a fixed amount
of data can be delivered within one contact time, while the
duration of the contact times was not considered. However,
as the user moving speed will affect the durations of both
the contact and inter-contact times, it is critical to account for
their effects when investigating the impact of user mobility on
caching performance.

In this paper, we shall analytically evaluate the effect of
mobility in D2D caching networks, by adopting an alternating
renewal process to model the mobility pattern so that both
the contact and inter-contact times are accounted for. The
data offloading ratio, which is defined as the proportion of
data that can be obtained via D2D links, is adopted as the
performance metric. The main contribution is an approximate
expression for the data offloading ratio, for which the main
difficulty is to deal with multiple alternating renewal processes.
We tackle it by first deriving the expectation and variance
of the communication time of a given user, and then use a
beta random variable to approximate it by moment matching.
Furthermore, we investigate the effect of mobility in a ho-
mogeneous case, where the average contact and inter-contact
times for all the user pairs are the same. In the low-to-medium
mobility scenario, by assuming that the transmission rate is
irrelevant to the user speed, it is proved that the data offloading
ratio increases with the user speed for any caching strategy that



&1 k-1 Mk—1 & Mk &k

t=0 time contact time

& Mk—1 &1 M &k Mh+1

inter-contact time

t=0 time

Fig. 1. The timeline for an arbitrary pair of mobile users.

does not cache the same contents at all devices. Simulation
results validates the accuracy of the derived expression, as well
as the effect of the user mobility.

II. SYSTEM MODEL AND PERFORMANCE METRIC

In this section, we will first introduce the alternating
renewal process to model the user mobility pattern, and discuss
the caching and file delivery models. Then, the performance
metric, i.e., the data offloading ratio, will be defined.

A. User Mobility Model

The inter-contact model, which captures the temporal cor-
relation of the user mobility [10], is used to model the user
mobility pattern. Specifically, the timeline of each pair of users
is divided into contact times, i.e, the times when the users
are in the transmission range, and infter-contact times, i.e.,
the times between consecutive contact times. Considering that
contact times and inter-contact times appear alternatively in
the timeline of a pair of users, similar to [14], an alternating
renewal process is applied to model the pairwise contact
pattern, as defined below [15]].

Definition 1. Consider a stochastic process with state space
{A, B}, and the successive durations for the system to be in
states A and B are denoted as &,k = 1,2,--- and g, k =
1,2, .-, respectively, which are i.i.d.. Specifically, the system
starts at state A and remains for £, then switches to state B for
71, then backs to state A for &5, and so forth. Let v, = &g +7g.
The counting process of Yy, is called as an alternating renewal
process.

As shown in Fig. |1} if the pair of users is in contact at
t =0, & and 7y, represent the contact times and inter-contact
times, respectively; otherwise, &, and 7, represent the inter-
contact times and contact times, respectively. It was shown in
[L6] that exponential curves well fit the distribution of inter-
contact times, while in [17], it was identified that exponential
distribution is a good approximation for the distribution of the
contact times. Thus, same as [14]], we assume that the contact
times and inter-contact times follows independent exponential
distributions. For simplicity, the timelines of different user
pairs are assumed to be independent. Specifically, we consider
N, users in a network, and the index set of the users is
denoted as S = {1,2,---,N,}. The contact times and
inter-contact times of users ¢ € S and j € S\{i} follow
independent exponential distributions with parameters )\Ej and
)\Z{ ;» respectively.
B. Caching and File Transmission Model

There is a library with Ny files, whose index set is denoted
as F = {1,2,---, Ny}, each with size C. Each user device
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Fig. 2. A sample network with three mobile users.
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has a limited storage capacity, and each file can be completely
cached or not cached at all at each user device. Specifically,
the caching placement is denoted as

1,if user j caches file f,
2= { J d M

0, if user j does not cache file f,

where j € S and f € F. User i € S, is assumed to request
a file f € F with probability p; ;, where >_ p; , = 1. When
eF

a user requests a file f, it will first check its own cache, and
then download the file from the users that are in contact and
store file f, with a fixed transmission rate, denoted as R. If the
user cannot get the whole file within a certain delay threshold,
denoted as T'%, it will download the remaining part from the
BS. We assume that the delay threshold is larger than the time
required to download each content, i.e., Td > % Fig. [2 shows
a sample network, where user 1 gets part of the requested file
during the contact time with user 2, then gets the whole file
after the contact time with user 3.

C. Performance metric

The data offloading ratio, which is defined as the per-
centage of requested content that can be obtained via D2D
links rather than downloading from the BS, is used as the
performance metric. Specifically, the data offloading ratio for
user ¢ € S is defined as

- ; (1 =w47)Ep, , [min (D; f,C)]
P = Zpi,f {xi,f + C '
feF
(2)

where D; r denotes the amount of requested data that can be
delivered via D2D links when user ¢ requests file f. Since
a fixed transmission rate is assumed, D; ; can be written as




D= RCEC , where Tif is the communication time for user
i to download file f from other users caching file f within
time 7. We assume that user i can download file f while at
least one user caching file f is in contact, where the handover
time is ignored. Fig. [3] shows the communication time of user
1 in Fig. 2] Then, the average data offloading ratio is

P =
(1= 2s.)Ex;, [min (RTS;,C)]

1
N2 2Py Tt c

Y ieS feF

3)

In the following, we will evaluate the data offloading ratio
given in (3) for any given caching strategy, and investigate the
effect of user mobility on caching performance.

III. DATA OFFLOADING RATIO ANALYSIS

The main difficulty of evaluating the data offloading ratio
is to find the distribution of the communication time. As
this distribution is highly complicated, instead of deriving
it directly, we will develop an accurate approximation. In
this section, we will first approximate the distribution of
the communication time by a beta distribution, and then, an
approximation of the data offloading ratio will be obtained.

A. Communication time analysis

To help analyze the communication time, we first define
some stochastic processes.

Definition 2. Define H; ;, where ¢ € S and j € S\{i}, as
the continuous-time random process, i.e., H; ; = {H; ;(t),t €
(0, 00)} with state space {0,1}, where H; ;(t) = 1 means that
users ¢ and j are in contact at the time instant ¢; otherwise
H, ;(t) = 0. The durations of staying in states 1 and 0 follow
ii.d. exponential distributions with parameter A{; and A/,
respectively.

Definition 3. Define Hf , where ¢+ € S and f € F, as
the continuous-time random process, i.e., H{ = {Hf ()t €
(0,00)} with state space {0,1}, where H; (t) = 1 means that
users ¢ can download file f from any other user caching file
f at time instant ¢; otherwise Hlf (t)=0.

At time t, since user ¢ can download file f when at least
one user caching file f is in contact, we get H; (t) = 1 —
I1 [1 — H; ;(t)]. Similar to [[14]], it is reasonable to
jes\{i}z; r=1
assume that when a user requests a file, the alternating process
between each pair of users has been running for a long time.
Thus, denote 17 ., 7 € S and f € F, as the time of user ¢
requests file f, and the communication time TZC 7 can be derived
T d
as T¢, = lim [ Hf (t)dt. Tn the following, we will
' Ty =00 " irf
derive the expectation and variance of the communication time.

Lemma 1. When user i € S requests file f € F, which is
not stored at its own cache, the expectation and variance of
its communication time is

AC
BT =1 (1- ] 7»‘4&1,' )
1,7 1,7

jGS,mjyle

and
T H 2.
Var[ Z-Cf] :2/ (T — u) %
0 jES T =1 (Aij +A85)°
X {)\fj + /\{J(U(Afﬁxf,j)} du
2\
_ (Td)2 H <)\C i])\[ > ) (5)
JES,xj ;=1 1,7 0,3
Proof: See Appendix A. ]

Since the communication time Tﬁ 7 is a bounded random
variable, we propose to approximate its distribution by a
beta distribution, which is widely used to model the random
variables limited to finite ranges. Specifically, we consider
T¢p =~ Ty, where iy ~ Bloiy, Biy), i € S and
f e F,if ZjeS\{i} x5 > 0, which means that user ¢ may
download file f from at least one user; otherwise, Tif = 0.
Let E[T?Y; ] = E[T},] and Var[T?Y; ] = Var[T},], and
the parameters of the beta distribution to match the first two
moments can be derived adll

_ BITE,P(T-B[TE,])  E[T]]

of = Var[T¢ ]T4 Td
Te_E[TF ] ’ (6)
Bif = E[T7,] Mf

B. Data offloading ratio approximation

Based on the above approximation, we get an approximate
expression of the data offloading ratio in Proposition [} Sim-
ulations will show that the approximation is quite accurate.

Proposition 1. The data offloading ratio is approximated as
1 T
P=N Z Y ovislwg+ 0 —wip)Pigl, (D
€S fEF

where P; ¢ is the data offloading ratio when user i requests
file f, which is not in its own cache, approximated by

P 1-1 7Td — EIT]
i,f ~ - TER (aiva ]E[Tlc’f] Oéi’f)
E[T¢,]R T4 — E[T¢,]
i f ) i,f .
+ = g o+ 1 e e N} ®

if 2jes\(iy Lif > 0 and O elsewhere, where I,(-,-) is the
incomplete beta function, and o 5 is given in (@)

Proof: Following (3), @), (3), and (6), the expression in
(7) can be obtained. Due to the space limitation, the detail is
omitted. [ |

IV. EFFECT OF MOBILE USER SPEED

In this section, we will consider a homogeneous case,
where the contact and inter-contact parameters among all pairs
of users are the same, i.e., \C = )\Ej > 0and M = /\{,j >0,
where ¢ € § and j € S\{i}. We will investigate how the

IThe parameters of the beta distribution should be Cpositive, and it can be
1

proved that o; y > 0 and 3; 5 > 0, by e (X TA75) < 1. The detail is
omitted due to the space limitation.



user moving speed affects the data offloading ratio for a given
caching strategy. If all users cache the same contents, the D2D
communications will not help the content delivery. Thus, in
the following, we assume that the contents cached at different
users are not all the same. This investigation will be based
on the approximate expression in (7), and simulations will be
provided later to verify the results.

A. Communication time analysis

Under the above assumptions, the expectation and variance
of the communication time can be simplified, as in the follow-

ing corollary.
Corollary 1. When \¢ = )\C and \' = X ;, where i € S and

j € S\{i}, the expectation and variance of a user requests file
f, which is not stored at its own cache, are given by

J /\C nf
c —
E[Tf ] =T {1 - (M) } ) 9
2\¢ ny Ny ng ()\C)nf—l()\l)l
Var[T¢ ;] = | ——s ) )
arl T3] {(/\C ¥ /\1)2] ZZZI ( I ) I(\C £ \)
1 e—l(/\c-t-)\I)T
T - 10
x RCESURNTICESUNE (10)
where i € S and ny = ) x; § denotes the number of users
JjE€S
caching file f.
Proof: See Appendix A. ]

B. Mobile user speed

We first characterize the relationship between the user
speed and the parameters A© and A’ in Lemma

Lemma 2. When all the user speeds change by s times, the
contact and inter-contact parameters will also change by s
times, i.e., from S and M to sAC and s)\!, respectively.

Proof: The time for user ¢ to move along a certain path
L; can be given as a curve integral || L. vdﬁ where v;(z) is
the speed of user i when passing by a point z on the path L;.
When the speed of user ¢ changes by s times, the time for
moving along the path L; changes to [} =1 s I UL(Z),

svb(z)
which scales by = times. During each contact or inter-contact
time, users ¢ and j move along certain paths. When all the user
speeds change by s times, each contact or inter-contact time
changes by % times, and thus, the average ones change by %
times. Since the contact and inter- contact times are assumed to
be exponential distributed with mean /\C and 5 L, respectively,
the parameters A\© and A’ scale by s times. ]

Considering that a larger s means that users are moving
faster, in the following, we will investigate how changing s will
affect the data offloading ratio. For simplicity, we assume that
the transmission rate is a constant, and will not change with the
user speed. This is reasonable in the low-to-medium mobility
regime. Firstly, the effect of user speed on the communication
time is shown in Lemma 3] .

Lemma 3. When s increases, which is equivalent to increasing
the user speed, the expectation of the communication time
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Fig. 4. Data offloading ratio with Ny = 100, T? = 300s and v, = 0.6.

when a user i € S requests file f € F that is not in its own
cache, i.e., ]E[ ; f] keeps the same, and the corresponding
variance, i.e., Var[ ff], decreases, if the number of users
caching ﬁle f is larger than 0, ie., ny > 0. Accordingly,
the parameter «; y of the beta distribution increases.

Proof: See Appendix B. [ |

Then, we evaluate the relationship between «; r and the
data offloading ratio when user 7 requests file f that is not in
its own cache, i.e., P; s in (§), in Lemma [4

Lemma 4. When user i € S requests file f € F and cannot
find it in its own cache, the data offloading ratio, i.e., P; g,
increases with «; g.

Proof: See Appendix C. ]

Base on Lemmas [3|and ] we can specify the effect of user
speed on the data offloading ratio in Proposition [2]

Proposition 2. [f the transmission rate does not change with
the user speed, and the average contact and inter-contact times
among all the pairs are the same, the data offloading ratio
increases with the user moving speed.

Proof: See Appendix D. ]

Remark. The result in Proposition |2 is valid for any caching
strategy, only excluding the case that all the users have the
same cache contents.

V. SIMULATION RESULTS

In the simulation, the content request probablhty follows a
Zipf distribution with parameter v, i.e., py = Z — fE€F

[2]]. Meanwhile, each user caches 5 contents, and a random
caching strategy is applied [[18], where the probabilities of the
contents cached at each user are proportional to the file request
probabilities.

Fig. [] validates the accuracy of the approximation in (7).
The inter-contact parameters \; ;,i € S,j € S\{i} are gen-
erated according to a gamma distribution as I'(4.43,1/1088)
[19]. Similar as [14], we assume the average of the contact
parameters are 5 times larger than the inter-contact param-
eters. Thus, the contact parameters are generated according
to I'(4.43 x 25,1/1088/5). It is shown from Fig. [4] that the
theoretical results are very close to the simulation results,
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which means the approximate expression (7) is quit accurate.
Furthermore, the data offloading ratio increases with the num-
ber of users, which is brought by the increasing aggregate
caching capacity and the content sharing via D2D links.

In Fig. EL the effect of s is demonstrated, where increasing s
is equivalent to increasing the user speed. Firstly, the small gap
between the theoretical and simulation results again verifies the
accuracy of the approximate expression in (7). It is also shown
that the data offloading ratio increases with s, which confirms
the conclusion in Proposition [2] Moreover, from Fig. 5] the
increasing rate of the data offloading ratio is decreases with
the user moving speed.

VI. CONCLUSIONS

In this paper, we investigated the effect of user mobility
on the caching performance in a D2D caching network. The
communication time of a given user was firstly approximated
by a beta distribution, through matching the first two moments.
Then, an approximate expression of the data offloading ratio
was derived. For a homogeneous case, where the average
contact and inter-contact times are the same for all the user
pairs, we evaluated how the user moving speed affects the
data offloading ratio. Specifically, it was proved that the data
offloading ratio increases with the user speed, assuming that
the transmission rate is irrelevant to the user speed. Simulation
results validated the accuracy of the approximate expression
of the data offloading ratio, and demonstrated that the data
offloading ratio increases with the user speed, while the
increasing rate decreases with the user speed.

APPENDIX
A. Proof of Lemma I and Corollary[I]

As the timeline of different user pairs are independent, the
expectation of the communication time when user 7 requests
file f, which is not in its own cache, can be written as

T +T?
BT = m - JI «a
“ if JES,x; r=1
(1)
Since the timeline between each pair of users is modeled as
an alternating renewal process, according to [15[], we have

tliﬁrgoPr[Hiyj(t) =1] = W Thus, IHEOE[HU@)] =

—EH, ()| dt.

I
W’
)\d = )\C and M| = )\I ;j» and we can get the expression in
(©). The varlance of the commumcatlon time is

Var [TlC f] =

and then, the expectation in can be obtained. Let

LT
2 lim / PrlH! (t) = 1, B (7) = 1)dtdr
Ti’"‘fﬁoo T" r
¢ 12
— (E[ i,f]) (12)
According to [13], Pr[H; j(1) = 0|H, ;(t) = 0] = W +
I
/\C/\We (742 )= Then, when T} ; — oo, we can get
f f A
PrH/(r) =10 () =1]=1-2 ] ﬁ
jES Xj, f= 1
/\C,J NG LM o~ A A (1)
* M artes Pt
JES,xj p=1

13)

Let u = 7 — t and substitute (]1;3:[) into (T2), and we can get
. Let A¢ = A, and AT = AT, and we can get with
e binomial theorem.

4,3°

B. Proof of Lemma [3]

When the user speed changes by s times, the expectation
of the communication time in (]E[) keeps the same, while the
variance changes to

e [ AT 1A frg) GOl

wallif) = |\ geane| 21 ) s ran
1=1

1 e— sl T?

T¢ —
SO A T SO A

x , (14)

To prove that Var[T? ] decreases with s, we will prove that

%[‘f] < 0. The part1a1 derivation of Var[T} ] is
OVar[T7 ]
0Os B

2\C ny Ny ng ()\C)nf—l()\l)l
Caud 2 (V) smtesmpaer 09
where A;(z) = —x — 2™ —2(e™® — 1) and = = sI(\® +
AT > 0. Since Aj(z) = -1+ (1 +z)e ™ < -1+

(1+2)m5 = 0, Ai(x) is a decreasing function of x. Thus,

Ai(z) < A1(0) = 0. According to (I5), when ny > 0, we
OVar[T} ;]

have ———=& < 0. The parameter a; s given in is a

decreasing function of Var|[T; f] and thus increases with s.

C. Proof of Lemma

To simplify the expression in , denote r = Td 7 €(0,1),
d_ c
y = %LT’T’] >0, and o £ «; y. The expression in (8) can
Ty
be rewritten as a function of «, given as
Jo u (1 —w)¥*"tdu

P, =1—20 r) 16
& B(a ya) 1o



Let g(a) =1 — P; 5, the derivation of g(«) is

g'(a) =
_ /T(l - B)uo‘_l(l —w)?* nu + yIn(1l — u)]du
Ble,ya) | Jo r
- [ =Bt a - weidun(.a) g, a7
0
where D(y, o) = ¢¥(a)+y¢(ya)— (14+y)¥[(1+y)a] and ()
is the digamma function. If r = 1, ¢'(a) = W = 0.
Denote As(r) = Mg’(a), Az(1) =0 and
li =
i A2 )
lim (r —w)u® (1 —u)?* Hinu+yIn(l — u)]du
r—0+ 0

(18)

Since 7 > u > 0and y > 0, (r—u)u*" (1 —u)¥*~! > 0 and
Inu+ yln(l —u) <0, thus, 1im+ As(r) < 0. The derivation
r—0

of Ay(r) is

AL (r) = /OT (1 —w)?* Inw + yIn(1l — u)]du

— /T u* (1 —u)?* duD(y, a). (19)
0

Then, we can get Aj(r) = r* (1 — r)¥* lnr + yIn(1 —
r) — D(y,)]. Let Az(r) = r'=2(1 — r)1=v>AJ(r), then,
there is one zero point of AL(r) = % in (0,1].
Thus, there is one inflection point of A3(r). Considering that
Tl_i}r& As(r) = 7)11217 As(r) = —oo, the sign of Asz(r) may

Thus, Ay (1) = 2Blewwa)  9Blowwe) _ g apd lim A} (r) < 0.
o r—0+

be negative, or first negative, then positive, and then negative,

while r increases in (0,1). If Az(r) < 0, then AJ(r) < 0

when r € (0,1). However, we have lim+ As(r) < A5(1),
r—0

which means that 45 (r) can not be a decreasing function in

(0,1). Thus, the sign of A3z(r) is first negative, then positive,

and then negative, while r increases in (0,1). Since A5 (r)

has the same sign with A3(r) in (0, 1), A5 (r) first decreases,

then increases, and then decreases while r increases in (0, 1).

Considering that lir(r)l+ AL(r) < 0 and A5(1) = 0, the sign
T—

of AL (r) must be first negative, and then positive in (0,1).
Therefore, while r increases in (0, 1), Az(r) first decreases,
and then increases. Considering that liI(I)1+ As(r) < 0 and
r—
Az(1) = 0, we have Ay(r) < 0 in (0,1) and Az(r) = 0
when r = 1. Since ¢'(a) = WAQ(T), we get ¢'(a) <0
in (0,1). Thus, g(«) decreases with o, and P; y = 1 — g(«)
increases with «.

D. Proof of Proposition 2]

The data offloading ratio in increases with the increas-
ingof P; pifx; y =0,¢ €S, f € F. Then, based on Lemmas
[Bland @ we can get that the data offloading ratio when user 4
requests file f from other users, i.e., P; ¢, decreases with the
user speed when ny > 0, otherwise P; ; = 0. Accordingly,
the data offloading ratio when user i requests file f, i.e.,
x5 + (1 — x; )P s, increases with the user speed when

255 = 0 and ny > 0; otherwise, it keeps the same, where
i €S8, f € F. Since we consider that not all the users cache
the same contents, there must exists i’ € S, j' € Sand f' € F,
where x; p = 0 and xj ;o = 1, i.e, ny > 0. Thus, the data
offloading ratio increases with the user speed.
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