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Abstract—Content caching in wireless networks provides a
substantial opportunity to trade off low cost memory storage
with energy consumption, yet finding the optimal causal policy
with low computational complexity remains a challenge. This
paper models the Joint Pushing and Caching (JPC) problem as
a Markov Decision Process (MDP) and provides a solution to
determine the optimal randomized policy. A novel approach to
decouple the influence from buffer occupancy and user requests
is proposed to turn the high-dimensional optimization problem
into three low-dimensional ones. Furthermore, a non-iterative
algorithm to solve one of the sub-problems is presented, exploiting
a structural property we found as generalized monotonicity, and
hence significantly reduces the computational complexity. The
result attains close performance in comparison with theoretical
bounds from non-practical policies, while benefiting from higher
time efficiency than the unadapted MDP solution.

I. INTRODUCTION

With the escalating growth of mobile data traffic caused by
the proliferation of smart mobile devices, and the growing
online services (i.e., Video on Demand (VoD) streaming,
Facebook, Twitter,...), corresponding energy consumption is
increasing considerably [1]. Furthermore, video streaming and
social applications require high bandwidth and strict delay
constraint, which in turn has further adverse effects on user
experience quality and Operational Expenses (OpEx). In addi-
tion, It has been reported that the network data traffic will con-
tinue growing in the future years [1]. Hence, efficient energy
utilization is of paramount importance in the design of future
wireless networks. In this paper, our objective is to exploit the
cache-enabled user devices to reduce the energy consumption
by focusing particularly on the wireless transmission cost.

The massive mobile users generate issues to be addressed,
such as, extremely high throughput and stringent Quality of
Service (QoS) requirements, and excessive energy consump-
tion. One way to deal with such issues is to deploy larger
number of small cells and fog style access points [2], [3].
However, this approach does not address the energy efficiency
and still large undesirable latency and network congestion
could be induced during peak-traffic hours. Hence, content
cashing at the edge of wireless networks has attracted much
attention from both academia and industry [4]–[8].
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Moving contents to the edge of network emerged as a
prospective technique, that can significantly reduce transmis-
sion latency [4], [5], control traffic load [6], and reduce energy
consumption [7], or can be employed to increase overall
system throughput [8]. Content caching utilizes the recent
advances in the field of context awareness and leverages on the
low price memory storage to enhance the system performance.
Content caching enables proactive transmission (i.e., pre-
serve) that allows the user to download content files over a
longer period, hence, reducing energy consumption. It can
also mitigate severe network condition (i.e.,peak-traffic hours)
by pushing at favorable transmission times. For instance, by
exploiting the user demand information the base station (BS)
can push the desired content files prior to the playback time
(i.e., in video streaming). Hence, saving a significant amount
of energy by avoiding the unfavorable channel conditions.
It also provides another advantage by shifting traffic load
(or equivalently reducing traffic variability) for better system
utilization. In another line of research, the objective is to
increase the throughput of content-centric wireless networks to
better support the exponential growth of wireless data traffic.
In [8] the available cache memory at the user is exploited
via a joint pushing and caching method to increase the system
throughput under non-causal, statistical, and causal knowledge
of user request delay information (RDI).

In this paper, we consider an optimization problem of
a proactive caching wireless communications channel, with
limited data buffer capacity available at the receiver end.
Specifically, we formulate the joint pushing and caching (JPC)
problem as an infinite horizon average cost Markov decision
process (MDP) and devise a randomized policy to minimize
the average energy consumption over time. In each timeslot
the amount of data to transmit is a random variable, whose
distribution is decided by the optimal policy, taking both the
buffer occupancy and user requests into account. Numerically
solving the optimization problem is computationally demand-
ing due to the two-dimensional state space and randomized
policy, known as the curse of dimensionality. Therefore, we
develop a novel approach to decouple the factors of buffer oc-
cupancy and user requests by introducing the degenerated state
space, and hence breakdown the optimization into three more
tractable sub-problems. Furthermore, we found a structural
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property that gives a non-iterative way to design the optimal
policy under certain constraints in the degenerated space. We
name the property as generalized monotonicity, which brings
significant improvement to the computational complexity. The
model in this work performs well in comparison against two
theoretical bounds, which were derived from assuming non-
causal knowledge of user request delay information (RDI) [9]
and unlimited cache capacity, respectively.

II. SYSTEM MODEL

Consider a wireless communication system between a server
and a user equipped with a limited buffer as depicted in Fig. 1.
The system operates over an infinite time horizon in a discrete
time fashion, with timeslots t = 0, 1, 2, .... At the beginning
of each timeslot, the user requests for a certain amount of
data, which must be fulfilled by the end of the timeslot. The
data may be transmitted in advance, stored and read from the
buffer (proactively), or be transmitted on-demand (reactively),
or combined. Also, we consider the scenario where data stream
has been temporally ordered, i.e., the server knows what to be
requested in the near future, while not knowing how soon the
requests will be made.

ty

max(0, )t tx b

max( , )t tx b

Buffer

tb

min( , - )t t t ty y x b

User Request
tx

1

B

Proactive

Reactive

User

Server

Fig. 1. System model. As explained in section (II-A), fetching data from the
buffer always has higher priority over via on-demand transmission, based on
the assumption of temporal order. This observation gives the data flow on
each edge.

A. Request model and buffer state

We assume that data is requested in content items of
identical size. Thus, we may denote the number of content
items requested in timeslot t as xt ∈ X , {0, 1, . . . , X},
where X is the maximum possible value of xt. We further
assume that xt, t = 0, 1, . . . are i.i.d. integer random variables
bounded by X , yielding probability mass function (p.m.f)
fX(·). One can always limit xt to integer values by choosing a
small enough size for content items. Let a (X+1)-dimensional
vector p denotes the p.m.f. of xt, i.e., px = fX(x), x ∈ X .

Let buffer state bt denote the number of content items at the
beginning of timeslot t, bt ∈ B , {0, 1, . . . , B}.This implies
the buffer storage capacity being B content items. Since data
stream is well-ordered, for any two content items, we always
know which one would be requested first, and thus which to
proactively push first. Therefore, as long long as the buffer is
not empty, there is no reason to transmit data on-demand. In
other words, on-demand transmission happens if and only if
xt > bt.

B. System State Model

The system state space is denoted by S which consists of b
and x elements and has the cardinality of (B+1)× (X +1).
The pair (bt, xt) constitutes each state st ∈ S . Furthermore,
we define degenerated state bb = {s : s = (b, x), x ∈ X}, and
degenerated state space B = {bb : b ∈ B}. When it does not
cause confusion, we use bb and b interchangeably.

Let yt denote the number of content items downloaded
within timeslot t. Under a given policy, yt is a random variable
with distribution being contingent on buffer occupancy bt and
user requests xt, i.e., st. Buffer occupancy evolves as a time-
homogeneous Markov chain which can be described as

bt+1 = bt + yt − xt, (1)

where
0 ≤ bt ≤ B, ∀t. (2)

the first inequality in (2) comes from the model setting that
requests must be fulfilled within the requested timeslot t, and
thus bt + yt ≥ xt. The Fig. 2 depicts the dynamical relation
between yt, bt and xt in each timeslot. A policy π would
determine the distribution of yt from bt and xt.
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Fig. 2. Buffer state evolution. An illustration of the relationship between the
buffer occupancy bt, user requests xt, and data transmission yt in a timeslot.

We consider a causal knowledge of user RDI, that the
user requests for a future timeslot stays unknown until the
beginning of the timeslot.

The transmission action in each timeslot incurs a certain
energy cost, whose corresponding power is typically a con-
vex and continuous function of data rate. Conventionally we
assume this function to be exponential [10]. By [9], constant
transmission rate should be used within a timeslot to minimize
energy consumption. Absorbing all constants and normalizing
the scalar in our model, we give the energy consumption in
timeslot t by:

ρt = ρ(yt) = ηyt − 1, (3)

where ρt is the energy consumption and η > 1 is a constant.
Since, yt takes finitely many values, it can be shown that
Eρt <∞.

III. A RANDOMIZED MDP PROBLEM FORMULATION

In a randomized policy, a transmission action yt yields a dis-
tribution which we design contingent on st, i.e., yt ∼ fY |st(y).
The optimal transmission policy selects a distribution for yt.



However, the range where random variable yt takes non-zero
probability changes given different st. By (1), σ(yt | st) =
σ(bt+1|st). Therefore, we study the conditional probability of
bt+1 instead of yt. The system evolves as depicted in Fig. 3.

Let a (B+1)-dimensional vector ds,π denote a randomized
decision, i.e., p.m.f., conditioning on state s under policy
π, where ds,πb+ , Pr (bt+1 = b+ | st = s, π). All (ds,π)s∈S
give the transition probabilities in S and B. Denote the
transition probability matrix in B under policy π by Aπ ,
[a0,π,a1,π, ...,aB,π]

ᵀ, where ab,π =
∑
x d

(b,x),πpx. Since
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Fig. 3. At each timeslot t the controller, i.e., the server, observes the current
system state st and applies a control yt ∼ fY |st (·) (and equivalently, bt+1 ∼
dst,π) contingent on the state.

every state in S has to be assigned with a randomized decision,
the corresponding policy space is (B + 1)2 × (X + 1)-
dimensional. Denote the probability that the system occupies
state (b, x) ∈ S in timeslot t under policy π as qt,πb,x ,
Pr (st = (b, x) | π), and define matrix Qt,π , (qt,πb,x)b∈B,x∈X ,
which contains the probabilities for all states. Similarly, we
denote the state probability of bb ∈ B in timeslot t under
policy π as rt,πb , Pr{bt = b | π}, and define vector
rt,π , (rt,πb )b∈B. Since, xt ∼ fX(·) is i.i.d., we have

Qt,π = rt,πpᵀ, ∀t > 0, π. (4)

Under a given policy π, the expected energy cost in timeslot
t solely depends on state st. We define the expected energy
cost for state s = (b, x) as ωπs , E[ρt|st = s, π]. Let ΦB ,
[1, η, η2, . . . , ηB ]

ᵀ and ΦX , [1, η, η2, . . . , ηX ]
ᵀ, we have

ωπs = ηx−b
B∑

m=0

ηmds,πm − 1 = ηx−bΦB
ᵀ
ds,π − 1. (5)

denote with matrix Ωπ , (ωπb,x)b∈B,x∈X the expected energy
costs for all states. Under the average reward criterion, we
formally state the optimization problem as

minimize
π

L(π) = r∞,πᵀΩπp (6a)

subject to Aπᵀr∞,π = r∞,π, (6b)
ds,π ≥ 0, ∀s, (6c)
1ᵀds,π = 1, ∀s, (6d)

d(b,x),πm = 0, ∀m < b− x. (6e)

where constraint (6b) implies stationary distribution and (6c)
and (6d) ensure that ds,π corresponds to a p.m.f.. The last

constraint rules out the possibility of yt being negative, since
the number of content item transmitted must be positive or 0.

As the policy space is (B + 1)2 × (X + 1)-dimensional,
problem (6) is an optimization with high dimensionality,
whose convexity is hard to determine. Value iteration be-
ing a popular algorithm regarding solving MDP problems,
overwhelming computational complexity is yet a problem if
to run value iteration in S. We found a novel approach to
decouple the influence from bt and xt and hence turn (6)
to three sub-problems, which are low-dimensional and more
tractable. By solving the three sub-problems specified below,
we equivalently solves (6).

First, we assume a transition matrix in B is given as A
and find the optimal policy, i.e., {ds,π : s ∈ S}, among all
policies that results in A. Secondly, we find the optimal A
whose corresponding optimal policy minimizes the expected
energy consumption in one iteration step. Thirdly, we carry
out value iteration in B, each step searching for the optimal
A iteratively, until the transition matrix converges to A∗. By
[11], A∗ is the minimizer for average energy cost among all
possible A. We argue that we have also found the optimal π∗,
among all policy space, that minimize the average energy cost
as

min
A

(
min
π
L(π) | A

)
= min

π
L(π). (7)

We next elaborate each of the three sub-problems.

A. Optimal Decisions with Given Transition Matrix in B

Denote with ωπb the expected energy cost under policy π in
a timeslot belonging to state bb. We have

ωπb , E[ρt|bt = b, π] =

X∑
x=0

pxω
π
(b,x) = Ω

π
(b,:)p, (8)

where Ω(b,:) denotes the row vector from the bth row
of Ω. Recall that Aπ =

[
a0,π a1,π . . . aB,π

]ᵀ
and ab,π =

∑
x d

(b,x),π , i.e., the bth row of A
is solely determined by decisions from bb. We for-
mulate a matrix that represents decisions from bb as
Db,π ,

[
d(b,0),π d(b,1),π . . . d(b,X),π

]ᵀ
. The first sub-

problem, finding the optimal decisions under the constraint of
a fixed A, is formally stated as:

minimize
Db,π

ωπb = η−bΦX
ᵀ
diag(p)Db,πΦB − 1 (9.a)

subject to Db,πᵀp = aπb , (9.b)

Db,π1 = 1, (9.c)

Db,π
m,n ≥ 0, ∀m,n (9.d)

Db,π
m,n = 0, ∀m+ n < b, (9.e)

for every b ∈ B. We define a function h : RX+1 → R as:

h(ab,π) = min
π

(
ωπb |ab,π

)
, (10)

in light of the optimization problem (9). In section IV, we
propose an efficient algorithm to find h(aπb ) without iteration,
exploiting a certain structural property we name as generalized
monotonicity.



B. Optimal Transition Probability Matrix in B

In a finite MDP with N timeslots, define υtb as the expected
total cost over period {N − t+ 1, N − t+ 2, ..., N}, starting
from bN−t+1 = b. Denote vector υt , (υtb)b∈B. The iteration
from t− 1 to t can be written as

minimize
ab,π

υtb = h(ab,π) + ab,π
ᵀ
υt−1 (11.a)

subject to ab,π ≥ 0, (11.b)

1ᵀab,π = 1, (11.c)

ab,πm ≤
X∑

x=b−m

px, ∀m = 0, 1, ..., b. (11.d)

(11.b) and (11.c) are the nature of p.m.f., and (11.d) is derived
from (9.b) and (9.e). Now we prove that optimization problem
(11) is convex, and hence can be easily solved by conventional
optimization tools, say, the interior-point method.

Proof: Let ab,π1 and ab,π2 be two feasible points of (11),
whose corresponding solutions in (9) are Db,π1 and Db,π2 ,
respectively. For all λ ∈ {λ ∈ R|0 < λ < 1}, let

ab,π
′
= (1− λ)ab,π1 + λab,π2 , (12)

and, let
Db,π′ = (1− λ)Db,π1 + λDb,π2 . (13)

it can be directly shown that ab,π
′

and Db,π′ satisfy constraint
sets (11.b)-(11.d) and (9.c)-(9.e) respectively. Also we have

Db,π′ᵀp =((1− λ)Db,π1 + λDb,π2)ᵀp

=(1− λ)ab,π1 + λab,π2

=ab,π
′
,

(14)

i.e., Db,π′ satisfies (9.b) with ab,π
′
. Thus, ab,π

′
and Db,π′ are

feasible points of (11) and (9) respectively. Now denote with
ωπ
′

b the expected average energy cost carried out by Db,π′ .
Because (9.a) is linear on Db,π , ωπ

′

b = (1 − λ)h(ab,π1) +
λh(ab,π2), which gives a feasible value of (9) under ab,π

′
. By

definition,

h(ab,π
′
) =min

π

(
ωπb | ab,π

′
)

≤ωπ
′

b

=(1− λ)h(ab,π1) + λh(ab,π2).

(15)

thus, h is convex. Since that ab,πᵀυt−1 is linear, optimization
problem (11) is convex.

C. Value Iteration in degenerated state space B

By III-A and III-B, we find the optimal transition matrix in
B and its corresponding policy, in light of one-step iteration.
Now we start from:

υ0 = 0, (16)

and carry out the optimality equations given by

υtb =min
ab,π

h(ab,π) +

B∑
b+=0

ab,πb+ υ
t−1
b+

=min
ab,π

h(ab,π) + ab,π
ᵀ
υt−1,

(17)

for ∀b ∈ B and t = 1, 2, . . . . The transition matrix Aπ in
B and its corresponding policy π is updated on each iteration
step. By [11], the iteration would eventually converge to satisfy
the ε-optimal stopping criterion:∣∣∣∣max

i
(υti)−min

j
(υtj)

∣∣∣∣ < ε. (18)

when (18) holds, the transition matrix Aπ∗ in B and its
corresponding π∗ give a global ε-optimal policy. By taking
limit ε→ 0, the global optimum of (6) is attained.

IV. GENERALIZED MONOTONIC STRUCTURE

As mentioned in subsection III-A, an efficient algorithm that
solves problem (9) without iteration is proposed in this section,
and its corresponding time complexity analysis is given in
section IV-B. A special pattern of the optimal decision matrix
Db,π is revealed by theorem 1, which we name generalized
monotonicity.

A. Solution of Optimization without Iteration

Intuitively the generalized monotonicity captures the feature
that the optimal decision matrix has all its non-zero entries
lying in a stripe expanding from the top-right corner to the
bottom-left. If a entry is non-zero, then the block adjacent to
its bottom-right corner shold be all-zero. We formally describe
and prove it as the following theorem:

Theorem 1 If Db,π∗ is a solution of (9), and there exist
x−, b− s.t. Db,π∗

x−,b− > 0, then Db,π∗

x+,b+ = 0 for ∀x+ ∈ {x ∈
N : x− < x ≤ X}, b+ ∈ {b ∈ N : b− < b ≤ B}.

Proof: Suppose there exist x−, b− s.t. 0 ≤ x− < X, 0 ≤
b− < B and Db,π∗

x−,b− > 0 (if not, the case is trivial and
Theorem 1 still holds). We prove by contradiction, starting by
assuming that ∃x+, b+ ∈ N s.t. x− < x+ ≤ X , b− < b+ ≤ B
and Db,π∗

x+,b+ > 0. Now we pick any positive number δ that
satisfies pb+δ < Db,π∗

x−,b− and pb−δ < Db,π∗

x+,b+ . We formulate
another decision matrix Db,π′ which is identical to Db,π∗

except the following elements

Db,π′

x−,b− = Db,π∗

x−,b− − pb+δ (19.a)

Db,π′

x−,b+ = Db,π∗

x−,b+ + pb+δ (19.b)

Db,π′

x+,b+ = Db,π∗

x+,b+ − pb−δ (19.c)

Db,π′

x+,b− = Db,π∗

x+,b− + pb−δ (19.d)

because Db,π∗ is a solution of (9), it is easy to verify
that Db,π′ satisfies (9.b) and (9.c). Also, (9.d) and (9.e) are
naturally satisfied by the choice of δ. Hence, Db,π′ is a feasible
point of (9). Further we have

ωπ
∗

b − ωπ
′

b

= η−bΦX
ᵀ
diag(p)(Db,π∗ −Db,π′)ΦB

= η−b+x
−+b−px+px−(η

x+−x− − 1)(ηb
+−b− − 1) > 0.

(20)
Db,π′ results in a smaller objective value in (9.a) than Db,π∗ ,
which contradicts the prerequisite that Db,π∗ is a solution.



Therefore, the original assumption must be false, proving the
theorem.

Now we formally state the Fast Assignment of State Transi-
tion (FAST) algorithm that gives a solution to the problem in
(9) without iteration. Validity of the FAST algorithm is given

Algorithm 1 The FAST Algorithm
1: Initialization: m = 0, n = B, u0 = p0, wB =
ab,πB ,Db,π = 0;

2: if um < wn, then
3: Db,π

m,n , um
pm
, wn , wn − um,m , m+ 1, um , pm,

go to 9;
4: end if
5: if um > wn, then
6: Db,π

m,n , wn
pm
, um , um − wn, n , n − 1, wn , ab,πn ,

go to 9;
7: end if
8: Db,π

m,n , wn
pm
,m , m+1, n , n−1, um , pm, wn , ab,πn ;

9: if m ≤ X and n ≥ 0, then
10: go to 2;
11: end if
12: Db,π∗ ,Db,π;

by the following Theorem 2.

Theorem 2 Let Db,π∗ be a solution of (9). ∀m,n ∈ N s.t.
0 ≤ m ≤ X, 0 ≤ n ≤ B, if denote

um = (ab,πn −
m−1∑
i=0

Db,π∗

i,n pi)/pm (21.a)

wn = 1−
B∑

i=n+1

Db,π∗

m,i , (21.b)

then Db,π∗

m,n = min(um, wn).

Proof: Let m,n ∈ N s.t. 0 ≤ m ≤ X, 0 ≤ n ≤ B. By
(9.b) to (9.d), we have

m∑
i=0

Db,π∗

i,n pi ≤ ab,πn (22.a)

B∑
i=n

Db,π∗

m,i ≤ 1 (22.b)

the proof is given by contradiction. Assume that neither equa-
tion in (22.a) and (22.b) holds. By (9.b)

∑X
i=0D

b,π∗

i,n pi = ab,πn ,

and also we have
∑m
i=0D

bπ∗

i,n pi < ab,πn , Therefore

∃m+ > m s.t. Db,π∗

m+,n > 0,

by (9.c) and the assumption that the equation in (22.b) does
not hold, we have ∃n− < n s.t. Db,π∗

m,n− > 0. Therefore, we
have Db,π∗

m,n− > 0 and Db,π∗

m+,n > 0, contradicting Theorem 1.

Thus, the original assumption is false, i.e., at least one of the
equations in (22.a)(22.b) holds. Rewrite (22.a) and (22.b) as

Db,π∗

m,n ≤ (ab,πn −
m−1∑
i=0

Db,π∗

i,n pi)/pm (23.a)

Db,π∗

m,n ≤ 1−
B∑

i=n+1

Db,π∗

m,i , (23.b)

it is clear that the equation with smaller value on the right
side should hold, hence proving theorem 2.

B. Complexity Analysis

Suppose the required precision of value iteration is εv ,
and interior-point method is applied for all convex optimiza-
tions. By [11], the number of iteration steps is bounded by
−C1 log εv , where C1 is a constant. B+1 convex optimizations
are solved with interior-point method in each iteration step. If
precision εi is required for interior-point method, the number
of times Newton’s Method is called in each interior-point
method is bounded by −

√
2(B + 1) log εi [12]. In New-

ton’s Method the FAST algorithm, whose time complexity is
O(X +B), is called B +1 times. Therefore, the time cost of
value iteration in B with the FAST algorithm is bounded by
O((X +B)B2.5 log εi log εv).

With similar analysis, we have the time complexity of
value iteration in S which is O(X2B3.5 log εi log εv). An
interesting insight into the two complexities is that when
X � B the difference between value iterations in B and
S fades out, which is the case that buffer size is much
larger than expected data request in a timeslot. Since there
is nearly unlimited caching space, an optimal policy becomes
meaningless. However, in most cases, value iteration in B
with the FAST algorithm brings significant improvement to
time efficiency.

V. SIMULATION RESULTS

We first demonstrate the reasonably small compromise of
the causal MDP method proposed in this paper, in comparison
with the non-causal tightest string method which attains the
absolute optimum [9]. Then we compare the time consumption
of value iteration in B, as proposed in this paper, and the
conventional MDP method of value iteration in S. We first
assume that data request yields discrete uniform distribution
on all integers in [0, 20], and buffer size varies. η takes typical
values 1.4 and 2 respectively. Fig. 4 shows that the causal
policy designed by MDP compromises little compared with the
non-causal optimum with full RDI. The curve No buffer cor-
responds to real-time transmission, and Infinite buffer shows
the energy cost for stationary transmission at the average rate.
The two curves together give the upper and lower bounds of
energy cost.

We then fix the buffer size and study the tendency of energy
cost as data request pattern changes. Assume that data request
always yields discrete uniform distribution on all integers in
[0, X]. As X grows, Fig. 5 shows that energy cost grows
exponentially. The optimal MDP policy still brings significant
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Fig. 6. Value iteration in degenerated space B with the FAST algorithm
significantly saves time compared with that in S. Here, the user request is of
size X = 1.5B where B denotes the buffer size with η = 1.4

improvement, and its performance synchronically grows with
the non-causal full-RDI method.

As the simulations are done with identical parameter
settings, where X = 1.5B always holds and B takes
{2, 4, ..., 16}, Fig. 6 shows that value iteration in full state
space S consumes much more time than the method proposed
in this paper, which is value iteration in B with the FAST
algorithm, though the two methods end with the same policy.

VI. CONCLUSION

In this paper, we introduced Markov decision processes
to the point-to-point proactive caching problem in wireless
communications. Though it is possible to directly apply con-
ventional MDP algorithms to design optimal JPC policies,
we largely adapted MDP model for the specified problem
setting. We revealed and exploited benefits from a special
structure, which we proposed as generalized monotonicity. The
algorithm designed based on the very structure has signif-
icantly accelerated the conventional MDP algorithm in this
problem. Additionally, the energy performance of the attained
causal policy is comparatively satisfactory, with regard to the
globally optimal non-causal policy. Future works may continue
to analytically study the improvement of energy consumption,
and generalize conclusions in this paper to the scenario of
multicasting.
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