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Abstract—The aggressive spatial spectrum reuse (SSR) by
network densification using smaller cells has successfully driven
the wireless communication industry onward in the past decades.
In our future journey toward ultra-dense networks (UDNs), a
fundamental question needs to be answered. Is there a limit to
SSR? In other words, when we deploy thousands or millions of
small cell base stations (BSs) per square kilometer, is activating
all BSs on the same time/frequency resource the best strategy? In
this paper, we present theoretical analyses to answer such ques-
tion. In particular, we find that both the signal and interference
powers become bounded in practical UDNs with a non-zero BS-
to-UE antenna height difference and a finite UE density, which
leads to a constant capacity scaling law. As a result, there exists
an optimal SSR density that can maximize the network capacity.
Hence, the limit to SSR should be considered in the operation of
future UDNs.

I. INTRODUCTION

From 1950 to 2000, the wireless network capacity has
increased around 1 million fold, in which an astounding 2700×
gain was achieved through an aggressive spatial spectrum
reuse (SSR) via network densification using smaller cells [1].
Generally speaking, SSR means that all the cells in the area
of interest simultaneously reuse the same frequency spectrum.
Thus, the wireless network capacity has the potential to grow
linearly as the SSR increases, as each cell can make an
independent and equal contribution to it, given that the inter-
cell interference remains tolerable. The aforementioned 2700×
gain stands as a glorious testimony to the fulfillment of such
potential.

In the first decade of 2000, network densification continued
to fuel the 3rd Generation Partnership Project (3GPP) 4th-
generation (4G) Long Term Evolution (LTE) networks, and
is expected to remain as one of the main forces to drive
the 5th-generation (5G) New Radio (NR) beyond 2020 [2].
In particular, the orthogonal deployment of dense small cell
networks (SCNs), in which small cells and macrocells operate
in different frequency bands [2], have gained much momentum
in the past years. This is because such deployment provides
a large SSR with easy network management due to the
avoidance of inter-tier interference.

However, as we walk down the path of network densifi-
cation, and gradually enter the realm of ultra-dense networks
(UDNs), things start to deviate from the traditional understand-
ing. In particular, several fundamental questions arise:

• The signal power of a typical user equipment (UE) should
increase as a network goes ultra-dense. But is there a limit
to such increase of the signal power?

• The aggregate interference power of the typical UE
should also increase as a network goes ultra-dense. But is
there a limit to such increase of the aggregate interference
power?

• Which component will grow faster as a network densifies,
the signal or the aggregate interference power?

• More importantly, is there a limit to the SSR? In other
words, when we deploy thousands or millions of small
cell base stations (BSs) per square kilometer, is activating
all BSs on the same time/frequency resource the best
strategy, as we have practiced in the last half century?
Should we explore alternative solutions?

In this paper, we answer this fundamental question via
theoretical analyses.

II. RELATED WORK

Before 2015, the common understanding on UDNs was
that the density of BSs would not affect the per-BS coverage
probability performance [3] in an interference-limited1 and
fully-loaded2 wireless network, where the coverage probability
is defined as the probability that the signal-to-interference-
plus-noise ratio (SINR) of a typical UE is above a SINR
threshold γ. Such phenomenon is referred to as the SINR
invariance. The intuition of the SINR invariance is that the
increase in the aggregate interference power caused by a
denser network would be exactly compensated by the increase
in the signal power due to the reduced distance between
transmitters and receivers [3]. Consequently, the network ca-
pacity should scale linearly as the BS density increases in a
fully-loaded UDN. Such conclusion, however, was obtained
with considerable simplifications on network conditions and
propagation environment.

1In an interference-limited network, the power of each BS is set to a value
much larger than the noise power.

2In a fully-loaded network, all BSs are active to generate a full SSR. Such
assumption implies that the UE density is infinite or much larger than the BS
density. According to [4], the UE density should be at least 10 times higher
than the BS density to make sure that almost all BSs are active.

ar
X

iv
:1

70
4.

00
39

9v
2 

 [
cs

.N
I]

  1
5 

O
ct

 2
01

7



Recently, a few noteworthy studies have followed and
revisited the network performance analysis of UDNs using
more practical assumptions [5–10], such as
• a general multi-piece path loss model with probabilistic

line-of-sight (LoS) and non-LoS (NLoS) transmissions,
• a non-zero BS-to-UE antenna height difference L, and
• a non-fully-loaded network with a finite UE density ρ.
The inclusion of these more realistic assumptions signif-

icantly changed the previous conclusion on the SINR in-
variance [3], indicating that the coverage probability perfor-
mance of UDNs is neither a convex nor a concave function
with respect to the BS density. In particular, two seemingly
contradictory performance behaviors can be observed in [9]
and [10], both considering a general multi-piece path loss
model recommended by the 3GPP.

First, if we consider a practical non-zero BS-to-UE antenna
height difference L, then the coverage probability is shown
to crash as the BS density increases in a fully-loaded UDN.
This is caused by a severe SINR decrease in UDNs [9].
The intuition of such SINR decrease is that the signal power
becomes bounded in UDNs due to the lower-bound on the
BS-to-UE distance, as a UE cannot be closer than L to its
serving BS.

Second, if we consider a practical finite UE density ρ,
then the coverage probability is shown to take off as the BS
density increases. This is caused by a soaring SINR increase
in UDNs [10]. The intuition of such SINR increase is that the
aggregate interference power becomes bounded in UDNs due
to the partial activation of a finite density of BSs to serve a
finite density of UEs. In more detail, a large number of BSs
can switch off their transmission modules in UDNs, entering
into idle mode, if there is no active UE within their coverage
areas. As a result, the number of interfering BSs and also the
SSR are limited by the finite number of UEs.

Considering that the above two seemingly contradictory
performance behaviors (i.e., SINR decrease and increase)
manifest themselves in UDNs, it is of great interest to investi-
gate their trade-offs. Which one prevails in UDNs? Such study
will eventually reveal the answer to the fundamental question:
Is there a limit to the SSR? Our short answer is YES.

III. NETWORK SCENARIO AND SYSTEM MODEL

In this section, we present the network scenario and the
wireless system model considered in this paper.

A. Network Scenario

We consider a downlink (DL) cellular network with BSs
deployed on a plane according to a homogeneous Poisson
point process (HPPP) Φ with a density of λ BSs/km2. Active
DL UEs are also Poisson distributed in the considered network
with a density of ρ UEs/km2. Here, we only consider active
UEs in the network because non-active UEs do not trigger
any data transmission, the typical density of which is around
ρ = 300 UEs/km2 [2].

In practice, a BS will enter an idle mode if there is no UE
connected to it, which reduces the interference to neighboring

UEs as well as the energy consumption of the network. The
set of active BSs is thus depending on the user association
strategy (UAS). In this paper, we assume a practical UAS
as in [7], where each UE is connected to the BS having
the maximum average received signal strength, which will
be formally presented in Subsection III-B. Since UEs are
randomly and uniformly distributed in the network, the active
BSs should follow another HPPP distribution Φ̃, the density
of which is λ̃ BSs/km2 [4]. Such λ̃ also characterizes the
SSR because only active BSs use the frequency spectrum.
Moreover, note that λ̃ ≤ λ and λ̃ ≤ ρ, since one UE is served
by at most one BS, and that a larger ρ results in a larger λ̃.
From [4], λ̃ can be calculated as

λ̃ = λ

1− 1(
1 + ρ

qλ

)q
 , (1)

where an empirical value of 3.5 was suggested for q in [4]3.

B. Wireless System Model

The two-dimensional (2D) distance between a BS and a
UE is denoted by r. Moreover, the absolute antenna height
difference between a BS and a UE is denoted by L. Thus, the
3D distance between a BS and a UE can be expressed as

w =
√
r2 + L2. (2)

Note that the value of L is in the order of several meters [11].
Following [7], we adopt a general path loss model, where

the path loss ζ (w) is a multi-piece function of w written as

ζ (w) =


ζ1 (w) , when L ≤ w ≤ d1

ζ2 (w) , when d1 < w ≤ d2

...
...

ζN (w) , when w > dN−1

, (3)

where each piece ζn (w) , n ∈ {1, 2, . . . , N} is modeled as

ζn (w)=

{
ζL
n (w) = AL

nw
−αL

n ,

ζNL
n (w) = ANL

n w−α
NL
n ,

LoS: PrLn (w)

NLoS: 1− PrLn (w)
, (4)

where
• ζL

n (w) and ζNL
n (w) , n ∈ {1, 2, . . . , N} are the n-th piece

path loss functions for the LoS and the NLoS cases,
respectively,

• AL
n and ANL

n are the path losses at a reference 3D distance
w = 1 for the LoS and the NLoS cases, respectively,

• αL
n and αNL

n are the path loss exponents for the LoS and
the NLoS cases, respectively.

Moreover, PrLn (w) is the n-th piece LoS probability function
that a transmitter and a receiver separated by a 3D distance
w has an LoS path, which is assumed to be a monotonically

3Note that according to [10], q should also depend on the path loss model,
which will be presented in Subsection III-B. Having said that, [10] also
showed that (1) is generally very accurate to characterize λ̃ for dense and
ultra-dense networks.



decreasing function with respect to w. Existing measurement
studies have confirmed this assumption [11].

As a special case to show our numerical results in the
simulation section, we consider a practical two-piece path
loss function and a two-piece exponential LoS probability
function, defined by the 3GPP [11]. Specifically, we have
N = 2, ζL

1 (w) = ζL
2 (w) = ALw−α

L

, ζNL
1 (w) = ζNL

2 (w) =

ANLw−α
NL

, PrL1 (w) = 1 − 5 exp (−R1/w), and PrL2 (w) =
5 exp (−w/R2), where R1 = 156 m, R2 = 30 m, and
d1 = R1

ln 10 = 67.75 m [11]. For clarity, this path loss case
is referred to as the 3GPP Case hereafter.

As discussed before, we assume a practical user association
strategy (UAS), in which each UE is connected to the BS
giving the maximum average received signal strength (i.e.,
with the largest ζ (w)) [6, 7]. Finally, we assume that each BS’s
transmission power has a constant value P , each BS/UE is
equipped with an isotropic antenna, and the multi-path fading
between a BS and a UE is modeled as independently identical
distributed (i.i.d.) Rayleigh fading [5–7].

C. More Network Assumptions in Future Work

Regarding other assumptions, it is important to note that it
has been shown in [12] through simulation that the analyses
of the following factors/models are not urgent, as they do not
change the qualitative conclusions of this type of performance
analysis in UDNs:
• A deterministic non-Poisson distributed BS/UE density.
• A BS density dependent transmission power.
• A more accurate multi-path modeling with Rician fading.
• An additional modeling of correlated shadow fading.

Thus, we will focus on presenting our most fundamental
results in this paper, and show the minor impacts of the above
factors/models in the journal version of this work.

IV. MAIN RESULT

In this section, we study the coverage probability perfor-
mance and the network capacity in terms of the area spectral
efficiency (ASE) of a typical UE located at the origin o.

A. The Coverage Probability

First, we investigate the coverage probability that the SINR
of the typical UE at the origin o is above a threshold γ:

pcov (λ, ρ, γ) = Pr [SINR > γ] , (5)

where the SINR is computed by

SINR =
Pζ (w)h

Iagg + PN
, (6)

where h is the channel gain, which is modeled as an expo-
nentially distributed random variable (RV) with a mean of
one due to our consideration of Rayleigh fading, presented in
Subsection III-B, P and PN are the BS transmission power
and the additive white Gaussian noise (AWGN) power at each
UE, respectively, and Iagg is the aggregate interference given
by

Iagg =
∑

i: bi∈Φ̃\bo

Pβigi, (7)

where bo is the BS serving the typical UE, and bi, βi and gi are
the i-th interfering BS, the path loss from bi to the typical UE
and the multi-path fading channel gain associated with such
link (also exponentially distributed RVs), respectively. Note
that, in (7), only the BSs in Φ̃\ bo inject effective interference
into the network, where Φ̃ denotes the set of the active BSs. In
other words, the BSs in idle mode are not taken into account
in the computation of Iagg.

Based on the general path loss model in (3) and the
adopted UAS, in Theorem 1, we present our main result on
the asymptotic performance of pcov (λ, ρ, γ) in UDNs, i.e.,

lim
λ→+∞

pcov (λ, ρ, γ).

From Theorem 1, we propose a new SINR invariance law
in Theorem 2.

Theorem 2. A new SINR invariance law: If L > 0 and
ρ < +∞, then lim

λ→+∞
pcov (λ, ρ, γ) becomes a constant that

is independent of λ in UDNs.

Proof: See Appendix B.

Theorem 2 indicates that (i) the SINR decrease effect due
to the non-zero BS-to-UE antenna height difference L and (ii)
the SINR increase due to the finite UE density ρ and the BS
idle mode capability counter-balance each other in practical
UDNs with L > 0 and ρ < +∞. Note that here the study on
{L, ρ} is finally complete because:
• The case of L = 0 and ρ = +∞ has been studied in [5–

7], showing that lim
λ→+∞

pcov (λ, ρ, γ) is a function of αL
n.

• The case of L > 0 and ρ = +∞ has been studied in [9],
showing that lim

λ→+∞
pcov (λ, ρ, γ) = 0.

• The case of L = 0 and ρ < +∞ has been studied in [10],
showing that lim

λ→+∞
pcov (λ, ρ, γ) = 1.

• The case of L > 0 and ρ < +∞ is characterized
by Theorem 2, which reflects the most practical SCN
deployment among the above cases.

From Theorem 2, it is trivial to show that for a given {L, ρ},
lim

λ→+∞
pcov (λ, ρ, γ) decreases as γ increases. This is because a

higher SINR requirement naturally leads to a lower coverage
probability. Thus, in Lemmas 3 and 4, we only address how

lim
λ→+∞

pcov (λ, ρ, γ) varies with L and ρ, respectively.

Lemma 3. For a given {ρ, γ}, lim
λ→+∞

pcov (λ, ρ, γ) decreases

as L increases.

Proof: See Appendix C.

Lemma 4. For a given {L, γ}, lim
λ→+∞

pcov (λ, ρ, γ) decreases

as ρ increases, according to a power law with respect to ρ.
More specifically, we have

lim
λ→+∞

pcov (λ, ρ, γ) = c (γ) gρ (γ) , (10)

where c (γ) and g (γ) are expressed as

c (γ) = exp

(
− PNγ

PζL
1 (L)

)
, (11)



Theorem 1. Considering the general path loss model in (3) and the adopted UAS, lim
λ→+∞

pcov (λ, ρ, γ) can be derived as

lim
λ→+∞

pcov (λ, ρ, γ) = lim
λ→+∞

Pr

[
PζL

1 (L)h

Iagg + PN
>γ

]
= exp

(
− PNγ

PζL
1 (L)

)
lim

λ→+∞
L L
Iagg

(
γ

PζL
1 (L)

)
, (8)

where lim
λ→+∞

L L
Iagg

(s) with s = γ
PζL1 (L)

is given by

lim
λ→+∞

L L
Iagg(s) = exp

(
−2πρ

∫ +∞

0

PrL
(√
u2 + L2

)
u

1+
(
sPζL

(√
u2 + L2

))−1 du

)
exp

(
−2πρ

∫ +∞

0

[
1−PrL

(√
u2 + L2

)]
u

1+
(
sPζNL

(√
u2 + L2

))−1 du

)
. (9)

Proof: See Appendix A.

and

g (γ) = exp

(
−2π

∫ +∞

0

PrL
(√
u2 + L2

)
u

1+
(
sPζL

(√
u2 + L2

))−1 du

)

× exp

(
−2π

∫ +∞

0

[
1−PrL

(√
u2 + L2

)]
u

1+
(
sPζNL

(√
u2 + L2

))−1 du

)
, (12)

where s = γ
PζL1 (L)

.

Proof: See Appendix D.
The intuitions of Lemmas 3 and 4 are explained as follows,

• The signal power becomes bounded in UDNs due to the
lower-bound on the BS-to-UE distance, as a UE cannot
be closer than L to a BS. Moreover, a larger L implies
a tighter bound on the signal power, which leads to the
decrease of lim

λ→+∞
pcov (λ, ρ, γ), as shown in Lemma 3.

• The aggregate interference power becomes bounded in
UDNs due to the activation of a finite density of BSs (i.e.,
λ̃) to serve a finite density of UEs (i.e., ρ). Moreover,
a larger ρ results in a larger λ̃, relaxing the bound on
the aggregate interference power, which leads to the
decrease of lim

λ→+∞
pcov (λ, ρ, γ), as shown in Lemma 4.

Such decrease follows a power law with respect to ρ,
because an HPPP distribution of UEs with ρUEs/km2

can be decomposed into ρ independent HPPP ones with
1 UEs/km2 each, and the coverage criterion (5) should be
satisfied for each one of these HPPP distributions. This
yields a power law with respect to ρ.

B. The Area Spectral Efficiency

Next, we investigate the network capacity performance in
terms of the area spectral efficiency (ASE) in bps/Hz/km2,
which is defined as [7]

AASE (λ, ρ, γ0) = λ̃

∫ +∞

γ0

log2 (1 + γ) fΓ (λ, ρ, γ) dγ, (13)

where γ0 is the minimum working SINR in a practical SCN,
and fΓ (λ, ρ, γ) is the probability density function (PDF) of
the SINR γ observed at the typical UE for particular values
of ρ and λ. Based on the definition of pcov (λ, ρ, γ) in (5)

and the partial integration theorem shown in [8], (13) can be
reformulated as

AASE (λ, ρ, γ0) =
λ̃

ln 2

∫ +∞

γ0

pcov (λ, ρ, γ)

1 + γ
dγ

+λ̃ log2 (1 + γ0) pcov (λ, ρ, γ0) . (14)

Note that λ̃ (i.e., the SSR density) is used in the expression
of AASE (λ, ρ, γ0) because only active BSs make an effective
contribution to the ASE, and that according to (1), λ̃ (i.e., the
SSR density) is a finite value since ρ < +∞.

C. A Constant Capacity Scaling Law

From Theorem 5 and the expression of the ASE in (14),
we propose a capacity scaling law for UDNs in Theorem 5.
The implication of this capacity scaling law in Theorem 5 is
profound, which will be discussed in the following.

Remark 1: As discussed in Section I, the conclusion in [3]
was that the network capacity should scale linearly as the
BS density λ increases in a fully-loaded UDN (i.e., the SSR
density is also λ). Such conclusion gave us a linear capacity
scaling law and showed an optimistic future for 5G.

Remark 2: The implication of Theorem 5 is quite different.
Specifically, the network densification should be stopped at
a certain level for a given UE density ρ, because both the
coverage probability and the network capacity will respectively
reach a maximum constant value, thus showing a practical
future for 5G. Any network densification beyond such level
of BS density is a waste of both money and energy.

Remark 3: Recently some concerns about network capacity
collapsing in UDNs have emerged, e.g., the capacity crash due
to a non-zero BS-to-UE antenna height difference [9, 13], thus
showing a pessimistic future for 5G. However, it should be
noted that such concern was regarding a fully-loaded UDN.
Our results on the constant capacity scaling law addresses
this concern. In more detail, even if the UE density is infinite,
the network capacity crash can still be avoided by activating
a finite subset of BSs (i.e., the SSR density is less than λ)
to serve a finite subset of UEs (i.e., the selected UE density
is ρ). In other words, instead of letting the network capacity
crash with an aggressive SSR density λ, our capacity scaling
law points out another approach of dialing the network back
to an SSR density less than λ, and thus greatly limiting the



Theorem 5. A constant capacity scaling law: If L > 0 and ρ < +∞, then lim
λ→+∞

AASE (λ, ρ, γ0) becomes a constant that is

independent of λ in UDNs. In more detail, lim
λ→+∞

AASE (λ, ρ, γ0) is given by

lim
λ→+∞

AASE (λ, ρ, γ0) =
ρ

ln 2

∫ +∞

γ0

lim
λ→+∞

pcov (λ, ρ, γ)

1 + γ
dγ + ρ log2 (1 + γ0) lim

λ→+∞
pcov (λ, ρ, γ0) , (15)

where lim
λ→+∞

pcov (λ, ρ, γ) is obtained from Theorem 1, and it is independent of λ in UDNs.

Proof: See Appendix E.

amount of inter-cell interference in the network. As a result,
the network capacity crash can be completely avoided.

Remark 4: Following the leads in Remark 2, The-
orem 5 shows that AASE (λ, ρ, γ0) in (14) reaches

lim
λ→+∞

AASE (λ, ρ, γ0) when λ → +∞. However, achieving

such performance limit might be cost-inefficient due to the
investment on the deployment of BSs as λ→ +∞. Thus, we
further propose a BS deployment problem as follows.

For a given UE density ρ, there exists an optimal
BS density λ∗ that can achieve a performance result
of AASE (λ, ρ, γ0) that is with a gap of ε-percent from

lim
λ→+∞

AASE (λ, ρ, γ0), i.e.,

maximize
λ

1

s.t.

∣∣∣∣ lim
λ→+∞

AASE(λ, ρ, γ0)−AASE(λ, ρ, γ0)

∣∣∣∣
lim

λ→+∞
AASE(λ, ρ, γ0)

= ε. (16)

Note that the solution λ∗ to the BS deployment problem (16)
would answer the fundamental question of “for a given UE
density ρ, how dense an UDN should be?”. It makes sense that
such question and answer should depend on the UE density ρ.
The intuition is that network densification should be stopped
at λ∗, because the network capacity saturates at λ∗ with a
performance gap of ε-percent from lim

λ→+∞
AASE (λ, ρ, γ0). As

shown by (16), the BS deployment problem solution can be
found by numerical search over AASE(λ, ρ, γ0), the details of
which are omitted here for brevity, but a numerical example
will be shown in the next section.

Remark 5: Following the leads in Remark 3, we further
investigate (15) and observe that lim

λ→+∞
AASE (λ, ρ, γ0) should

be a concave function with regard to ρ, which implies an opti-
mal UE density ρ∗ that can maximize lim

λ→+∞
AASE (λ, ρ, γ0).

This is because
• Lemma 4 states that lim

λ→+∞
pcov (λ, ρ, γ) decreases as ρ

increases,
• while ρ also linearly scales the terms in (15) (i.e., the

SSR density λ̃ converges to ρ in UDNs due to the limit
of one UE per active BS), and

• thus, there should exist an optimal UE density ρ∗ that can
maximize lim

λ→+∞
AASE (λ, ρ, γ0) in (15), which mitigates

the network capacity crash as discussed in Remark 3.

Considering the general expression of the ASE in (14), we can
make such optimization problem more general and propose a
UE scheduling problem as follows.

For a given BS density λ, there exists an optimal UE
density ρ∗ that can maximize AASE (λ, ρ, γ0), i.e.,

maximize
ρ

AASE (λ, ρ, γ0)

s.t. 0 < ρ ≤ λ. (17)

Note that the solution ρ∗ to the UE scheduling problem (17)
would answer the fundamental question of “for a given BS
density λ, what is the optimal user load ρ∗ that can maximize
the ASE?”. Note that such optimal user load ρ∗ and the given
BS density λ implicitly yields an optimal SSR density λ̃∗

from (1). Unlike the BS deployment problem (16), the UE
scheduling problem (17) is more complicated to solve. Due to
the page limit, we will investigate the solution of (17) in the
journal version of this work, but a numerical example will be
shown in the next section.

V. SIMULATION AND DISCUSSION

In this section, we present numerical results to validate the
accuracy of our analysis. According to Tables A.1-3~A.1-7
of [11], we adopt the following parameters for the 3GPP Case:
αL = 2.09, αNL = 3.75, AL = 10−10.38, ANL = 10−14.54,
P = 24 dBm, PN = −95 dBm (with a noise figure of 9 dB).

A. Validation of the Coverage Probability Performance

In Fig. 1, we display the coverage probability for the
3GPP Case with γ = 0 dB. Here, solid lines, markers, and
dash lines represent analytical results, simulation results, and

lim
λ→+∞

pcov (λ, ρ, γ) derived in Theorem 1, respectively. Note

that the analytical results of pcov (λ, ρ, γ) are obtained from [9]
with λ replaced by λ̃. From this figure, we can observe that:
• When the BS density is at around λ ∈[

102, 103
]

BSs/km2, pcov (λ, ρ, γ) decreases with λ.
This is due to the transition of a large number of
interfere paths from NLoS to LoS, which accelerates the
growth of the aggregate inter-cell interference [5–7].

• When λ ∈
[
103, 105

]
BSs/km2, pcov (λ, ρ, γ) contin-

uously increases thanks to the BS idle mode opera-
tions [10], i.e., the signal power continues increasing with
the network densification, while the aggregate interfer-
ence power becomes bounded, as only BSs serving active
UEs are turned on.



10-1 100 101 102 103 104 105 106

Base station density λ [BSs/km2]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C

ov
er

ag
e 

pr
ob

ab
ili

ty
: P

r[
S

IN
R

>
γ
]

L=3.5 m, 300 UEs/km2 [Line/Marker: Ana/Sim]

L=8.5 m, 300 UEs/km2 [Line/Marker: Ana/Sim]

L=8.5 m, 600 UEs/km2 [Line/Marker: Ana/Sim]

The limit of pcov(λ,γ) from Theorem 1

Fig. 1. The coverage probability pcov (λ, γ) vs. λ for the 3GPP Case with
γ = 0 dB and various values of ρ and L.

• When λ > 105 BSs/km2, pcov (λ, ρ, γ) gradually reaches
its limit characterized by Theorem 1, which verifies the
SINR invariance law in Theorem 2. Numerically speak-
ing, the gap between the analytical results of pcov (λ, ρ, γ)
and those of lim

λ→+∞
pcov (λ, ρ, γ) are less than 0.5 % for all

of the investigated cases when λ = 106 BSs/km2, which
validates the accuracy of Theorem 1.

• As shown in Fig. 1, when ρ = 300 UEs/km2, the limit
of pcov (λ, ρ, γ) with L = 3.5 m is larger than that with
L = 8.5 m, thus verifying Lemma 3.

• As shown in Fig. 1, when L = 8.5 m, the limit of
pcov (λ, ρ, γ) with ρ = 300 UEs/km2 is 0.806, while that
with ρ = 600 UEs/km2 is 0.65, which equals to the square
of 0.806, thus verifying the power law of ρ in Lemma 4.

B. Validation of the Constant Capacity Scaling Law

In Fig. 2, we plot the ASE results for the 3GPP Case
with γ0 = 0 dB, L = 8.5 m and various values of ρ. Since
AASE (λ, ρ, γ0) is calculated from the results of pcov (λ, ρ, γ)
using (14), and because the analysis on pcov (λ, ρ, γ) has been
validated in Subsection V-A, we only show the analytical
results of AASE (λ, ρ, γ0) in Fig. 2. From this figure, we can
observe that:
• As discussed in Remark 1, due to its simplistic as-

sumptions, the linear capacity scaling law [3] shows an
optimistic but unrealistic future for 5G UDNs in Fig. 2.

• The constant capacity scaling law in Theorem 5 is
validated for UDNs with a non-zero L and a finite ρ,
showing a practical future for 5G UDNs in Fig. 2, which
has been discussed in Remark 2 and Remark 3.

• For a given ρ, e.g., ρ = 300 UEs/km2, the value of
AASE (λ, ρ, γ0) saturates as λ→ +∞, which justifies the
BS deployment problem (16) addressed in Remark 4.
For example, for the following set of parameter val-
ues: ρ = 300 UEs/km2, L = 8.5 m and γ0 = 0 dB,
we can calculate lim

λ→+∞
AASE(λ, ρ, γ0) using Theorem 5

and obtain its value as 784.4 bps/Hz/km2. Considering
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LoS/NLoS PL, L=8.5m, 300 UEs/km2

LoS/NLoS PL, L=8.5m, 600 UEs/km2
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Fig. 2. The ASE AASE (λ, γ0) vs. λ with γ0 = 0 dB for the 3GPP Case
with γ0 = 0 dB, L = 8.5m and various values of ρ.

a performance gap of ε = 5 percent (i.e., a target ASE
of 745.2 bps/Hz/km2), it is easy to find the solution to
problem (16) as λ∗ = 33420 BSs/km2. Such BS density
means that any network densification beyond this level
will generate no more than 5 % of the maximum ASE.

• For a given λ, e.g., λ = 106 BSs/km2, it is inter-
esting to see that AASE (λ, ρ, γ0) is indeed a con-
cave function of ρ, i.e., AASE (λ, ρ, γ0) increases when
ρ ∈ [300, 600] UEs/km2 and decreases when ρ ∈
[1000, 2000] UEs/km2. Hence, it justify the UE schedul-
ing problem (17) addressed in Remark 5. For exam-
ple, for the following set of parameter values: λ =
106 BSs/km2, L = 8.5 m and γ0 = 0 dB, we can find
the solution to problem (17) as ρ∗ = 804 UEs/km2 with a
maximum ASE of 928.2 bps/Hz/km2. Such optimal value
of ρ∗ can be translated to an optimal SSR density of
803.58 SSR/km2 from (1). Note that activating all BSs
with a full SSR density of 106 SSR/km2 will lead to the
ASE crash [9, 13], i.e., an ASE of 0 bps/Hz/km2.

• Note that the ASE crawls (not increasing quickly) when
λ ∈

[
102, 103

]
BSs/km2, which is due to the transition of

a large number of interfere paths from NLoS to LoS [7].

VI. CONCLUSION

A constant capacity scaling law has been shown for UDNs.
Such law has two profound implications. First, network densi-
fication should be stopped at a certain BS density for a given
UE density, because the network capacity reaches a limit.
Such BS density can be found by solving the BS deployment
problem presented in this paper. Second, there exists an
optimal SSR density that can maximize the network capacity.
In other words, when we deploy thousands or millions of BSs
per square kilometer, the best strategy is not activating all
BSs on the same time/frequency resource. Such optimal SSR
density as well as the corresponding UE density can be found
by solving the UE scheduling problem proposed in this paper.



APPENDIX A: PROOF OF THEOREM 1

As λ → +∞, we have that r → 0 and w → L in (2).
Consequently, the path loss of this link should be dominantly
characterized by the first-piece LoS path loss function (i.e.,
ζL
1 (w)), which supports the use of ζL

1 (w) in such case. Thus,
lim

λ→+∞
pcov (λ, ρ, γ) can be derived as

lim
λ→+∞

pcov (λ, ρ, γ) = lim
λ→+∞

Pr
[
SINR>γ

∣∣ζ (w) = ζL
1 (L)

]
(a)
= lim

λ→+∞
Pr

[
PζL

1 (L)h

Iagg + PN
>γ

]
= lim

λ→+∞
Pr

[
h>

(Iagg + PN) γ

PζL
1 (L)

]
, (18)

where (6) is plugged into the step (a) of (18). Considering that
the complementary cumulative distribution function (CCDF)
of h gives Pr [h > x1 + x2] = exp (−x1) exp (−x2) and with
some mathematical manipulations, we can arrive at (8).

Then, we can further derive L L
Iagg

(s) with s = γ
PζL1 (L)

as

L L
Iagg

(s)

= E[Iagg] {exp (−sIagg)}

(a)
= E[Φ̃\bo,{βi},{gi}]

exp

−s ∑
i∈Φ/bo

Pβigi


(b)
= exp

(
−2πλ̃

∫ ∞
0

(
1−E[g]

{
exp
(
−sPβ

(√
u2+L2

)
g
)})

udu

)
(c)
= exp

(
−2πλ̃

∫ +∞

0

PrL
(√
u2 + L2

)
u

1+
(
sPζL

(√
u2 + L2

))−1 du

)

× exp

(
−2πλ̃

∫ +∞

0

[
1−PrL

(√
u2 + L2

)]
u

1+
(
sPζNL

(√
u2 + L2

))−1 du

)
, (19)

where the step (a) of (19) comes from (7), the step (b)
of (19) is obtained from Campbell’s theorem [3], and
E[g] {exp (−sxg)} = 1

1+sx is plugged into the step (c) of
(19) and the aggregate interference from both LoS and NLoS
paths are considered therein. Finally, from (1), we have that

lim
λ→+∞

λ̃ = ρ, which yields the result of lim
λ→+∞

L L
Iagg

(
γ

PζL1 (L)

)
in (9) and thus concludes our proof.

APPENDIX B: PROOF OF THEOREM 1

Due to the page limit, here we only provide the key steps of
the proof. The proof is mainly consisted of two parts, where
(i) in (8), exp

(
− PNγ
PζL1 (L)

)
is a function of L and γ. Note that

in reality it is a value very close to 1 because usually we have
PζL

1 (L) � PN, and (ii) in (9), lim
λ→+∞

L L
Iagg

(
γ

PζL1 (L)

)
is a

function of L, ρ and γ.

APPENDIX C: PROOF OF LEMMA 3

Due to the page limit, here we only provide the key steps of
the proof. The proof is mainly consisted of two parts, where
for a given {ρ, γ}, (i) in (8), we have that exp

(
− PNγ
PζL1 (L)

)
de-

creases as L increases, and (ii) in (9), we have that s = γ
PζL1 (L)

increases as L increases, and L quickly becomes irrelevant in
the integrals of (9) because L appears in the term

√
u2 + L2

and the integrals are performed on u toward u = +∞, which
leads to the conclusion that lim

λ→+∞
L L
Iagg

(s) is a decreasing

function of s, and thus L.

APPENDIX D: PROOF OF LEMMA 4

Due to the page limit, here we only provide the key steps of
the proof. First, from (9) we conclude that exp

(
− PNγ
PζL1 (L)

)
≈ 1

because usually we have PζL
1 (L) � PN in an interference-

limited UDN. Second, the rest of the proof is apparent from
the results in Theorem 1.

APPENDIX E: PROOF OF THEOREM 5

Due to the page limit, here we only provide the key steps
of the proof. As λ → +∞, the ASE in (14) approaches
a limit that is independent of λ. This is because (i) from
Theorem 1, we can get that both lim

λ→+∞
pcov (λ, ρ, γ) and

lim
λ→+∞

pcov(λ, ρ, γ0) are independent of λ, and (ii) from (1) we

have that lim
λ→+∞

λ̃ = ρ, which is also independent of λ and

has been plugged into (15). Therefore, lim
λ→+∞

AASE (λ, ρ, γ0)

is independent of λ as λ→ +∞, which completes our proof.
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