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Abstract—We investigate the viability of using machine-
learning techniques for estimating user-channel features at a
large-array base station (BS). In the scenario we consider, user-
pilot broadcasts are observed and processed by the BS to extract
angle-of-arrival (AoA) specific information about propagation-
channel features, such as received signal strength and relative
path delay. The problem of interest involves using this infor-
mation to predict the angle-of-departure (AoD) of the dominant
propagation paths in the user channels, i.e., channel features not
directly observable at the BS. To accomplish this task, the data
collected in the same propagation environment are used to train
neural networks. Our studies rely on ray-tracing channel data
that have been calibrated against measurements from Shinjuku
Square, a famous hotspot in Tokyo, Japan. We demonstrate that
the observed features at the BS side are correlated with the
angular features at the user side. We train neural networks that
exploit different combinations of measured features at the BS to
infer the unknown parameters at the users. The evaluation based
on standard statistical performance metrics suggests that such
data-driven methods have the potential to predict unobserved
channel features from observed ones.

I. INTRODUCTION

Cellular standardization efforts have mainly focused on
enabling wireless communication in the sub-6GHz spectrum.
Given the scarcity of spectrum below 6GHz, new efforts
in 3GPP are expanding their scope to include spectrum
above 6GHz, in particular the millimeter wave (mmWave)
frequencies. To enable the deployment of reliable cost-efficient
wireless networks operating at mmWave frequencies, however,
a number of serious challenges must be addressed [1], [2]. This
is because compared to its sub-6GHz counterpart, communi-
cation at mmWave is impacted by much larger propagation
pathloss, more rapidly changing channels, severe penetration
loss, dynamic shadowing, etc. Fortunately, due to shorter
wavelengths, much larger arrays can be packed into a small
footprint, which enables the use of massive arrays in small-cell
BSs and moderately large arrays at the user terminals. Such
BS and user-terminal arrays are essential at mmWave as they
can be exploited to provide combined transmit-receive (TX-
RX) beamforming (BF) gains. Given the harsh propagation
conditions at mmWave, such BF gains play a vital role as
they can greatly extend the range of mmWave communication,
thereby greatly improving coverage.

Learning the user-channels to create beams, however, is
more challenging at mmWave. The larger the arrays, the larger

the set of beams and TX-RX beam combinations that need
to be searched. As channels decorrelate much faster than at
sub-6 GHz bands, high-gain TX-RX beam combinations must
be learned much faster. This results in substantially larger
training overheads at mmWave due to the need for more
frequent searches and within a larger space of beam pairs.
In real-world cellular environments where most user terminals
communicate to BSs through channels with no line-of-sight
path, having access to precise geometric information regarding
the relative locations of the BS and TX arrays (and their
relative orientation) is not sufficient to identify TX-RX beam
pairs that yield high BF gains.

There is a large body of works on finding the optimal TX-
RX beam pair. In [3], Abari et al. proposed “Agile-Link”
to find the optimal beam alignment through employment of
carefully concocted hash functions that can quickly identify
and remove the direction bins with no energy. In [4], Hur et
al. proposed an adaptive beam alignment technique where a
hierarchical BF codebook is leveraged in lieu of the exhaustive
search, but the required feedback from the receiver to the
transmitter incurs additional overhead and latency. An attrac-
tive alternative is to estimate the multipath channel parameters
[5]–[10]. Due to the sparse structure of mmWave scattering,
[6]–[9], [11] formulated channel estimation as a sparse signal
recovery problem, significantly reducing the training overhead
in the process. In addition, low-rank tensor factorization has
been exploited in [10], [12] to further improve estimation
accuracy and to reduce the computational cost. Based on
several recent empirical studies, Li, et al. showed the existence
of a joint sparse and low-rank structure in mmWave channels
in presence of angular spreads [13], and they leveraged this
structure to further reduce the computational cost.

While the aforementioned prior works targeted the channel-
parameter prediction problem from a system modeling/signal
processing perspective, in this paper we leverage the use of
machine learning towards this task, so as to improve the user
experience and/or the radio-resource utilization in wireless
networks. In particular, we exploit machine learning at the
BS to predict user-channel features that are not observable
at the BS. Specifically, we consider using AoA dependent
propagation-channel features at the BS (extracted using a large
array) to predict the AoD of the dominant propagation paths
in the user channels. The dominant-path AoD prediction is

ar
X

iv
:1

80
2.

00
10

7v
1 

 [
ee

ss
.S

P]
  1

 F
eb

 2
01

8



performed by neural networks, which are trained by using the
data collected from the same propagation environment. The
data of propagation channels that we use were generated by
a channel tracer (and also calibrated against measurements)
over Shinjuku square, a typical hotspot in Tokyo, Japan.

We recast channel-parameter prediction as a learning-based
optimization problem by first constructing appropriate feature
representations. Then we conduct correlation analysis between
the observed and the unknown features in the model. Next, we
train several neural networks, each using different combina-
tions of observed features to infer the unknown parameters
at the user side. Our preliminary results suggest that machine
learning could prove a valuable tool in allowing big data to
be used for predicting unobserved channel parameters, and
improving network resource utilization and user experience.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section we describe how the channel features that are
provided by the ray-tracing data, are turned into observable
and unobservable channel features at the BS side. In the
process, we will describe the channel models giving rise to
these representations.

We assume half-wavelength spaced uniform linear arrays
(ULAs) at the BS and the mobile station (MS) or the user,
equipped with NBS and NMS antenna elements, respectively.
As introduced in [14], a multipath wireless channel can be
modeled as a linear system with the following NBS × NMS
time-frequency response matrix:

H(t, f) =

L∑
l=1

αlaBS(θl)a
H
MS(φl)e

j2πfτl , (1)

where L is the number of multipaths, and for the lth path, αl
denotes the complex channel coefficient, θl ∈ [0, 2π) and φl ∈
[0, 2π) represent the associated AoA and AoD, respectively,
τl is path delay, and aBS and aMS are the associated array
steering vectors at the BS and the MS, respectively, which
can be written as

aBS(θl) =
1√
NBS

[
1, ej

2π
λ
d sin(θl), · · · , ej(NBS−1) 2π

λ
d sin(θl)

]T
, (2)

aMS(φl) =
1√
NMS

[
1, ej

2π
λ
d sin(φl), · · · , ej(NMS−1) 2π

λ
d sin(φl)

]T
, (3)

where λ is the carrier wavelength. Assuming the channel
follows block fading and considering the channel in a block
within coherence time, we can drop the time index t. In this
paper, for simplicity, we only consider the 2-D system where
AoA and AoD are captured by the azimuth components only1.

According to (1), H(f) is determined by the parameters
{αl, τl, θl, φl}Ll=1, where each is continuous-valued in the
corresponding field. However, the observation precision of
these parameters is subject to the observation resolution.
Specifically, the observation resolution of θl and φl is limited
by the size of the antenna arrays at the BS and the user,
respectively, and that of τl is determined by the system

1Analysis for the 3-D system can be easily generalized by incorporating
elevation components, which would yield channels that are even sparser.

bandwidth2. Hence, after sampling over AoA/AoD domains,
the virtual representation of the channel in (1) is given by [14]:

H(f) =

L∑
l=1

WBSH
T
v (l)W

T
MSe

−j2πfτl , (4)

where Hv(l) is the NBS × NMS matrix associated with the
nthr revolvable AoA and ntht revolvable AoD of the lth path
(see equation (4) in [14]); WBS and WMS are NBS × NBS
and NMS×NMS unitary matrices, respectively, which comprise
aBS(nr/NBS) and aMS(nt/NMS) as their nthr and ntht columns,
respectively. Both WBS and WMS turn out to be DFT matrices
with NBS, NMS columns, respectively. Indeed as was shown
in [15] for large ULAs projecting the DFT matrix acts like a
Karhunen-Loeve expansion, as projecting onto the DFT matrix
effectively whitens and sparsifies the channel. Thus, if the BS
and the user both apply their respective WBS and WMS as the
BF matrices, then we can obtain the effective channel:

Heff(f) = WH
BSH(f)WMS =

L∑
l=1

HT
v (l)e

−j2πfτl . (5)

Inspection of (5) reveals that selecting the optimal beams, i.e.,
the DFT columns that yield largest-power projections into the
AoA/AoD angular bins, is equivalent to seeking the entries of
Heff(f) with the highest power.

Notations: In this paper, we use | · |, ‖·‖ and ‖·‖F to denote
the amplitude of a scalar, the `2-norm of a vector, and the
Frobenius norm of a matrix, respectively. Also, given a set A,
we use |A| to denote its cardinality.

A. Problem Formulation

We refer to the received signal strength (RSS), multipath
delays, (azimuth) AoA bins and AoD bins, corresponding to
rl = |αl|2, τl, θl’s and φl’s respectively, as features. Note that
the BS can observe parameters {rl, τl, θl}Ll=1 subject to its
observation resolution but not their φl’s since these can only
be observed at the user side. Thus, an interesting question
arises: Can the BS extract features that are only available at
the user side, based on what the BS observes?

While the answer to the question might not be straight-
forward, let us rethink how the parameters {rl, τl, θl, φl}Ll=1

are generated. As introduced in Sec. I, given a specific
area, they are obtained via measuring the signals that travel
through the environment where the locations of buildings and
constructions are fixed3. Hence, they are actually correlated
among themselves.

In this paper, we explore a machine learning approach
to resolve the problem above. In particular, we design and
evaluate four distinct neural network models. For each model,
we design its corresponding input using the RSS, multipath
delays, or their combined use. To enable the machine learning
approach, we train and test the models with ray-tracing chan-
nel data collected by NTT DOCOMO Research Labs from

2Without specifying the bandwidth, we consider the observed delay at the
BS can take continuous values by assuming the resolution is infinitely large.

3The blocking issue is important especially on higher frequency bands, but
for simplicity it is not considered in this paper.



120 meters 

150  
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Fig. 1: Shinjuku, Tokyo, Japan (The region for study is
150m×120m, bounded by the longitude interval [139.7039,
139.7056] and the latitude interval [35.6880, 35.6894].)

Fig. 2: A multilayer neural network with two hidden layers.

Shinjuku Square in Tokyo, Japan. Specifically, as shown in
Fig. 1, we consider a 150m×120m area where there are 13
BSs, 13609 user spots located on a grid, and the distance
between any two adjacent user spots on the grid is one meter.
For the multipath channel between each BS and each user, the
collected measurements on 28GHz carrier frequency include
the number of paths, the RSS and delay of each path, the
(azimuth) AoA and AoD per path (as well as some additional
propagation properties such as the number of reflections and
diffractions per path).

III. MACHINE LEARNING PRELIMINARIES

In this section we introduce several basic concepts for later
use, and then describe how to construct the neural network
inputs based on the available data introduced in Sec. II-A.

A. Function Approximation with Neural Networks

The problem above can be recast as function approxima-
tion where the goal is to approximate an unknown mapping
f : X → Y from a set of parameters X : {rl, τl, θl}Ll=1

to another set Y : {φl}Ll=1. In fact, function approximation
by employing neural networks has been used extensively
in various contexts for learning complicated and non-linear
functions such as [16]. In particular, as established in [16],
any function can be approximated up to arbitrary accuracy by
a neural network with two hidden layers, as shown in Fig. 2.
Note that each neuron in the hidden and output layers receives
an affine transformation (linear combination) of the neurons’
values in the preceding layer, and passes it through a nonlinear
activation function such as ReLu, sigmoid and tanh functions.
Given enough amount of data, the network can be trained by
using the well-known backpropagation algorithm [17].

B. Features Representation

An important aspect of formulating the problem of interest
as a supervised learning problem involves constructing appro-
priate feature representations for the input and output of the
neural network.

Let (x,y) denote the input-output pair of a data sample for
training the neural network, where x is an NBS × 1 vector, y
is an NMS × 1 vector, and each entry corresponds to one of
their DFT columns. Note that all the entries of x and y should
be very close to zero, except for those corresponding to the
multipath components, i.e., the selected DFT columns indices
for beam selection, with significant power. Consider for in-
stance the example in Fig. 3. Suppose that with the angular
resolution offered by its NBS = 6 ULA the BS can distinguish
3 paths, falling into the 2nd, 4th, and 5th sectors/bins. A 6× 1
feature vector can be created where the corresponding 2nd, 4th,
5th entries are features of the associated paths, such as delays
or RSSs, appropriately renormalized. In particular, in the case
where RSS values are used as features, first the minimum and
the maximum RSS values (in dB) in the data set, rmin and
rmax, are obtained. For an RSS value of r dB, the entered
value in the feature vector is (r− rmin)/(rmax− rmin), while
zeros are entered for all empty bins. In the case where path
delay values are used as features, again the minimum and
the maximum path delays in the data set, τmin and τmax, are
obtained. For a path delay value of τ , the entered value in the
feature vector is (τ − τmin)/(2τmax − τmin). In addition, the
value 1 (corresponding to a fictitious delay of 2τmax indicating
non-existent paths) is entered for all empty bins.

At the user, the angular resolution is lower, since it has a
smaller array than the BS. In the example depicted in Fig. 3, all
the paths fall in two angular bins at the user, and in particular
two paths fall into the 2nd bin, and the other path falls into
the 4th bin. Thus, we obtain a 4 × 1 column vector first
where the corresponding 2nd and 4th entries are the feature
of delay or RSS. Next, we convert this 4 × 1 vector into
another indication vector, where the 2nd and the 4th entries are
replaced by 1, indicating the beam index at the user having that
AoD component. During the training phase, this information is
extracted from the training data set in the form of input-output
vector pairs and is used to train the parameters of the neural
network. During the testing phase, the trained neural network
is fed an input x to obtain the estimated output f(x). We can
then evaluate the performance of the trained neural network by
comparing the estimate f(x) to the actual output y across the
test data set using appropriately chosen performance metrics.
Fig. 4 illustrates the coupling in the representations of each
input-output pair shown in Fig. 3. Clearly, a user’s features can
be packed into a matrix where the rows (columns) correspond
to the AoA (AoD) angular bins of all the associated paths.

IV. ANALYSIS OF THE NEURAL NETWORK MODEL

In this section, we first conduct correlation analysis on the
features representation that we constructed in Sec. III-B for
our ray-tracing data by borrowing the concepts of entropy
and mutual information from information theory, so that we
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Fig. 4: A graphical illustration of the coupling between input
and output feature representations.

Fig. 5: Correlation between the input X and the output Y :
(left) H(Y |X), (middle) I(Y ;X), and (right) I(Y ;X)/H(Y ),
as functions of NBS (the dimension of the DFT codebook).

can ensure the formulated learning-based inference problem
is feasible. Then, we specify a neural network architecture to
formulate the estimation problem as an optimization problem.
Finally, we introduce the statistical metrics based on which
the neural network performance is evaluated.

A. Correlation Analysis

Let the random variables X and Y denote the input and the
output feature vectors described in Sec. III-B. Their mutual
information is given by I(Y ;X) = H(Y )−H(Y |X). To see
the mutual information compared to H(Y ), we can calculate
I(Y ;X)/H(Y ), which represents the extent of measuring in-
formation bits contained in Y given X . Clearly, its value falls
into the regime [0,1], and the boundaries 0 and 1 correspond
to the two extreme cases of independent and fully dependent
on one another, respectively. Recall that in our formulations,
X is an NBS × 1 vector, and Y is an NMS × 1 vector.

Based on our ray-tracing data, in Fig. 5 we show the values
of I(Y ;X), H(Y |X) and I(Y ;X)/H(Y ) as functions of
NBS, i.e., the number of virtual angle bins at the BS, by fixing
NMS = 10 as an example. Several interesting observations can
be made from Fig. 5. First, in the leftmost sub-figure, H(Y |X)

TABLE I: Neural network architecture.
Layer Layer Size Activation Function

Input layer 100 nodes −
Hidden layer 1 50 neurons Sigmoid
Hidden layer 2 20 neurons Sigmoid

Output layer 10 neurons Linear

decreases as NBS increases. Intuitively, this is because when
the antenna resolution at the BS is higher, the BS ability to
resolve multipaths improves. Next, in the middle one, I(Y ;X)
grows larger when NBS increases, since H(Y |X) decreases.
Finally, in the rightmost one, I(Y ;X)/H(Y ) increases and
is very close to 1 (≈ 0.97) when NBS = 120. Intuitively, it
implies that when NBS increases, Y becomes more predictable
from X due to the higher antenna resolution.

B. Neural Network Optimization

Having verified the correlation between the input and the
output of the model, we proceed to formulating the estimation
problem as an optimization problem and subsequently building
a neural network solver. In this paper we restrict our attention
to neural networks with only two hidden layers4. In addition,
the other parameters of the neural network are summarized in
Table I. Note that the activation function of the output layer
is chosen to be linear, because we are solving a regression
problem (to estimate the RSS or the delay over AoD bins),
and linear transformation is more capable of capturing a wide
range of the output values5.

As shown in Table I, the neural network consists of the
input layer l = 0, two hidden layers l = 1, 2 and the output
layer l = 3. Let W[l,l−1] denote the weight matrix from
layer l − 1 to layer l and bl denote the bias at the neurons
in layer l. In addition, we use Dt = {(x(n)

t ,y
(n)
t )}Ntn=1 and

Dv = {(x(n)
v ,y

(n)
v )}Nvn=1 to denote the training and the test

sets, respectively, where Nt = |Dt| and Nv = |Dv| and
Dt ∩ Dv = ∅. Moreover, let hW,b(x

(n)
t ) denote the output

of the neural network in response to the input x
(n)
t . Hence,

the cost function during the training phase can be written as

J(W,b)=
1

Nt

Nt∑
n=1

∥∥hW,b(x(n)
t )−y(n)

t

∥∥2+ λ

2

3∑
l=1

∥∥W[l,l−1]
∥∥2

F
, (6)

where W= {W[l,l−1]}3l=1, b= {bl}3l=1, λ is the regulariza-
tion factor, and ‖·‖F is the Frobenius norm. Training the model
involves optimizing the weights W and the bias b through
iterations of the backpropagation algorithm. In this paper, the
backpropagation algorithm is implemented using the iterative
batch gradient descent optimization algorithm [18].

C. Statistical Performance Metrics
To assess the estimation performance of the optimized

neural network, we define the following statistical metrics:

4Although in principle neural networks with three or more layers are surely
worth investigating as solvers for the types of problems we consider in this
paper, in the context of the ray tracing data set upon which we based our
study two-hidden layer neural networks performed sufficiently well.

5If we model the output as a multi-task classification problem where for
each task (for each AoD bin), we determine if there exists a path, then the
sigmoid function can be chosen as the activation function of the output layer.



St ,
1

Nt − 1

Nt∑
n=1

∥∥y(n)
t − yt

∥∥2, (7)

ηv ,
1

Nv

Nv∑
n=1

∥∥y(n)
v − yt

∥∥2, (8)

ηNN ,
1

Nv

Nv∑
n=1

∥∥y(n)
v − hW,b(x(n)

v )
∥∥2. (9)

Note that St in (7) denotes the sample variance of the output
vectors y

(n)
t in Dt, where yt ,

1
Nt

∑Nt
n=1 y

(n)
t is the sample

average of the output vectors y
(n)
t in Dt; ηv in (8) is the

average deviation of the output y(m)
v in the test set Dv from

yt; and ηNN in (9) represents the empirical approximation of
the mean squared error of the trained neural network estimator
when applied to the samples in the test set Dv .

Based on (7) and (8), we further define another metric

ρv , ηv/St. (10)

It can be seen that ρv measures how well the training data set
sample average yt estimates the output vectors in the test set
Dv on average, were it to be taken as a coarse estimator of the
output vectors in Dv . That is, yt can be viewed as a benchmark
for performance assessment of any other estimator. Defined as
such, ρv > 1 is expected, since the training set sample mean
yt is not identical to the sample average of the test data set,
which minimizes the mean squared error. Moreover, a ρv value
close to 1 is an indication of the “closeness” of the statistical
distributions of the output vectors in the training and test sets.
Thus, if ρv is close to 1, the model that learns the desired
mapping based on the samples in Dt would likely be a good
estimator of the outputs in Dv , despite not being exposed to
the samples therein during training.

In addition, based on (9) and (7), we define the last metric

ρNN , ηNN/St. (11)

If the statistical similarity between the data in the training
and test sets is sufficiently large (i.e., ρv → 1 ), then ρNN is
expected to be positive and less than 1. The smaller ρNN, the
more predictable and reliable the trained estimator is likely to
be when applied to the new data samples that are not used to
train the model. Thus, the combined use of ρv and ρNN helps
assess the estimation performance of our model.

Finally, we also employ the widely used receiver operating
characteristic (ROC) curves to statistically evaluate the perfor-
mance of the optimized neural network based estimator. This
is because correct prediction of a dominant AoD bin on the
user side can be viewed as correct detection whereas incorrect
identification of an unfavorable AoD bin as a dominant one
can be declared as false alarm. For brevity, we use PD and
PF to denote their probabilities, respectively.

V. SIMULATIONS

In this section, we present a statistical performance based
evaluation of the neural network techniques we developed.
Each neural network was trained and tested using the data
collected at BS 8 only (represented by the red dot in Fig. 1),

TABLE II: Statistical assessment of the estimation accuracy
of the optimized neural network models.

Optimized NN ρv ρNN
NNr 1.0002 0.5735
NNτ 1.0002 0.6579
NNseq 1.0002 0.5246
NNr,τ 1.0002 0.5597

which is roughly located at the center of the network and thus
can observe a wider angular range. The data set was randomly
partitioned into the training set (10% of total samples) and
the test set (90% of total samples)6. Based on the correlation
analysis in Sec. IV-A, we choose NBS = 100 (the size of the
DFT codebook at the BS) and NMS = 10 (the size of the DFT
codebook at the MS). With half-wavelength spaced ULAs at
28GHz, this corresponds to apertures of roughly 53cm and
4.8cm at the BS and the user terminal, respectively.

Given an observed path at the BS, we need to select the
most promising bin at the user side from which that path most
likely originated. Recall that the entries in the output vector
are either 0 or 1, indicating the angular bins at the MS (see
Fig. 3). Meanwhile, at the BS, the input vector indicates the
(normalized) RSS values or the delays in the corresponding
entries. Using the features representation introduced in Sec.
III-B, we train and evaluate the four distinct neural network
schemes, that differ in terms of their inputs:

1) Each entry of the input vector contains the (normalized)
RSS value of the associated angular path. Let NNr refer
to the neural networks trained as such.

2) Each entry of the input vector is given by the delay of
the associated angular path. Let NNτ refer to the neural
networks trained as such.

3) We sequentially train multiple neural networks. Specif-
ically, the outputs of NNr and NNτ are fed to another
neural network as inputs. Let us refer to this concate-
nated neural network architecture as NNseq.

4) We concatenate the two 100 × 1 input vectors to NNr
and NNτ to form a 200× 1 vector, which are then fed
into a neural network to estimate the outputs. We denote
the neural network trained as such by NNr,τ .

The results of the four schemes above are presented in Table
II. First, it can be seen that ρv = 1.0002 is promising in
the sense that learning the desired mapping from Dt could
potentially lead to accurate estimations. Next, the comparison
between the ρNN values for NNr and NNτ demonstrates that
for the specific ray-tracing data we have, the RSS, at the BS,
i.e., the rl’s, turn out to be the more reliable predictors of
the AoD than the delay, i.e., the τl’s. Our finding differs from
what is observed in location estimation problems, where delay
based method outperform RSS-based ones, especially in the
presence of large bandwidths. It would be worth evaluating and
comparing these networks with real-world measurements, as
opposed to ray-tracing data which are systematically generated
by the ray-tracing simulator.

6Such a partition approach is used for showing the simulation curves
only. In the experiments, we partitioned the collected data into 95% of total
samples) for training 5% for testing to obtain better results.
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Fig. 6: ROC curves for various estimation schemes (The
horizontal and vertical axes represent the false alarm and
detection probabilities, PF and PD, respectively).

Furthermore, as shown in Table II, when we combine both
the RSSs and the path delays as the input to both NNseq and
NNr,τ , the estimation accuracy improves with respect to both
NNr and NNτ . This is quite intuitive as incorporating more
information into the estimation model should, in principle, lead
to better estimation performance. Also, note that the structures
of the last two neural networks where the RSS and delay
features are in the combined use as the input feature are not
exactly identical to the first two neural networks in terms of
the number of neurons or layers. This motivates us to explore
better neural networks with the input features in future.

Fig. 6 shows the ROC performance of all the schemes under
investigation. In addition, the curve marked “SA” in the figure
shows the ROC performance of the sample average of the
output vectors (i.e., yt) in the training data set. The sample
average can be viewed as a baseline benchmark for the 4
schemes of interest, as it is obtained by using the marginal
distribution of the output in case that we do not have any
access to the input features.

As shown in Fig. 6, the ROC curves of the other 4 schemes
all lie above the sample average curve. Subject to any fixed
and small false alarm probability (e.g., PF = 0.1), they all
have higher detection probability than the benchmark, which
means that they all outperform the sample average (i.e., black-
squared “SA”) benchmark estimator. In addition, as shown
in the embedded sub-figure, the networks of NNr (i.e., red-
colored “RSS”), NNseq (i.e., blue-colored “Seq”) and NNr,τ
(i.e., green-colored “both”) are all capable of detecting the
target beams with at least 90% probability (PD ≥ 0.9) while
producing occasional false alarm probability no more than
10% (PF ≤ 0.1). Finally, the ROC curve of NNτ (i.e., black-
colored “Delay”) lies beneath the other three curves. This con-
firms our earlier observation from Table II that solely relying
on path delay information leads to less accurate estimation.

VI. CONCLUSIONS

In this paper, we investigated the problem of predicting
wireless channel features that are not directly observable at
a BS, based on directly observable features and machine
learning driven by large amounts of channel data from the

BS’s geographical area. In particular, we focused on estimating
the dominant virtual angular beams at the user side based
on features directly observed at the BS side, such as AoA-
specific path RSSs and delays. We developed four learning-
based schemes and demonstrated that they can resolve the
features of interest with reasonable accuracy by using ray
tracing data from Shinjuku Square. Several interesting direc-
tions are worthy of further investigation. Training and testing
the proposed learning-based estimation schemes with real-
world measurement data is necessary to assess their viability
in practice. In addition, exploring other machine-learning
architectures and then developing beam-selection algorithms
are also goals worth pursuing.
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