
ar
X

iv
:1

80
4.

02
08

7v
1

 [
cs

.I
T

]
 6

 A
pr

 2
01

8

Low Complexity Secure Code (LCSC) Design for

Big Data in Cloud Storage Systems

Mohsen Karimzadeh Kiskani†, Hamid R. Sadjadpour† , Mohammad Reza Rahimi‡ and Fred Etemadieh‡

Abstract—In the era of big data, reducing the computational
complexity of servers in data centers will be an important goal.
We propose Low Complexity Secure Codes (LCSCs) that are
specifically designed to provide information theoretic security
in cloud distributed storage systems. Unlike traditional coding
schemes that are designed for error correction capabilities, these
codes are only designed to provide security with low decoding
complexity. These sparse codes are able to provide (asymptotic)
perfect secrecy similar to Shannon cipher. The simultaneous
promise of low decoding complexity and perfect secrecy make
these codes very desirable for cloud storage systems with large
amount of data. The design is particularly suitable for large size
archival data such as movies and pictures. The complexity of
these codes are compared with traditional encryption techniques.

Index Terms—Distributed Cloud Storage Systems, Information
Theoretic Security, Big Data

I. INTRODUCTION

In the era of big data, it is becoming increasingly inefficient

to apply traditional cryptographical algorithms to securely

store data. The traditional methods of providing security

require significant computational power and are not well

optimized for big data applications.

For instance, Hypertext Transfer Protocol Secure (HTTPS)

protocol which is the backbone of internet security uses the

Transport Layer Security (TLS) protocol stack in Transmission

Control Protocol / Internet Protocol (TCP/IP) for secure and

private data transfer. TLS is a protocol suite that uses a myriad

of other protocols to guarantee security. Many of these sub-

protocols consume a lot of CPU power and are complex

processes which are not optimized for big data applications.

For instance, TLS uses public-key cryptography paradigms

to exchange the keys between the communicating parties

through the TLS handshake protocol. One of the well-known

key-exchange algorithms that is used in TLS handshaking

protocol is the RSA algorithm. With the typical modular expo-

nentiation algorithms used to implement the RSA algorithm,

public-key operations take quadratic computations, private-key

operations take cubic computations and key generation takes

quartic computations with respect to the number of bits in

the modulus. After the key-exchange, TLS uses TLS record

protocol and algorithms like Advanced Encryption Standard

(AES), which is the current adopted algorithm by the U.S.

National Institute of Standards and Technology (NIST) for the

M. K. Kiskani† and H. R. Sadjadpour† are with the Department of
Electrical Engineering, University of California, Santa Cruz. Email: {mohsen,
hamid}@soe.ucsc.edu.

M. R. Rahimi‡ and Fred Etemadieh‡ are with Futurewei Technologies,
Santa Clara, CA. Email: {reza.rahimi, fred.etemadieh}@huawei.com.

encryption of electronic data, to form block ciphers for fixed

block sizes of 128 bits. Each 128 bits of data therefore needs

to undergo AES calculations to be transformed to ciphertexts.

Albeit all the effort to enhance the performance of such

algorithms, todays secure cryptographic protocols are not well

suited in big data applications as they need to perform a

significant number of computations. Such unnecessary CPU

processing time and power renders cloud service providers

to spend significant resources to maintain their secure cloud

services.

On the other hand, most of current cryptographic algorithms

are based on computational security paradigms. In compu-

tational security, it is inherently assumed that the man-in-

the-middle is unable to perform complex computations and

it does not have infinite processing time for cryptanalysis.

Such algorithms are vulnerable to attacks in time and they

may be broken by novel deciphering algorithms. For instance,

Data Encryption Standard (DES) which, prior to AES, was the

official Federal Information Processing Standard (FIPS) in the

U.S. is no longer considered to be secure.

With a focus on reducing the decryption complexity, we

propose a completely new security paradigm for archival data

in distributed cloud systems. Reduced decryption complexity

ensures that a significant amount of redundant processing

power for security purposes is avoided. This saves significant

amount of resources for cloud service providers. Further, we

prove that the proposed solution is information theoretically

secure as opposed to computationally secure. Information

theoretic secrecy guarantees that our solution is secure re-

gardless of the computational power of the adversary and the

cryptanalysis time.

Our method is based on random sparse codes that are specif-

ically designed for security purposes. The sparsity of these

codes allows the decryption which is done on the clouds to be

a low complexity operation. Further, the specific design of our

codes allows us to achieve security using the randomness of

the encryption operations. Our method is optimized to work

with large number of files that need to be archived. We prove

that larger number of files will result in more secure solutions.

Our method asymptotically achieves perfect secrecy posed by

Shannon in [1]. In cases when the number of files is not

very large, our method is still capable of achieving a level

of obfuscation that is desirable for many applications such as

storing private images and videos.

The rest of the paper is organized as follows. Section II

is dedicated to the related works in security of distributed

storage systems and also the works on utilizing codes for

security purposes. The assumptions and problem formulation

http://arxiv.org/abs/1804.02087v1

2

are described in section III. In section IV we will prove that at

least one dense encoding scheme exists that results in a secure

solution and in section V we will examine the security of our

approach. The complexity analysis and simulation results are

provided in section VI and the paper is concluded in section

VII.

II. RELATED WORKS

Secure transmission of data is usually implemented at higher

layers of network. Recently, there is a significant interest

in studying physical layer security. Physical layer security

assumes that all receivers, both legitimate and eavesdropper,

possess the same complete knowledge of the transmission

technique. The main idea is based on the original idea that

there is a transmitter (Alice) who wants to transmit data to a

legitimate receiver (Bob) while an eavesdropper (Eve) tries to

listen to this communication and obtain the information. In this

scenario, Alice can adopt any kind of encoding, modulation

or even randomization before transmission but both Bob and

Eve are aware of the transmission technique being used by

Alice. Therefore, if there is no noise or channel impairment,

an eavesdropper can perfectly decode the message. Wyner in

1975 [2] proved that in case of noisy wiretap channels, Alice

can encode the message so that it reveals no information to

the Eve. An important parameter in wiretap channel is the

secrecy capacity. Secrecy capacity is defined as the highest

transmission rate that data can be transmitted in a wiretap

channel such that Eve cannot decode any information and its

probability of error stays close to 0.5.

After the Wyner paper, many researchers started to study

the wiretap channel capacity for different scenarios. Also

achieving that capacity was another research objective in many

publications. Many researchers [3]–[10] studied the use of

error correcting codes for wiretap channels and other types

of networks.

In this paper, we are deviating from this common approach

and investigating a completely different problem. Suppose

Alice has some data that wants to store in a cloud storage

system. However, Alice does not want the cloud storage

system to be able to access this data. Therefore, if this data

is accessed by Eve, no information can be obtained from the

stored data. Further, when this information that is stored by

Alice in the cloud is wiretapped by Eve during transmission,

no useful information can be obtained by her. Note that we also

assume that no encryption technique is used and only coding

schemes are utilized to protect the data. There are some prior

work that attempted to use existing coding schemes to address

this issue.

Some papers use fountain codes [11] for content retrieval.

The advantages of coding in caching and storage systems

have been shown in our previous works in [12]–[19]. The

application of fountain codes in distributed storage systems

was also studied in [20]. Other types of erasure codes have

been extensively used in storage systems. Maximum Distance

Separable (MDS) codes are widely used in storage systems

[21], [22] due to their repair capabilities . However, certain re-

quirements are needed to secure the applications that use these

codes. Authors in [23] also studied the security of distributed

storage systems with MDS codes. Pawar et al. [24] studied

the secrecy capacity of MDS codes. The authors in [25],

[26] also proposed security measures for MDS coded storage

systems. Shah et al. [27] proposed information-theoretic secure

regenerating codes for distributed storage systems. Rawat et

al. [28] used Gabidulin codes on top of MDS codes to propose

optimal locally repairable and secure codes for distributed

storage systems. Unlike all of the references [20]–[28], this

paper studies the use of sparse vectors to design codes to

provide security for distributed storage systems. We will show

that these codes can be effectively used to attain asymptotic

perfect secrecy.

Kumar et al. [29] have proposed a construction for re-

pairable and secure fountain codes. Reference [29] achieves

security by concatenating Gabidulin codes with Repairable

Fountain Codes (RFC). Their specific design allows to use

Locally Repairable Fountain Codes (LRFC) for secure repair

of the lost data. Unlike [29] which has focused on the security

of the repair links using concatenated codes, the current paper

provides security for the data storage by only using sparse

vectors without any additional code usage such that perfect

secrecy is achieved.

Network coding schemes has been shown to be very ef-

ficient from a security point of view. Cai and Young [30]

showed that network coding can be used to achieve perfect

secrecy. Bhattad et al. [31] studied the problem of “weakly

secure” network coding schemes in which even without perfect

secrecy, no meaningful information can be extracted from

the network. Subsequent to [31], Kadhe et al. studied the

problem of weakly secure storage systems in [32], [33]. Yan

et al. also proposed [34], [35] algorithms to achieve weak

security and also studied weakly secure data exchange with

generalized Reed Solomon codes. In our method, when using

sparse vectors to design codes for cloud storage systems, the

messages are encoded by combining them with each other

to create the ciphertext. Hence, the ciphertext will not be

independent of the message and the Shannon criteria may not

be valid. Therefore it may be intuitive to think that these codes

can only achieve weak security as opposed to perfect security.

We will show that our unique code construction results in

asymptotic perfect secrecy.

As far as we know, in all previous works in literature,

researchers use existing codes that were originally designed

for error correction and used/modified it for security purposes.

In this paper, we pose the following questions. “Can we design

a code specifically for security of stored data in cloud storage

systems?” More specifically, since we will face the problem of

large quantities of data being generated in the cloud, “can we

design a code that has significantly lower computational com-

plexity for decoding as compared to commonly used encryption

techniques? The immediate benefit from such approach would

be significant reduction on the number of servers needed

to maintain contents securely in the cloud because of the

reduction on the computational complexity associated with

recovering the data. Note that the new code design may not

have any error correcting capabilities. It means that commonly

used codes such as MDS codes [31] can be used to protect

3

the data. Another benefit of this approach is that even the

cloud storage provider is unable to access the contents which

provides a level of privacy for users to store their data in

the cloud. Clearly, if the cloud storage provider is unable to

access the contents, any eavesdropper who is listening to the

communication between the user (Alice) and the cloud (Bob),

cannot obtain any useful information.

Our final goal is to demonstrate that perfect secrecy as

defined by Shannon in [1] can be achieved without any need to

store keys. Note that the original approach of Shannon cipher

system [1] is not practical since for each bit of information,

we need to store one bit of key which practically doubles

the storage capacity requirement. We demonstrate that without

generating any key, it is feasible to achieve perfect secrecy

asymptotically. Since in this work we generate equivalent of

key by means of combining of contents together (encoding

function), it is clear that this encoding function cannot be

shared by Alice with the cloud or Eve. This is one fundamental

difference between this work and common problem of wiretap

channel. One can consider this as the private key that is

generated by Alice to secure the contents and won’t be shared

with anyone.

III. PROBLEM FORMULATION

Assume that a user wants to store files f1, f2, . . . , fm on a

cloud system where each file has Q bits, i.e. fi ∈ F2Q . We

assume that these are archival data and extension of this work

to non-archival data remains as future work. The m×1 vector

that represents all files is denoted by f = [f1 f2 . . . fm]T .

A. Encoding

The user encodes these files using an encoding matrix A

of size l×m (where l ≥ m) and creates1 an encoded vector

of l coded files as b = Af . Assume that the elements of A

belong to the Galois Field F2. The user has a storage space

of size h << l and saves h of these encoded contents locally

and uploads the rest of them on the cloud. These h encoded

contents act similar to the key in traditional cryptography. Let

c be a vector of size (l − h) × 1 showing all the encoded

contents stored on the cloud and u be a vector of size h× 1
representing all the encoded contents saved on the user storage

such that2

b =

[

c

u

]

. (1)

B. File Retrieval

To retrieve a content, we need to solve linear equations in

Galois Field F2. The cloud contains l−h coded files in c and

the user stores h coded files in u locally. When the legitimate

user wants to download any of the contents, the application

that runs by the user should solve the linear equation

Af = b, (2)

1Assume that an encoding peice of software is running on the user which
does all of this processing.

2Note that each row of vector b contains Q bits and for simplicity of
presentation, we use vector representation.

in Galois Field F2 to be able to respond to the download

request by the user. Since l > m, the linear equation in (2)

has many solutions. Let the decoding matrix D be one of these

solutions. This matrix can be split in two smaller matrices Dc

of size m× (l− h) and Du of size m× h denoting the cloud

and user decoding matrices respectively. Therefore, the m× l
decoding matrix D could be used to retrieve the files as

f = Db =
[

Dc Du

]

[

c

u

]

= Dcc+Duu. (3)

Notice that in equation (3), the first contributing term is

computed on the cloud data and the second contributing term is

calculated from the user stored data. It is important to notice

that cloud only gets the matrix Dc and therefore it is not

capable of decoding the data on its own. In the subsequent

section we will show that the user contributing part Duu acts

similar to the key and is crucial to secure decoding.

C. Low Complexity Secure Code (LCSC) Design

Our goal is to propose an encoding strategy such that A

will be full rank with high probability and the rows of the

matrix A are fairly dense. Further, we want to ideally have a

relatively sparse decoding matrix D. We will use the density of

the encoding matrix A for security purposes and the sparsity

of the decoding matrix D for low complexity decoding. In

other words, we want the columns of the encoding matrix D

to be sparse so that few cloud operations would be enough to

retrieve a content while the rows of the matrix A are dense

such that a relatively large number of files get encoded together

to enhance the security of our system.

From the definition of the decoding matric D we have

DA = Im, (4)

where Im is the m×m identity matrix. If ai is the ith column

of matrix A, then equation (4) results in the following linear

equation in F2

Dai = ei, (5)

where ei is a vector of all zeros except at the ith position.

For each column of matrix A, e.g. ai, the Hamming weight

of these vectors define the density of the encoding matrix A.

We will compute the density of A using the Hamming weight

of all vectors ai.

In this paper, we start with a sparse decoding matrix D

and we will show that an encoding matrix A exists such that

the number of 1s in each row of the encoding matrix A is

proportional to Θ(m). To prove this, let’s denote

A = [a1, a2, . . . , am], (6)

where each ai is an l × 1 column vector. We will show that

an encoding matrix A exists such that each ai will have

a Hamming weight of Θ(l). Notice that the vector ai is a

solution to the linear equation in (5) in F2.

Definition 1. A random vector w = (ω1, ω2, . . . , ωm)T ∈ Fm
2

is called σ-sparse if all of its elements are independent of each

other and we have

P[ωi = 1] =
1

2
(1− σ)

4

P[ωi = 0] =
1

2
(1 + σ). (7)

Assume that l independent σ-sparse vectors d1,d2, . . . ,dl

are the columns of the decoding matrix D. In other words, let

D = [d1,d2, . . . ,dl]. (8)

In the next section, we will compute the density of the

encoding matrix A.

IV. EXISTENCE OF A DENSE ENCODING MATRIX

In order to compute the density of the encoding matrix A,

we first prove the following useful lemmas.

Lemma 1. For a vector x ∈ Fl
2 with Hamming weight k, we

have

P[Dx = ei | wt(x) = k] = 2−m
(

1− σk
) (

1 + σk
)m−1

.
(9)

Proof. Since the Hamming weight of x is equal to k, this

means that k vectors from the set of all vectors d1,d2, . . . ,dl

are added together to create ei. Let’s denote these vectors by

de1 ,de2 , . . . ,dek . Let d
ej
i denote the ith element of vector

dej . Since the vectors de1 ,de2 , . . . ,dek are independent and

their elements are also mutually independent, using binary

summation over F2 we have

P[Dx = ei|wt(x) = k] = P[

k
∑

j=1

d
ej
i = 1]

m
∏

l′=1
l′ 6=i

P[

k
∑

j=1

d
ej
l′ = 0].

(10)

We can easily prove that

P[

k
∑

j=1

d
ej
i = 1] =

1

2
(1− σk) (11)

To prove this, we can use induction on k. Equation (7) shows

that it is valid for the base case k = 1. Assume that it is valid

for k − 1. We have

P[

k
∑

j=1

d
ej
i = 1] = P[deki = 1]P[

k−1
∑

j=1

d
ej
i = 0]

+ P[deki = 0]P[

k−1
∑

j=1

d
ej
i = 1] =

1

2
(1− σ)

1

2
(1 + σk−1)

+
1

2
(1 + σ)

1

2
(1− σk−1) =

1

2
(1− σk) (12)

Similarly, using induction on k and equation (7) we can also

prove that

P[

k
∑

j=1

d
ej
l′ = 0] =

1

2
(1 + σk). (13)

Hence, equation (10) can be simplified to

P[Dx = ei | wt(x) = k] = 2−m
(

1− σk
) (

1 + σk
)m−1

Definition 2. Let F l ⊆ Fl
2 be the subset of all vectors in Fl

2

with a Hamming weight of at least l
2 .

We will prove that with probability close to one a solution of

equation (5) belongs to F l. To find bounds on the probability

that ei is spanned by d1,d2, . . . ,dl we define a new random

variable Yi and an indicator function 1i(x) as follows

Definition 3. Let Yi denote the number of vectors x ∈ F l

such that Dx = ei.

Definition 4. Let 1i(x) be an indicator function which is equal

to 1 if Dx = ei and equal to 0 otherwise.

Lemma 2. If D = [d1 d2 . . . dl], then the average number

of vectors x ∈ F l such that Dx = ei is equal to

E[Yi] = 2−m

l
∑

j= l
2

(

l

j

)

(

1− σj
) (

1 + σj
)m−1

. (14)

Proof. For every x ∈ F l, we have Yi =
∑

x∈F l 1i(x) and

E[Yi] =
∑

x∈F l P[Dx = ei]. Using the result of Lemma 1 and

taking the summation over all values of k proves the lemma.

Lemma 3. We have, E[Y 2
i] ≤ E[Yi] + E

2[Yi].

Proof. Since Yi =
∑

x∈F l 1i(x) we have

E[Y 2
i] = E

∑

x1∈F l

∑

x2∈F l

1i(x1)1i(x2)

=
∑

x1∈F l

∑

x2∈F l

E[1i(x1)1i(x2)] =
∑

x1∈F l

P[Dx1 = ei]

+
∑

x1∈F l

∑

x2∈F l

x1 6=x2

P[Dx1 = ei]P[Dx2 = ei] = E[Yi]

+ (E[Yi])
2
−

∑

x1∈F l

(P[Dx1 = ei])
2
≤ E[Yi] + E

2[Yi].

Lemma 4. The probability that ei is the summation of at least

k vectors in d1,d2, . . . ,dl is lower bounded by

P[∃x ∈ F l s.t. Dx = ei] ≥
1

1 + 1
E[Yi]

. (15)

Proof. Since Yi is a non-negative integer random variable,

from the second moment method in probability theory we have

P[Yi > 0] ≥
E2[Yi]

E[Y 2
i]

. (16)

Hence, using Lemma 3 we have

P[∃x ∈ F l s.t. Dx = ei] = P[Yi > 0] ≥
E2[Yi]

E[Y 2
i]

≥
1

1 + 1
E[Yi]

Lemma 5. For any 0 < α < 1, we have

1

l + 1
2lH(α) ≤

(

l

αl

)

≤ 2lH(α), (17)

5

where H(α) denotes the entropy, i.e., H(α) = −α log2(α)−
(1− α) log2(1 − α).

Proof. The proof can be found in the appendix of [36].

Theorem 1. Let the vectors d1,d2, . . . ,dl be σ-sparse ran-

dom vectors belonging to F
m
2 such that their average Hamming

weight is asymptotically non-zero, i.e.

lim
m→∞

E[wt(di)] =
1

2
lim

m→∞
m(1− σ) = c1 > 0. (18)

If l = m(1 + ǫ) where ǫ > 0 is an arbitrary constant with

respect to m, then with a probability close to one, at least one

solution of equation (5) belongs to F l for large m.

Proof. Consider a base vector ei for i = 1, 2, . . . ,m. Using

Lemmas 2 and 5 we have

E[Yi] ≥ 2−m

(

l
l
2

)

(1− σ
l
2)(1 + σ

l
2)m−1

≥
2l−m

l + 1
(1− σ

l
2)(1 + σ

l
2)m−1 ≥

2l−m

l + 1
(1− σ

l
2).

Since limm→∞ E[wt(di)] = c1 > 0 we have

lim
m→∞

σ
l
2 = lim

m→∞

(

1− 2
c1
m

)
1

2
m(1+ǫ)

= e−c1(1+ǫ)

Hence, for large m we have

E[Yi] ≥ 2mǫ 1

m(1 + ǫ) + 1

(

1− e−c1(1+ǫ)
)

.

Therefore,

lim
m→∞

1

E[Yi]
≤ lim

m→∞

1

2mǫ 1
m(1+ǫ)+1

(

1− e−c1(1+ǫ)
) = 0

Using Lemma 4 we have

lim
m→∞

P[∃x ∈ F l s.t. Dx = ei] ≥ lim
m→∞

1

1 + 1
E[Yi]

= 1.

This proves that with a probability approaching one, when

m → ∞ and l = m(1 + ǫ) then at least one solution to

equation (5) belongs to F l.

The above argument proves that if l = m(1 + ǫ) for some

ǫ > 0, then at least one of the solutions of the equation (5)

will have a Hamming weight of l
2 . Hence, for any σ-sparse

decoding matrix D, at least one encoding matrix A exists

such that all of its columns will have a Hamming weight of
l
2 . Therefore, the average Hamming weight of the rows of

matrix A will be equal to m
2 which means that at least one

encoding matrix exists that on average has dense rows.

V. SECURITY

In this section, we will use the results of section IV to

achieve perfect secrecy. Let A be an l × m dense encoding

matrix which has a sparse decoding matrix D. As proved in

section IV, the rows of this matrix will have on average m
2 non-

zero elements. Therefore, we can prove the following lemma,

Lemma 6. If the number of non-zero elements of an encoding

vector increases with the number of files m, then the asymp-

totic distribution of bits of the encoded files tend to uniform.

Proof. This proof is given as Lemma 4 in [16].

We will now use equation (3) to analyze the security of

our approach. Let fc = Dcc and fu = Duu denote the

contributions from the cloud and the user for data retrieval.

Then using module two addition we can re-arrange equation

(3) to

fc = f + fu. (19)

Cloud sends fc from the cloud to the user and this informa-

tion is subject to eavesdropping. Equation (19) is similar to

Shannon cipher problem [1]. In Shannon cipher, an encoding

function e : M × K → C is mapping a message M ∈ M

and a key K ∈ K to a codeword C ∈ C. In this problem,

the message f is encoded by the key fu and the ciphertext fc
is created and transmitted through the channel. We want to

examine the criteria for achieving perfect secrecy using the

above cipher. The following theorem provides the necessary

and sufficient condition to obtain perfect secrecy in Shannon

cipher system.

Theorem 2. If |M| = |K| = |C|, a coding scheme achieves

perfect secrecy if and only if

• For each pair (M,C) ∈ (M × C), there exists a unique

key K ∈ K such that C = e(M,K).
• The key K is uniformly distributed in K.

Proof. The proof can be found in section 3.1 of [37].

We will use Theorem 2 to prove that our approach can

achieve asymptotic perfect secrecy.

Theorem 3. If h grows with m such that m < 2h, then

the proposed encoding scheme provides asymptotic perfect

secrecy against any eavesdropper wiretapping the communi-

cation between the cloud and the user.

Proof. We formulated this problem as a Shannon cipher

system assuming that M = f , K = fu, and C = fc. The

condition m < 2h ensures that a unique key exists for each

requested message. Therefore, for any pair (m,C) ∈ (M,C),
a unique key K ∈ K exists such that C = m + K. Further,

we are guaranteed to have |M| = |K| = |C|. Notice that the

key K = fu belongs to the set of all possible bit strings with

Q bits. Lemma 6 proves that each encoded file is uniformly

distributed among all Q-bit strings. Hence each key which

is a unique summation of such encoded files is uniformly

distributed among the set of all Q-bit strings. In other words,

regardless of the distribution of the bits in files, fu can be

any bit string with equal probability for large values of m.

Therefore, the conditions in Theorem 2 are met and perfect

secrecy is achieved.

VI. COMPLEXITY ANALYSIS AND SIMULATIONS

In this section, we will compare the complexity of our

proposed algorithm with the complexity of AES algorithm

which is the standard cryptographic algorithm adopted by

NIST in the U.S. and is a part of TLS and HTTPS protocols.

AES is a block cipher with a block length of 128 bits.

AES encryption consists of 10 rounds of processing for a

6

128-bit key with 128 bit block ciphers. Initially, the key

needs to undergo a KeyExpansion phase in which 10 different

keys are created from the original key. Among many other

operations, the KeyExpansion phase needs at least 50 byte

XOR operations to create new keys. After this phase, the

AES algorithm runs 10 rounds of operations each with a

separate key that is generated in the KeyExpansion phase. Each

round of processing includes one single-byte based substitu-

tion step (SubBytes), a row-wise permutation step (ShiftRows),

a column-wise mixing step (MixColumns), and the addition of

the round key (AddRoundKey). The order in which these four

steps are executed is different for encryption and decryption.

In the AddRoundKey step the input text is XORed with the

key and the same thing happens during decryption. The goal

of ShiftRows and MixColumns steps is to scramble the byte

order inside each 128-bit block. All of these steps require a

lot of operations which result in a large number of sequential

operations either for decoding and encoding. Some of these

operations are summarized in Table I.

Table I compares the number of operations in our proposed

algorithm with the number of operations in the AES algorithm

to justify the significant improvement of our approach over

the AES algorithm in terms of computational complexity.

As can be seen from this table, at least a total of 5268 bit

XOR operations are performed on a 128 block. Therefore, the

number of per-bit XOR operations will be equal to 41.125

bit XOR operations in AES decryption algorithm. Notice that

all of these steps in AES algorithm are done in sequential

order and this will induce significant delays on AES encryption

while out technique requires one-time XOR operation at the

data center.

Sparse decoding in our method allows us to perform the

decoding with m 1
2 (1−σ) XOR operations. Therefore for m =

128, our approach requires 64(1 − σ) XOR operations for

decoding. This table clearly shows that our proposed algorithm

significantly reduces the number of per-bit XOR operations

from 41.125 to 4 XOR operations in case when σ = 15/16. It

also does not require any other operations. Also, our proposed

decoding operation does not inflict significant delay on the

system.

TABLE I
COMPLEXITY COMPARISON

Algorithm No. of operations

KeyExpansion step in AES Algorithm 40 byte row shifts
50 byte table look-ups
50 byte XOR operations

AddRoundKey step in AES Algorithm 16 byte XOR operations

SubBytes step in AES Algorithm 16 byte table look-ups

ShiftRows step in AES Algorithm 12 byte row shifts

MixColumns step in AES Algorithm 48 byte XOR operations
64 byte table look-ups

Total number of byte XOR
operations in AES decryption 658 byte XOR operations

Total number of bit XOR
operations in AES decryption 5268 bit XOR operations

Total number of per-bit XOR
operations in AES 41.125 XOR operations

Total number of per-bit XOR
operations in our sparse algorithm
with σ = 15/16 = 0.9375 4 XOR operations

10 20 30 40 50 60 70 80 90 100
Number of files m

0

10

20

30

40

50

60

A
ve

ra
ge

 d
en

si
ty

 o
f t

he
 p

se
ud

o-
in

ve
rs

e
m

at
rix

Average density of the pseudo-inverse matrix

 = 0.5
 = 0.6
 = 0.7
 = 0.8
 = 0.9

Fig. 1. Average density of the encoding matrix versus the number of files
for different sparse decoding matrices.

Figure 1 shows our simulation results. In this figure, we

have plotted the average density of the encoding matrix for

different number of files m and different values of sparsity

index σ. The case of σ = 0.5 is equivalent to random uniform

decoding matrices which is not sparse. As we can see form

this plot, when σ = 0.5 the average Hamming weight of

the encoding matrix is equal to m
2 for different values of

m. This is intuitively expected due to the symmetry and

non-sparsity of the problem. When σ becomes larger than

0.5, the decoding matrix D becomes sparser which results

in better decoding complexity and lower number of XOR

operations. As can be seen from Figure 1, the average density

of the encoding matrix becomes less than m
2 in this case.

However, the simulation results confirm our theoretical results

that regardless of the value of σ, i.e. regardless of the degree

of sparsity of the decoding matrix when m goes to infinity, the

average Hamming weight of the encoding matrix approaches

the dense value of m
2 . Figure 1 shows that for σ = 0.6 and

m > 10, or when σ = 0.7 and m > 40, or when σ = 0.8
and m > 60, then the average density of the encoding matrix

is close to m
2 . Further, as can be seen from this plot, when

σ = 0.9 the average density of the encoding matrix slowly

approaches m
2 as m goes to infinity.

VII. CONCLUSIONS

In this paper, we have proposed a radically different ap-

proach for providing secure low complexity storage solutions

for cloud systems. Our method is specifically suited for big

data applications when a large number of archival files needs

to be stored on the cloud. We proved that our method is

capable of achieving asymptotic perfect secrecy and through

simulations and numerical studies have shown that it is compu-

tationally more efficient than today’s cryptographic algorithms

which are not well optimized to handle very large number of

files.

We do not claim that this approach can replace encryption

for all applications. For example, the decoding instruction that

is exchanged between the user and cloud can be encrypted first

before transmission. However, this approach can be a good

7

alternative for archival data stored in cloud storage systems.

Future work will focus on studying the security properties of

this approach for finite values of m. Extension of this work

to other types of data is also desirable. This work was mainly

focused on decoding properties of these codes but it may be

useful to investigate low encoding complexity secure codes.

ACKNOWLEDGEMENT

The authors would like to acknowledge the generous support

of Huawei Technologies in funding this research. This research

is supported by Huawei Technology North America through

award number TETF-9402566.

REFERENCES

[1] Claude E Shannon. Communication theory of secrecy systems. Bell
Labs Technical Journal, 28(4):656–715, 1949.

[2] Aaron D Wyner. The wire-tap channel. Bell Labs Technical Journal,
54(8):1355–1387, 1975.

[3] Yingxian Zhang, Aijun Liu, Chao Gong, Guanpeng Yang, and Sixiang
Yang. Polar-LDPC concatenated coding for the awgn wiretap channel.
IEEE Communications Letters, 18(10):1683–1686, 2014.

[4] Willie K Harrison and Steven W McLaughlin. Physical-layer security:
Combining error control coding and cryptography. In Communications,

2009. ICC’09. IEEE International Conference on, pages 1–5. IEEE,
2009.

[5] Mohsen Karimzadeh Kiskani, Bita Azimdoost, and Hamid R Sadjadpour.
Effect of social groups on the capacity of wireless networks. IEEE

Transactions on Wireless Communications, 15(1):3–13, 2016.
[6] Mohsen Karimzadeh Kiskani, Hamid Sadjadpour, and Mohsen Guizani.

Social interaction increases capacity of wireless networks. In Wireless

Communications and Mobile Computing Conference (IWCMC), 2013

9th International, pages 467–472. IEEE, 2013.
[7] Mohsen Karimzadeh Kiskani and Babak Hossein Khalaj. Novel power

control algorithms for underlay cognitive radio networks. In Systems

Engineering (ICSEng), 2011 21st International Conference on, pages
206–211. IEEE, 2011.

[8] Mohsen Karimzadeh Kiskani, Babak Hossein Khalaj, and Shahin Vak-
ilinia. Delay qos provisioning in cognitive radio systems using adaptive
modulation. In Proceedings of the 6th ACM workshop on QoS and

security for wireless and mobile networks, pages 49–54. ACM, 2010.
[9] Saeed Vahidian, Sonia Aı̈ssa, and Sajad Hatamnia. Relay selection

for security-constrained cooperative communication in the presence of
eavesdropper’s overhearing and interference. IEEE Wireless Communi-

cations Letters, 4(6):577–580, 2015.
[10] Mohammad-Parsa Hosseini, Hamid Soltanian-Zadeh, Kost Elisevich,

and Dario Pompili. Cloud-based deep learning of big EEG data for
epileptic seizure prediction. In Signal and Information Processing
(GlobalSIP), 2016 IEEE Global Conference on, pages 1151–1155. IEEE,
2016.

[11] David JC MacKay. Fountain codes. IEE Proceedings-Communications,
152(6):1062–1068, 2005.

[12] Mohsen Karimzadeh Kiskani and Hamid R Sadjadpour. Throughput
analysis of decentralized coded content caching in cellular networks.
IEEE Transactions on Wireless Communications, 16(1):663–672, 2017.

[13] Mohsen Karimzadeh Kiskani and Hamid Sadjadpour. Application of in-
dex coding in information-centric networks. In Computing, Networking

and Communications (ICNC), 2015 International Conference on, pages
977–983. IEEE, 2015.

[14] Mohsen Karimzadeh Kiskani and Hamid R. Sadjadpour. Secure coded
caching in wireless ad-hoc networks. In International Conference on

Computing, Networking and Communications (ICNC), January 2017.
[15] Mohsen Karimzadeh Kiskani and Hamid Sadjadpour. Secure and private

cloud storage systems with random linear fountain codes. In IEEE

Conference on Cloud and Big Data Computing (CBDCom), August
2017.

[16] Mohsen Karimzadeh Kiskani and Hamid R Sadjadpour. A secure
approach for caching contents in wireless ad hoc networks. IEEE

Transactions on Vehicular Technology, 66(11):10249–10258, 2017.
[17] Mohsen Karimzadeh Kiskani and Hamid R Sadjadpour. Capacity

of cellular networks with femtocache. In Computer Communications

Workshops (INFOCOM WKSHPS), 2016 IEEE Conference on, pages
9–14. IEEE, 2016.

[18] Mohsen Karimzadeh Kiskani and Hamid R Sadjadpour. Multihop
caching-aided coded multicasting for the next generation of cellular
networks. IEEE Transactions on Vehicular Technology, 66(3):2576–
2585, 2017.

[19] Mohsen Karimzadeh Kiskani, Zheng Wang, Hamid R Sadjadpour,
Jose A Oviedo, and Jose Joaquin Garcia-Luna-Aceves. Opportunistic
interference management: a new approach for multiantenna downlink
cellular networks. Wireless Communications and Mobile Computing,
15(14):1837–1850, 2015.

[20] Alexandros G Dimakis, Vinod Prabhakaran, and Kannan Ramchandran.
Distributed fountain codes for networked storage. In Acoustics, Speech

and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE

International Conference on, volume 5, pages V–V. IEEE, 2006.
[21] Alexandros G Dimakis, P Brighten Godfrey, Yunnan Wu, Martin J

Wainwright, and Kannan Ramchandran. Network coding for distributed
storage systems. IEEE Transactions on Information Theory, 56(9):4539–
4551, 2010.

[22] Alexandros G Dimakis, Kannan Ramchandran, Yunnan Wu, and
Changho Suh. A survey on network codes for distributed storage.
Proceedings of the IEEE, 99(3):476–489, 2011.

[23] Theodoros K Dikaliotis, Alexandros G Dimakis, and Tracey Ho. Se-
curity in distributed storage systems by communicating a logarithmic
number of bits. In Information Theory Proceedings (ISIT), 2010 IEEE

International Symposium on, pages 1948–1952. IEEE, 2010.
[24] Sameer Pawar, Salim El Rouayheb, and Kannan Ramchandran. On

secure distributed data storage under repair dynamics. In Information

Theory Proceedings (ISIT), 2010 IEEE International Symposium on,
pages 2543–2547. IEEE, 2010.

[25] Sameer Pawar, Salim El Rouayheb, and Kannan Ramchandran. Securing
dynamic distributed storage systems against eavesdropping and adver-
sarial attacks. IEEE Transactions on Information Theory, 57(10):6734–
6753, 2011.

[26] Sameer Pawar, Salim El Rouayheb, and Kannan Ramchandran. Securing
dynamic distributed storage systems from malicious nodes. In Informa-
tion Theory Proceedings (ISIT), 2011 IEEE International Symposium

on, pages 1452–1456. IEEE, 2011.
[27] Nihar B Shah, KV Rashmi, and P Vijay Kumar. Information-

theoretically secure regenerating codes for distributed storage. In Global
Telecommunications Conference (GLOBECOM 2011), 2011 IEEE, pages
1–5. IEEE, 2011.

[28] Ankit Singh Rawat, Onur Ozan Koyluoglu, Natalia Silberstein, and
Sriram Vishwanath. Optimal locally repairable and secure codes for
distributed storage systems. IEEE Transactions on Information Theory,
60(1):212–236, 2014.

[29] Siddhartha Kumar, Eirik Rosnes, and Alexandre Graell i Amat. Secure
repairable fountain codes. IEEE Communications Letters, 20(8):1491–
1494, 2016.

[30] Ning Cai and Raymond W Yeung. Secure network coding. In Infor-

mation Theory, 2002. Proceedings. 2002 IEEE International Symposium
on, page 323. IEEE, 2002.

[31] Kapil Bhattad, Krishna R Narayanan, et al. Weakly secure network
coding. NetCod, Apr, 104, 2005.

[32] Swanand Kadhe and Alex Sprintson. On a weakly secure regenerating
code construction for minimum storage regime. In Communication, Con-

trol, and Computing (Allerton), 2014 52nd Annual Allerton Conference

on, pages 445–452. IEEE, 2014.
[33] Swanand Kadhe and Alex Sprintson. Weakly secure regenerating codes

for distributed storage. In Network Coding (NetCod), 2014 International

Symposium on, pages 1–6. IEEE, 2014.
[34] Muxi Yan, Alex Sprintson, and Igor Zelenko. Weakly secure data

exchange with generalized reed solomon codes. In Information Theory

(ISIT), 2014 IEEE International Symposium on, pages 1366–1370. IEEE,
2014.

[35] Muxi Yan and Alex Sprintson. Algorithms for weakly secure data
exchange. In Network Coding (NetCod), 2013 International Symposium

on, pages 1–6. IEEE, 2013.
[36] David J. C. MacKay. Good error-correcting codes based on very sparse

matrices. IEEE Trans. Information Theory, 45(2):399–431, 1999.
[37] Matthieu Bloch and Joao Barros. Physical-layer security: from informa-

tion theory to security engineering. Cambridge University Press, 2011.

	I Introduction
	II Related Works
	III Problem Formulation
	III-A Encoding
	III-B File Retrieval
	III-C Low Complexity Secure Code (LCSC) Design

	IV Existence of a Dense Encoding Matrix
	V Security
	VI Complexity Analysis and Simulations
	VII Conclusions
	References

