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Abstract—Due to the massive number of devices in the M2M
communication era, new challenges have been brought to the
existing random-access (RA) mechanism, such as severe preamble
collisions and resource block (RB) wastes. To address these
problems, a novel sparse message passing (SMP) algorithm is
proposed, based on a factor graph on which Bernoulli messages
are updated. The SMP enables an accurate estimation on the
activity of the devices and the identity of the preamble chosen
by each active device. Aided by the estimation, the RB efficiency
for the uplink data transmission can be improved, especially
among the collided devices. In addition, an analytical tool is
derived to analyze the iterative evolution and convergence of
the SMP algorithm. Finally, numerical simulations are provided
to verify the validity of our analytical results and the significant
improvement of the proposed SMP on estimation error rate even
when preamble collision occurs.

I. INTRODUCTION

Providing efficient support for Machine-to-Machine (M2M)

communications and services is one of the major objectives in

the evolution of cellular networks towards the fifth generation

(5G). It is anticipated that the number of M2M devices

would exceed 50 billion by 2020 [1]. Attempts to access

cellular networks from such a huge number of M2M devices

can lead to severe congestion in the existing random-access

(RA) mechanism. Furthermore, the M2M applications, such

as smart city, smart metering, e-health, fleet management

and intelligent transportation, are generally characterized

by small-sized data intermittently transmitted by a massive

number of M2M devices. Specifically, these M2M devices

would be activated with a low probability and stay off-line

after data transmission [2][3]. This implies that the RA

process in M2M communication exhibits prominent features

of massiveness and sparseness.

Several grant-free schemes employed compressed sensing

(CS) algorithms to exploit the sparseness feature and

accomplish the activity detection or the joint estimation

of channel and device activity for M2M communications.

For example, a block CS algorithm [4] was proposed for

distributed device detection and resource allocation based

on the clustering of devices. A greedy algorithm based on

orthogonal matching pursuit was proposed in [5] for the user

activity detection and channel estimation. The same task as

in [5] was accomplished by a modified Bayesian compressed

sensing algorithm [6] for the cloud radio access network. The

powerful approximate message passing (AMP) algorithm [7]

was studied for the joint user activity detection and channel

estimation problem when the base station (BS) is equipped

with one single antenna [8][9] or multiple antennas [10].

As an alternative, contention-based RA schemes inherently

exhibit outstanding detection performances due to the

orthogonal preambles. However, the massiveness of M2M

communications poses severe overload of the physical random

access channel (PRACH) and preamble collisions. Several

solutions were proposed for the PRACH overload [11]-[13].

Furthermore, the preamble collision was dealt with either

by increasing the number of available preambles [14] or

by reusing the preambles [15]. An early preamble collision

detection scheme was proposed in [16] based on tagged

preambles which could avoid resource block (RB) wastes

caused by collisions as well as monitor the RA load.

An accurate estimation of the preambles chosen by

each device offers helpful information to the uplink data

transmission. Resource-friendly transmission techniques, such

as NOMA, can be employed among the collided devices

to improve the RB efficiency. However, to the best of our

knowledge, there are few works that deal with the estimation

of the collided devices. Aided by the message passing

algorithm (MPA), it is possible for the base station (BS) to

perform accurate estimations even if collision occurs.

The MPA is renowned for its application in decoding

low-density parity-check (LDPC) codes [17] and CS [7].

In addition, the graph-based MPA is also applied for the

Gaussian Message Passing Iterative Detector (GMPID) in

massive MU-MIMO systems [18] and the MIMO-NOMA

systems [19]. In this paper, we propose a sparse message

passing (SMP) algorithm targeting on estimating the user-

preamble indicator matrix at the first step of the RA process.

Although it is similar to the Belief Propagation (BP) decoder

[17] and GMPID [18], the SMP exhibits the following major

differences and advantages.

The SMP inherits the low complexity of the MPA by

departing the overall processing into distributed calculations

that can be executed in parallel. Bernoulli messages are

updated on the factor graph, which is different from the

GMPID. Furthermore, check nodes (CNs) and sum nodes

(SNs) of the SMP follow different update rules from BP

decoders. Despite the fact that the RA estimation is a special

case of the sparse recovery problem, the major difference

between the SMP and other existing solutions such as the
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AMP is that the SMP algorithm considers the CN constraint

in every iteration, i.e., only one preamble can be chosen

by an activated device. Furthermore, the AMP algorithm

may not be preferred for large dynamic systems since an

inappropriately tuned threshold function may lead to sharply

deteriorated performance [20].

The contributions of this paper are summarized as follows.

(i) A SMP algorithm is proposed for the RA system to

estimate the activity of the devices and the identity of the

preamble chosen by each active device.

(ii) A factor graph for the SMP is presented to illustrate

the message update rules for different type of nodes.

(iii) An analytical tool is derived to analyze the iterative

evolution of the messages, which illustrates the impacts of

system parameters and the convergence of the SMP algorithm.

II. SYSTEM MODEL

We consider a single cell centered by a BS in a cellular

wireless network with the following assumptions. The number

of M2M devices is far greater than that of human-to-human

(H2H) devices in the cell. The BS is equipped with M
antennas while each device is with one single antenna. The

channel between each device and the BS is a slow time-

varying block fading TDD (time division duplex) channel,

so that the uplink channel matrix is identical to that of the

downlink. There are Ns devices, each of which is activated

with probability pa. Np preambles with length Nc are assigned

to the RA system. At the start of a RA slot, each active device

randomly selects a preamble with equal probability 1/Np.

The received signal of the l-th antenna at the time instant t
can be written as

ytl =

Ns−1∑

i=0

Np−1∑

j=0

hlisijP
t
j + nt

l , (1)

where hli is the channel gain from the i-th device to the l-
th antenna, P t

j is the t-th symbol of the j-th preamble for

t = 0, 1, . . . , Nc−1 and sij is the user-preamble indicator, i.e.,

sij = 1 if the i-th device selects the j-th preamble. Otherwise,

sij = 0. Rewriting (1) in a matrix form, we have

YM×Nc
= HM×Ns

SNs×Np
PNp×Nc

+NM×Nc
, (2)

where N is an i.i.d additive Gaussian noise matrix with

variance σ2
n. S is an user-preamble indicator matrix. The

probability that a certain row of S has just one “1” is pa
while the probability for each entry ssp to be 1 is

p0 = Pr (ssp = 1) = pa/Np. (3)

P is an Np × Nc preamble matrix, each row of which rep-

resents a preamble. Generally, Zadoff-Chu sequences [16] are

employed as RA preambles due to their ideal auto-correlation

property, i.e., PPH = NcI, where INP×NP
is an identity

matrix. With this property, we can rewrite (2) to

Ȳ=N−1
c YPH =N−1

c HSPPH+N−1
c NPH =HS+N̄. (4)

Fig. 1. Factor graph of sparse message passing for random-access estimation.

The system model can be further simplified by introducing

a little ambiguity,

YM×Np
= HM×Ns

SNs×Np
+NM×Np

, (5)

where N ∼ NM×Np(0, σ2
n/Nc). The channel matrix H is

assumed known to the BS, which is a practical assumption

in the TDD-based wireless access system. Therefore S is the

only target for our estimation.

III. MESSAGE PASSING FOR INDICATOR MATRIX

ESTIMATION

In Fig. 1, we present a factor graph for the SMP algorithm,

on which Bernoulli messages are updated for each entry in

the indicator matrix S. As shown, a SN ymp is the received

signal of the m-th antenna with respect to the p-th preamble,

a variable node (VN) ssp represents the p-th entry of the s-th

row in S while the CNs stand for the check node constraints

for each device. The message updating diagram among SNs,

CNs and VNs is illustrated in Fig. 2. The output message is

defined as the extrinsic information which, according to the

rule of message passing, is derived by the incoming messages

from the other edges that are connected to the same node.

A. Message Update at Sum Nodes

Each SN can be seen as a multiple-access process and the

message update at the mp-th SN for the sp-th VN is presented

as an example in Fig. 2(a). Firstly, the received signal ymp at

the mp-th SN can be rewritten to

ymp = hmsssp +
∑

i∈Ns/s

hmisip + nmp

= hmsssp + n∗
mps(τ). (6)

where s ∈ Ns for Ns = {1, . . . , Ns}, m ∈ M for

M = {1, . . . ,M} and p ∈ Np for Np = {1, . . . , Np}.

We assume that pvssp→mp(τ) denotes the non-zero probability

for the Bernoulli variable ssp passing from the sp-th VN



Fig. 2. Message update at the sum nodes, check nodes and variable nodes. The message passed on each edge are the non-zeros probabilities of the Bernoulli
variables in the user-preamble indicator matrix S. The output message called extrinsic information is derived by the messages on the other edges that are
connected with the same node.

to the mp-th SN in the τ -th iteration. Based on the central

limit theorem, n∗
mps(τ) can be approximated as an equivalent

Gaussian noise with mean u∗
mps(τ) and variance v∗mps(τ),





u∗
mps(τ)=

∑
i∈Ns/s

hmip
vs
ip→mp(τ),

v∗mps(τ)=
∑

i∈Ns/s

h2
mip

vs
ip→mp(τ)q

vs
ip→mp(τ)+σ2

n,
(7)

where pvsip→mp(τ) and qvsip→mp(τ) are the non-zero and zero

probabilities for the Bernoulli variable sip passed from the

ip-th VN to the mp-th SN. Then the extrinsic message

psmp→sp(τ) from the mp-th SN to the sp-th VN is

psmp→sp(τ) =

[
1 +

Pr
(
ssp = 0|ymp, hm, pvsmp,∼sp(τ)

)

Pr
(
ssp = 1|ymp, hm, pvsmp,∼sp(τ)

)
]−1

=

[
1 +

Pr
(
ymp = n∗

mps(τ)|u∗
mps(τ), v

∗
mps(τ)

)

Pr
(
ymp = hms + n∗

mps(τ)|u∗
mps(τ), v

∗
mps(τ)

)
]−1

=

[
1 +

f
(
ymp|u∗

mps(τ), v
∗
mps(τ)

)

f
(
ymp|u∗

mps(τ) + hms, v∗mps(τ)
)
]−1

.

(8)

where hm is the m-th row of H, pvs
mp,∼sp(τ) is the set of

Bernoulli probabilities {pvsip→mp(τ)|i ∈ Ns/s} and f(x|u, v)
is the probability density function of a Gaussian distribution

N (u, v), i.e.,

f (x|u, v) = 1√
2πv

e−
(x−u)2

2v . (9)

To avoid overflow caused by a large number of multipli-

cations of probabilities, we put the Bernoulli messages in the

form of log-likelihood ratio (LLR).

lsmp→sp(τ)=log
psmp→sp(τ)

qsmp→sp(τ)
=
2(ymp−u∗

mps(τ))hms−h2
ms

2v∗mps(τ)
. (10)

B. Message Update at Variable Nodes

Each VN can be seen as a broadcast process and the

extrinsic message from the VN is derived following the

message combination rule [21], i.e., the extrinsic message is

a normalized product of the input probabilities.

1) Message update for the sum nodes: The message update

from the sp-th VN to the mp-th SN is presented as an example

in Fig. 2(d). The extrinsic message is derived by the initial

probability p̄sp of each VN, the incoming message from the

s-th CN pcs→sp(τ) and the messages from the jp-th SN with

j ∈ M/m. According to the message combination rule, the

extrinsic message from the sp-th VN to the mp-th SN is

pvssp→mp(τ+1)=Pr(ssp = 1|ps
sp,∼mp(τ), p

c
s→sp(τ), p̄sp)

(a)
=

p̄spp
c
s→sp(τ)

∏
j∈M/m

psjp→sp(τ)

p̄sppcs→sp(τ)
∏

j∈M/m

psjp→sp(τ)+q̄spqcs→sp(τ)
∏

j∈M/m

qsjp→sp(τ)

(b)
=

p0p
c
s→sp(τ)

∏
j∈M/m

psjp→sp(τ)

p0pcs→sp(τ)
∏

j∈M/m

psjp→sp(τ)+q0qcs→sp(τ)
∏

j∈M/m

qsjp→sp(τ)
,

(11)

where ps
sp,∼mp(τ) = {psjp→sp(τ)|j ∈ M/m}. Equation (a)

is derived by the normalized product of the input Bernoulli

probabilities and (b) is obtained by p̄sp = p0 and q̄sp = q0.

2) Message update for the check nodes: Similarly, in Fig.

2(c), the extrinsic message update of ssp from the sp-th VN

to the s-th CN is derived by the initial probability p̄sp and the

messages passing from the mp-th SN where m ∈ M.

pvcsp→s(τ + 1) = Pr(ssp = 1|ps
sp(τ), p̄sp)

(c)
=

p̄sp
∏

m∈M

psmp→sp(τ)

p̄sp
∏

m∈M

psmp→sp(τ) + q̄sp
∏

m∈M

qsmp→sp(τ)

(d)
=

p0
∏

m∈M

psmp→sp(τ)

p0
∏

m∈M

psmp→sp(τ) + q0
∏

m∈M

qsmp→sp(τ)
,

(12)

where ps
sp(τ) = {psmp→sp(τ)|m ∈ M}. Equation (c) is

derived by the normalized product of the input Bernoulli

probabilities and (d) is obtained by p̄sp = p0 and q̄sp = q0.

Similarly, the extrinsic LLR messages from the VNs are




lvssp→mp(τ + 1) =
∑

j∈M/m

lsjp→sp(τ) + l̄sp + lcs→sp(τ),

lvcsp→s(τ + 1) =
∑

m∈M

lsmp→sp(τ) + l̄sp,
(13)

with lcs→sp(τ) = log(pcs→sp(τ)/q
c
s→sp(τ)), l̄sp = log(p̄sp/q̄sp)

and lsjp→sp(τ)=log(psjp→sp(τ)/q
s
jp→sp(τ)).

C. Message Update at Check Nodes

The s-th CN represents a constraint for the corresponding

VNs that an VN ssp = 1 if and only if the s-th device is active

and the other VNs ssk = 0 for any k ∈ Np/p. As illustrated in

Fig. 2(b), the extrinsic message from the s-th CN to the sp-th



VN is derived by the initial activation probability pa for this

device and the incoming messages from the sk-th VN with

k ∈ Np/p. The message update is presented as

pcs→sp(τ)=Pr(ssp=1|pa, pvc
s,∼p(τ))=pa Π

k∈Np/p
qvcsk→s(τ), (14)

where pvc
s,∼p(τ) = {pvcsk→s(τ)|k ∈ Np/p}. The extrinsic LLR

message lcs→sp(τ) from the s-th CN is derived by

l̃cs→sp(τ) = log
(
pcs→sp(τ)

)

= log(pa)−
∑

k∈Np/p

log(el
vc
sk→s(τ) + 1), (15)

lcs→sp(τ) = − log
(
e−l̃cs→sp(τ) − 1

)
. (16)

D. Output and Decision

The final output Bernoulli message for each VN is derived

by all the incoming messages.

p̂sp(τ)=

p0p
c
s→sp(τ) Π

m∈M
psmp→sp(τ)

p0pcs→sp(τ) Π
m∈M

psmp→sp(τ)+q0q
c
s→sp(τ) Π

m∈M
qsmp→sp(τ)

. (17)

The output LLR message for each Bernoulli variable ssp is

l̂sp(τ) =
∑

m∈M

lsmp→sp(τ) + l̄sp + lcs→sp(τ). (18)

Then the final decision for each Bernoulli variable is given by

ŝsp =

{
1, if l̂sp ≥ 0

0, if l̂sp < 0
(19)

Therefore, Ŝ = [ŝsp]Ns×Np
is the final estimate.

IV. ANALYSIS FOR ITERATIVE EVOLUTION

In this section, the iterative evolution of the messages passed

among the SNs, VNs and CNs are analyzed while each node in

the factor graph can be considered as a processor. The analysis

is analogous to the density evolution (DE) [17] which is widely

employed for analyzing LDPC codes in the asymptotic regime.

Furthermore, we take the blunt assumption that the LLR

messages are independently and identically distributed (i.i.d).

Unfortunately, the Gaussian assumption (GA) and consistency

condition employed to simplify the DE analysis do not hold for

our system model. As an alternative, only the mean of the LLR

messages is tracked, which could still guarantee an effective

insight for the performance of the proposed SMP algorithm.

Unlike the DE for LDPC codes where all transmitted bits are

assumed to be +1, there are two types of VNs, i.e. the chosen

VNs (ssp = 1) and those that are not chosen (ssp = 0). The

chosen VNs are referred to as “positive” since the outcoming

and incoming LLR messages for such VN processors are

assumed positive while the other VNs are referred to as

“negative” for similar reasons.

A. Analysis for Variable Node Processors

According to the i.i.d assumption, we derive the expectation

of equation (13) while omitting the original subscript. For

positive and negative VN processors, we have
{

E[lvs+ (τ)] = (M − 1)E[ls+(τ)] + l̄sp + E[lc+(τ)],

E[lvc+ (τ)] = ME[ls+(τ)] + l̄sp.
(20)

{
E[lvs− (τ)] = (M − 1)E[ls−(τ)] + l̄sp + E[lc−(τ)],

E[lvc− (τ)] = ME[ls−(τ)] + l̄sp.
(21)

Note that the subscripts + and − indicate the VN type.

E[lvs(τ)] and E[lvc(τ)] are the mean of the LLR messages

passing from VNs to SNs and CNs while E[ls(τ)] and

E[lc(τ)] are the mean of the LLR messages passed to VNs

from SNs and CNs respectively.

B. Analysis for Check Node Processors

The message passing from an active CN processor to a

positive VN is derived by the incoming messages from Np−1
negative VNs. Therefore, according to (15) and (16), we have

E[l̃c+(τ)] ≈ log(pa)− (Np − 1) log(eE[lvc
−

(τ)] + 1), (22)

E[lc+(τ)] ≈ − log(e−E[l̃c+(τ)] − 1). (23)

The message passing from an active CN processor to

a negative VN is derived by the incoming messages from

Np − 2 negative VNs and 1 positive VN,

{
E[l̃c−ac(τ)]≈ log(pa)−(Np−2)log(eE[lvc

−
(τ)]+1)−log(eE[lvc+ (τ)]+1),

E[lc−ac(τ)]≈− log(e−E[l̃c
−ac(τ)] − 1),

(24)

where “−ac” indicates that the CN is active while the VN is

negative. The LLR passed to a negative VN from an inactive

CN is derived by the messages from Np − 1 negative VNs,
{
E[l̃c−ina(τ)]≈ log(pa)−(Np−1) log(eE[lvc

−
(τ)]+1),

E[lc−ina(τ)]≈− log(e−E[l̃c
−ina(τ)]−1),

(25)

where “−ina” indicates that the CN is inactive while the VN is

negative. The mean of the LLR messages from CNs to negative

VNs is averaged by the activation probability pa,

E[lc−(τ)] = paE[lc−ac(τ)] + (1− pa)E[lc−ina(τ)]. (26)

C. Analysis for Sum Node Processors

We assume that the channel gain is i.i.d, i.e., hmi ∼ N (0, 1)
and derive the expectation of (10) for a positive VN.

E[ls+(τ + 1)]

(e)
= E



2(hmsssp −

∑
i∈Ns/s

hmip
vs
ip→mp(τ))hms − h2

ms

2
∑

i∈Ns/s

h2
mip

vs
ip→mp(τ)(1 − pvsip→mp(τ)) + 2σ2

n




(f)
= E







∑

i∈Ns/s

2

2+e−lvs
ip→mp

(τ)+el
vs
ip→mp

(τ)
+2σ2

n




−1



(g)≈
(

2(Ns − 1)p0

2+e−E[lvs+(τ)]+eE[lvs+(τ)]
+

2(Ns − 1)(1− p0)

2+e−E[lvs
−
(τ)]+eE[lvs

−
(τ)]

+2σ2
n

)−1

.

(27)



 

. 

. 

A 

B 

Fig. 3. Numerical results on the impacts of system parameters Ns, Np , SNR, pa and M .

where (e) is obtained from (7) and the distributions of hmi and

nmp, (f) is obtained from the facts that ssp =1 for positive

VNs, E[h2
mi] = 1 and pvssp→mp(τ) = 1/(1 + e−lvssp→mp(τ)).

Approximation (g) is derived from the fact that the Ns − 1
independent incoming messages lvsip→mp(τ) are passed from

Ns−1 VNs, each of which is positive with probability p0 and

negative with probability 1− p0.

We can derive E[ls−(τ+1)] for negative VNs by substituting

ssp = 0 into (27) and observe the symmetry property,

E[ls−(τ + 1)] = −E[ls+(τ + 1)]. (28)

Finally a generalization of (20), (21), (23), (26), (27) and

(28) would complete our analysis on the iterative evolution.

D. Impacts of System Parameters

According to (28), lsmp→sp is chosen to demonstrate the

message evolution due to its symmetry for positive and neg-

ative VNs. The numerical results in Fig. 3 are illustrated in

the form of an extrinsic information transfer (EXIT) chart [17]

where the a priori and extrinsic LLRs refer to the input and

output of a SN processor respectively.

1) Impacts of Ns, Np and pa: Ns, Np and pa influence

the device activity or collision probability, and thus they pose

similar impacts on the SMP performance. As depicted in Fig.

3(a), (c) and (e) respectively, when the system is not congested,

an open tunnel exists for the extrinsic LLR to converge to the

upper-right point. However, severe congestion may close the

tunnel and cause divergence. To elaborate on the divergent

case, the extrinsic LLR curve for Ns = 15000 in Fig. 3(a) is

replotted in Fig. 3(b) where arrows in different colors indicate

an endless loop of the successive iterations. Therefore we

conclude that divergence occurs if i) an interval [A,B] exists

where the extrinsic LLR curve lies below the line y = x and

ii) the maximal value before point A is greater than A.

2) Impacts of SNR and Nc: According to (5), the equivalent

Gaussian noise matrix is N ∼ NM×Np(0, σ2
n/Nc). Therefore

SNR (i.e. σ2
n) and Nc impact the estimation performance in a

similar way, as shown in Fig. 3(d). Note that, unlike Ns, Np

and pa, SNR affects the value of the fixed point, which can be

explained via the approximation (g) in (27) since 2σ2 would

be the dominant term after several iterations.

3) Impact of M : A larger number of antennas could offer

more information to the VN processor. The impact of M
is depicted in Fig. 3(f), from which we observe that the

extrinsic LLR could converge to the same fixed point as long

as the tunnel is open. Furthermore, the output LLR at the VN

processor grows almost linearly with M according to (20),

which could improve the performance.

V. SIMULATION RESULTS

In this section, we simulate the performance of the SMP

algorithm. Note that by EER we mean the estimation error rate

for every entry of S. The impacts of the system parameters

M , Ns and SNR are investigated in Fig. 4. For comparison,

the performances of the linear minimum mean square error

(LMMSE) estimator, the matched filter (MF) estimator and

the vector AMP (V-AMP) estimator [10] are also included

with additional check node constraint.

The impact of M is shown in Fig. 4(a). It can be seen that

when M is small, e.g., M=5 and 12, the SMP algorithm is

inevitably divergent. However, when M is a little larger, e.g.

M = 19 and 26, the performance will get improved after the

second iteration, indicating that the divergent interval [A,B] is

small enough for the extrinsic LLR to jump out of after several

iterations. Furthermore, the divergent interval will vanish if M
is sufficiently large and then convergence can be guaranteed.

Similar observations can be found in Fig. 4(b) for the impact

of Ns. It is shown that the convergence can be accelerated

when the value of Ns becomes smaller since the evolution



 

Fig. 4. Simulation results for the performance of the proposed SMP algorithm. Related parameters are (a) M=5:7:61, Ns=300, Np=64, Nc=10, SNR=-10dB
and pa = 0.2 (b) M=30, Ns=100:50:500, Np=50, Nc=10, SNR=-10dB and pa = 0.5 (c) M=60, Ns=100, Np=64, Nc=10, SNR=–20:3:-5dB and pa = 0.8.
The entries in the channel matrix H are assumed i.i.d with distribution hmi ∼ N (0, 1).

tunnel is more widely opened.

The impact of SNR is shown in Fig. 4(c). Obviously, the

increase of SNR shows the most prominent improvement

for the EER performance since, as the iteration proceeds,

2σ2 becomes the dominant term in (g) of (27). Again this

observation is consistent with the analytical results in Fig. 3(d).

It can be observed from Fig. 4 that, under different settings,

the SMP algorithm outperforms the MF estimator and the

LMMSE estimator which requires matrix inversion. Since S

follows a different distribution from the estimation target in

[10], the inappropriate threshold function leads to the detection

failure of the V-AMP estimator. Despite the fact that simu-

lation parameters in Fig. 4 indicate high preamble collision

probabilities, the SMP algorithm demonstrates remarkable

estimation accuracy within a feasible number of iterations.

Therefore, the RB wastes caused by collided devices can be

potentially avoided with the accurate estimation of the SMP.

VI. CONCLUSION

A SMP algorithm based on message passing was proposed

for the RA estimation in M2M scenarios. We presented a

factor graph representation for the SMP algorithm on which

Bernoulli messages are updated. The message update rules

were elaborated for different types of nodes. The analytical

tool derived in this paper enables a visual expression for the

message evolution and the convergence of the SMP algorithm.

Finally simulation results verified the validity of the analysis

and the outstanding accuracy of the SMP algorithm even when

preamble collision occurs.
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