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Data-Aided Secure Massive MIMO Transmission
with Active Eavesdropping

Yongpeng Wu, Chao-Kai Wen, Wen Chen, Shi Jin, Robert Schober, and Giuseppe Caire

Abstract—In this paper, we study the design of secure com-
munication for time division duplexing multi-cell multi-user mas-
sive multiple-input multiple-output (MIMO) systems with active
eavesdropping. We assume that the eavesdropper actively attacks
the uplink pilot transmission and the uplink data transmission
before eavesdropping the downlink data transmission phase of
the desired users. We exploit both the received pilots and data
signals for uplink channel estimation. We show analytically that
when the number of transmit antennas and the length of the data
vector both tend to infinity, the signals of the desired user and the
eavesdropper lie in different eigenspaces of the received signal
matrix at the base station if their signal powers are different. This
finding reveals that decreasing (instead of increasing) the desire
user’s signal power might be an effective approach to combat a
strong active attack from an eavesdropper. Inspired by this result,
we propose a data-aided secure downlink transmission scheme
and derive an asymptotic achievable secrecy sum-rate expression
for the proposed design. Numerical results indicate that under
strong active attacks, the proposed design achieves significant
secrecy rate gains compared to the conventional design employing
matched filter precoding and artificial noise generation.

I. INTRODUCTION

Wireless networks are widely used in civilian and military
applications and have become an indispensable part of our
daily lifes. Therefore, security is a critical issue for future
wireless networks. Conventional security approaches based on
cryptographic techniques have many well-known weaknesses.
Therefore, new approaches to security based on information
theoretical concepts, such as the secrecy capacity of the
propagation channel, have been developed and are collectively
referred to as physical layer security [1]–[4].

Massive MIMO is a promising approach for efficient trans-
mission of massive amounts of information and is regarded
as one of the “big three” 5G technologies [5]. Most studies
on physical layer security in massive MIMO systems assume
that the eavesdropper is passive and does not attack the
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communication process of the systems [6]–[9]. However, a
smart eavesdropper can perform the pilot contamination attack
to jeopardize the channel estimation process at the base station
[10]. Due to the channel hardening effect caused by large
antenna arrays, the pilot contamination attack results in a
serious secrecy threat to time division duplexing (TDD)-based
massive MIMO systems [10].

The authors of [11] propose a secret key agreement protocol
for single-cell multi-user massive MIMO systems under the
pilot contamination attack. An estimator for the base station
(BS) is designed to evaluate the information leakage. Then,
the BS and the desired users perform secure communication
by adjusting the length of the secrecy key based on the
estimated information leakage. Other works have studied how
to combat the pilot contamination attack. The authors of
[12] investigate the pilot contamination attack problem for
single-cell multi-user massive MIMO systems over indepen-
dent and identically distributed (i.i.d.) fading channels. The
eavesdropper is assumed to only know the pilot signal set
whose size scales polynomially with the number of transmit
antenna. For each transmission, the desired users randomly
select certain pilot signals from this set, which are unknown
to the eavesdropper. In this case, it is proved that the impact of
the pilot contamination attack can be eliminated as the number
of transmit antenna goes to infinity. For the more pessimistic
assumption that the eavesdropper knows the exact pilot signals
of the desired users for each transmission, the secrecy threat
caused by the pilot contamination attack in multi-cell multi-
user massive MIMO systems over correlated fading channels
is analyzed in [10]. Based on this, three transmission strategies
for combating the pilot contamination attack are proposed.
However, the designs in [10] are not able to guarantee a high
(or even a non-zero) secrecy rate for weakly correlated or i.i.d.
fading channels under a strong pilot contamination attack.

In this paper, we investigate secure transmission for i.i.d.
fading1 TDD multi-cell multi-user massive MIMO systems un-
der a strong active attack. We assume the system performs first
uplink training followed by an uplink data transmission phase
and a downlink data transmission phase. The eavesdropper
jams the uplink training phase and the uplink data transmission
phase and then eavesdrops the downlink data transmission2.

We utilize the uplink transmission data to aid the channel
estimation at the BS. Then, based on the estimated channels,
the BS designs precoders for the downlink transmission.

This paper makes the following key contributions:

1For simplicity of presentation, we assume i.i.d. fading to present the basic
idea of data-aided secure massive MIMO transmission. The results can be
extended to the general case of correlated fading channels by combining the
techniques in [10] with those in this paper. This will be considered in extended
journal version of this paper.
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1) We prove that when the number of transmit antennas
and the amount transmitted data both approach infinity,
the desired users’ and the eavesdropper’s signals lie in
different eigenspaces of the uplink received signal matrix
due to their power differences. Our results reveal that
increasing the power gap between the desired users’ and
the eavesdropper’s signals is beneficial for separating the
desired users and the eavesdropper. This implies that
when facing a strong active attack, decreasing (instead
of increasing) the desired users’ signal power could be
an effective approach to enable secrete communication.

2) Inspired by this observation, we propose a joint up-
link and downlink data-aided transmission scheme to
combat strong active attacks from an eavesdropper.
Then, we derive an asymptotic achievable secrecy sum-
rate expression for this scheme. The derived expression
indicates that the impact of an active attack on the
uplink transmission can be completely eliminated by the
proposed design.

3) Our numerical results reveal that the proposed design
achieves a good secrecy performance under strong ac-
tive attacks, while the conventional design employing
matched filter precoding and artificial noise generation
(MF-AN) [10] is not able to guarantee secure commu-
nication in this case.

Notation: Vectors are denoted by lower-case bold-face let-
ters; matrices are denoted by upper-case bold-face letters.
Superscripts (·)T , (·)∗, and (·)H stand for the matrix transpose,
conjugate, and conjugate-transpose operations, respectively.
We use tr(A) and A

−1 to denote the trace and the inverse
of matrix A, respectively. diag {b} denotes a diagonal matrix
with the elements of vector b on its main diagonal. Diag {B}
denotes a diagonal matrix containing the diagonal elements of
matrix B on the main diagonal. The M ×M identity matrix
is denoted by IM , and the M × N all-zero matrix and the
N ×1 all-zero vector are denoted by 0. The fields of complex
and real numbers are denoted by C and R, respectively. E [·]
denotes statistical expectation. [A]mn denotes the element in
the mth row and nth column of matrix A. [a]m denotes the
mth entry of vector a. ⊗ denotes the Kronecker product.
x ∼ CN (0,RN) denotes a circularly symmetric complex
vector x ∈ CN×1 with zero mean and covariance matrix RN .
var(a) denotes the variance of random variable a. [x]

+
stands

for max {0, x}. a ≫ b means that a is much larger than b.

II. UPLINK TRANSMISSION

Throughout the paper, we adopt the following transmission
protocol. We assume the uplink transmission phase, composing
the uplink training and the uplink data transmission, which is
followed by a downlink data transmission phase.

We assume the main objective of the eavesdropper is to
eavesdrop the downlink data. The eavesdropper chooses to
attack the uplink transmission phase to impair the channel
estimation phase at the BS. The resulting mismatched channel
estimation will increase the information leakage in the sub-
sequent downlink transmission. In the downlink transmission
phase, the eavesdropper does not attack but focuses on eaves-
dropping the data.

We study a multi-cell multi-user system with L + 1 cells.
We assume an Nt-antenna BS and K single-antenna users are
present in each cell. The cells are index by l = (0, . . . , L),

where cell l = 0 is the cell of interest. We assume an Ne-
antenna active eavesdropper3 is located in the cell of interest
and attempts to eavesdrop the data intended for all users in the
cell. The eavesdropper sends pilot signals and artificial noise
to interfere channel estimation and uplink data transmission4,
respectively. Let T and τ denote the coherence time of the
channel and the length of the pilot signal, respectively. Then,
for uplink transmission, the received pilot signal matrix Y

m
p ∈

CNt×τ and the received data signal matrix Y
m
d ∈ CNt×(T−τ)

at the BS in cell m are given by5

Y
m
p =

√
P0

K∑

k=1

h
m
0kω

T
k +

L∑

l=1

K∑

k=1

√
Plh

m
lkω

T
k

+

√
Pe

KNe
H

m
e

K∑

k=1

Wk +N
m
p (1)

Y
m
d =

√
P0

K∑

k=1

h
m
0kd

T
0k +

L∑

l=1

K∑

k=1

√
Plh

m
lkd

T
lk

+

√
Pe

Ne
H

m
e A+N

m
d (2)

where P0, ωk ∈ Cτ×1, and d0k ∼ CN (0, IT−τ ) denote
the average transmit power, the pilot sequence, and the up-
link transmission data of the kth user in cell of interest,
respectively. It is assumed that the same K orthogonal pilot
sequences are used in each cell where ω

H
k ωk = τ and

ω
H
k ωl = 0. Pl and dlk denote the average transmit power

and the uplink transmission data of the kth user in the lth
cell, respectively. h

p
lk ∼ CN (0, βp

lkINt) denotes the channel
between the kth user in the lth cell and the BS in the pth cell,
where βp

lk is the corresponding large-scale path loss. Hl
e and

Pe denote the channel between the eavesdropper and the base
station in the lth cell and the average transmit power of the
eavesdropper, respectively. We assume the columns of Hl

e are
i.i.d. with Gaussian distribution CN

(
0, βl

eINt

)
, where βl

e is
the large-scale path loss for the eavesdropper. For the training
phase, the eavesdropper attacks all the users in cell of interest.

Therefore, it uses the attacking pilot sequences
∑K

k=1 Wk

[12], where Wk = [ωk · · ·ωk]
T ∈ CNt×τ . For the uplink data

transmission phase, the eavesdropper generates artificial noise
A ∈ CNt×T−τ , whose elements conform i.i.d. standard Gaus-
sian distribution. Nm

p ∈ CNt×τ and N
m
d ∈ CNt×(T−τ) are

noise matrices whose columns are i.i.d. Gaussian distributed
with CN (0, N0INt).

We define Y0 =
[
Y

0
p Y

0
d

]
and the eigenvalue decompo-

sition 1
TNt

Y0Y
H
0 = [v1, · · · ,vNt ]Σ[v1, · · · ,vNt ]

H
, where

the eigenvalues on the main diagonal of matrix Σ are orig-
inated in ascending order. For the following, we make the
important assumption that due to the strong active attack
and the large-scale path loss difference between the cell of
interest and other cells, Peβ

0
e , P0β

0
0k, and Plβ

0
lk have the

3An Ne-antenna eavesdropper is equivalent to Ne cooperative single-
antenna eavesdroppers.

4We note that if the eavesdropper only attacks the channel estimation phase
and remains silent during the uplink data transmission, then the impact of
this attack can be easily eliminated with the joint channel estimation and
data detection scheme in [13]. Therefore, a smart eavesdropper will attack
the entire uplink transmission.

5For notation simplicity, we assume the users in each cell use the same
transmit power [6]. Following the similar techniques in this paper, the results
can be easily extended to the case of different transmit powers of the users
in each cell.



relationship Peβ
0
e ≫ P0β

0
0k ≫ Plβ

0
lk. Let M = (L + 1)K +

Ne and vector (θ1, · · · , θM ) has the same element as vec-
tor

(
P1β

0
11, · · · , PLβ

0
LK , P0β

0
01, · · · , P0β

0
0K , Peβe, · · ·Peβe

)

but with the elements originated in ascending order whose
index 1 ≤ i1 ≤ i2 · · · ≤ iK ≤ M satis-
fies θik = P0β

0
0k, k = 1, 2, · · · ,K . Define V

0
eq =

[vNt−M+i1 ,vNt−M+i2 , · · · ,vNt−M+iK ]. Define H0 =[
h
0
01, · · ·h0

0K

]
and HI =

[
h
0
11, · · ·h0

1K , · · · ,h0
L1, · · · ,h0

LK

]
.

Then, we have the following theorem.

Theorem 1. Let Z0p = 1√
TNt

(
V

0
eq

)H
Y

0
p =

[z0p,1, · · · , z0p,K ] and H
0
eq = 1√

TNt

(
V

0
eq

)H
H0 =

[heq,01, · · · ,heq,0K ]. Then, when T → ∞ and Nt → ∞,

the minimum mean square error (MMSE) estimate ĥeq,0k of
heq,0k based on Z0p is given by

ĥeq,0k =

√
P0

P0τ +N0

(√
P0τheq,0k + neq

)
(3)

where neq = V
0
eqñeq and ñeq ∼ CN (0, τN0INt).

Proof. Please refer to Appendix A.

Remark 1: The basic intuition behind Theorem 1 is that
when T → ∞ and Nt → ∞, each channel tends to be an
eigenvector of the received signal matrix. As a result, we
project the received signal matrix along the eigenspace which
corresponds to the desired users’ channel. In this case, the
impact of the strong active attack can be effectively eliminated.

Remark 2: In Theorem 1, we assume that the coherence time
of the channel is significantly larger than the symbol duration
[14]. This assumption can be justified based on the expression
for the coherence time in [14, Eq. (1)]. For typical speeds of
mobile users and typical symbol duration, the coherence time
can be more than hundreds symbol durations or even more.

Remark 3: The simulation results in Section IV indicate
that a sufficient power gap between P0 and Pe can guarantee
a good secrecy performance when the number of transmit
antennas and the coherence time of the channel are large
but not infinite. We note that allocating more power to the
desired users to combat a strong active attack is not needed.
In contrast, the larger gap between P0β

0
0k and Peβ

0
e will

be beneficial to approach the channel estimation result in
Theorem 1. This implies that decreasing the power of the
desire users can be an effective secure transmission strategy
under a strong active attack.

Remark 4: We can use large dimension random matrix
theory [15] to obtain a more accurate approximation for the
eigenvalue distribution of 1

TNt
YY

H for the case when Nt and
T are large but not infinite. Then, power design policies for
P0, Pl, and Pe can be obtained. This will be discussed in the
extended journal version of this work.

Based on Theorem 1, we can design the precoders for
downlink transmission.

III. DOWNLINK TRANSMISSION

In this section, we consider the downlink transmission. We
assume the BSs in all L+1 cells perform channel estimation

according to Theorem 1 by replacing ĥeq,0k , heq,0k , P0, and

V
0
eq by ĥeq,lk , heq,lk , Pl, and V

l
eq , respectively. Then, the lth

BS designs the transmit signal as follows

xl =
√
P

K∑

k=1

tlkslk, l = 0, · · · , L, (4)

where P is the downlink transmission power, tlk =(
V

l
eq

)H ĥeq,lk

‖ĥeq,lk‖ , and slk is the downlink transmitted signal

for the kth user in the lth cell.

For the proposed precoder design, the base station only
needs to know the statistical channel state information of the
eavesdropper Peβ

0
e in order to construct V0. This assumption

is justified in [10].

Because each user in the cell of interest has the risk of being
eavesdropped, an achievable ergodic secrecy sum-rate can be
expressed as [16]

Rsec =

K∑

k=1

[Rk − Ceve
k ]

+
(5)

where Rk and Ceve
k denote an achievable ergodic rate between

the BS and the kth user and the ergodic capacity between the
BS and the eavesdropper seeking to decode the information
of the kth user, respectively.

The received signal y0k at the kth user in the cell of interest
is given by

y0k =
L∑

l=0

(
h
0
lk

)H
xl + nd

=
√
P
(
h
0
0k

)H (
V

0
eq

)H ĥeq,0k∥∥∥ĥeq,0k

∥∥∥
s0k

+
√
P
(
h
0
0k

)H (
V

0
eq

)H K∑

t=1,t6=k

ĥeq,0t∥∥∥ĥeq,0t

∥∥∥
s0t

+
√
P

L∑

l=1

(
h
0
lk

)H (
V

l
eq

)H K∑

t=1

ĥeq,lt∥∥∥ĥeq,lt

∥∥∥
slt + nd. (6)

where nd ∼ CN (0, N0d) is the noise in the downlink
transmission.

We use a lower bound for the achievable ergodic rate Rk

as follows [17]
R̄k = log (1 + γk) (7)

where
γk =

∣∣∣E
[
g00k,k

]∣∣∣
2

N0d + var
(
g00k,k

)
+

K∑
t=1,t6=k

E

[∣∣∣g00t,k
∣∣∣
2
]
+

L∑
l=1

K∑
t=1

E

[∣∣∣g0lt,k
∣∣∣
2
]

(8)

and g0lt,k =
√
P
(
h
0
lk

)H (
V

l
eq

)H ĥeq,lt

‖ĥeq,lt‖ .

For Ceve
k , we adopt the same pessimistic assumption as in

[10], i.e., we assume that the eavesdropper can eliminate all
interference from intra and inter-cell users to obtain an upper
bound of Ceve

k as follows

Ceve
k,upper = E


log2


1 +

P

N0

geve∥∥∥ĥeq,0k

∥∥∥
2





 (9)

where

geve =
(
ĥeq,0k

)H (
V

0
eq

) (
H

0
e

)H (
H

0
e

) (
V

0
eq

)H
ĥeq,0k. (10)

Based on (5), (7), and (9), we have the following theorem.

Theorem 2. For the considered multi-cell multi-user massive
MIMO system, an asymptotic achievable secrecy sum-rate for



the transmit signal design in (4) is given by

Rsec, ach
Nt→∞→

K∑

k=1

log (1 + γ̄k) (11)

where

γ̄k =
a1

N0d + P (a2 − a1) + P (K − 1)β0
0k + PK

L∑
l=1

β0
lk

(12)

a1 =
P0τ

(
P0τβ

0
0k (Nt +K − 1) +KN0

)

(P0τ +N0)
2 (13)

a2 =

P0τ
(
β0
0kNt + β0

0k (K − 1)
)2

+N0

(
Ntβ

0
0k + 3 (K − 1)β0

0k

)

P0τβ0
0k (Nt +K − 1) +N0

(14)

Proof. Please refer to Appendix B.

Theorem 2 is a general expression which is valid for
arbitrary K and L. Also, Theorem 2 indicates that when
Nt tends to infinity, the impact of the active attack from
the eavesdropper disappears if the proposed joint uplink and
downlink transmission design is adopted.

IV. NUMERICAL RESULTS

In this section, we present numerical results to examine the
proposed design and the obtained analytical results. We set
L = 3, Nt = 128, β0

0k = 1, k = 1, · · · ,K , β0
lk = 0.2,

k = 1, · · · ,K , l = 1, · · · , L, and P0 = P1 = ... = PL.
We define the signal-to-noise ratio (SNR) as SNR = P/N0d.
Also, we define ρ = PE/P0K .

Figure 1 plots the asymptotic and exact secrecy rate perfor-
mance vs. the SNR for T = 1024, P0/N0 = 5 dB, ρ = 30,
and different numbers of users, respectively. The exact secrecy
rate is obtained based on Monte Carlo simulation of (8) and
(9). We note from Figure 1 that the asymptotic secrecy rate
in Theorem 2 provides a good estimate for the exact secrecy
rate.

Figure 2 compares the secrecy performance of the proposed
design and the MF-AN design in [10] for large but finite Nt

and T as a function of ρ for K = 5, P0/N0 = 5 dB, SNR
= 5dB, and different values of T . We keep P0 constant and
increase Pe to increase ρ. We observe from Figure 2 that when
the power of the active attack is strong, the MF-AN design
cannot provide a non-zero secrecy rate. However, our proposed
design performs well in the entire considered range of ρ.
As ρ increases, the gap between Peβe and P0β

0
0k increases

as well. Therefore, the secrecy rate increases with ρ for the
proposed design. Moreover, Figure 2 reveals that increasing
T is beneficial for the secrecy performance of the proposed
design.

V. CONCLUSIONS

In this paper, we have proposed a data-aided secure trans-
mission scheme for multi-cell multi-user massive MIMO sys-
tems which are under a strong active attack. We exploit the
received uplink data signal for joint uplink channel estimation
and secure downlink transmission. We show analytically that
when the number of transmit antennas and the length of
the data vector both approach infinity, the proposed design
can effectively eliminate the impact of an active attack by
an eavesdropper. Numerical results validate our theoretical
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analysis and demonstrate the effectiveness of the proposed
design under strong active attacks.

APPENDIX A
PROOF OF THEOREM 1

We define Ω0 = [ω1, · · · ,ωK ]T , D0 =√
P0 [d01, · · · ,d0K ]

T
, ΩL =

[√
P1Ω

T
0 , · · · ,

√
PLΩ

T
0

]T
, DL

=
[√

P1d11, · · · ,
√
P1d1K , · · · ,√PLdL1, · · · ,

√
PLdLK

]T
,

X0 =
[√

P0Ω0 D0

]
, XI = [ΩL DL],

Xe =

[√
PE

KNe

K∑
k=1

Wk

√
PE

Ne
A

]
.

Based on (1) and (2), the received signal Y0 can be re-
expressed as

Y0 = H0X0 +HIXI +H
0
eXe +N (15)

where N =
[
N

0
p N

0
d

]
.

When T → ∞, based on [18, Corollary 1], we obtain (16)
given at the top of the next page, where

UY =
[
UW HIB

−1/2
I Heβ

−1/2
e H0B

−1/2
0

]
(17)

B0 = diag
(
β0
01, · · · , β0

0K

)
(18)

BI = diag
(
β0
11, · · · , β0

1K , · · · , β0
L1, · · · , β0

LK

)
(19)

PI = diag (P1, · · · , P1, · · · , PL, · · · , PL) (20)

and UW ∈ CNt×(Nt−M) has orthogonal columns.
When Nt → ∞, we have

1

Nt
U

H
Y UY

Nt→∞→ INt . (21)



1

NtT
Y0Y

H
0

T→∞→ 1

NtT
H0X0X

H
0 H

H
0 +

1

NtT
HIXIX

H
I H

H
I +

1

NtT
H

0
eXeX

H
e

(
H

0
e

)H
+

N0

Nt
INt

=
1

Nt

[
UW HIB

−1/2
I Heβ

−1/2
e H0B

−1/2
0

]




N0INt−M

B
1/2
I XIX

H
I B

1/2
I

T +N0I(L−1)K
βeXeX

H
e

T +N0INe

B
1/2
0

X0X
H
0
B

1/2
0

T +N0IK







U
H
W

B
−1/2
I H

H
I

β
−1/2
e H

H
e

B
−1/2
0 H

H
0




T→∞→ 1

Nt
UY




N0INt−M

PIBI +N0I(L−1)K (
β0
ePe +N0

)
INe

P0B0 +N0IK


U

H
Y (16)

From (16)–(21), we know that for T → ∞, Nt → ∞, UY

is the right singular matrix of Y0. Therefore, we obtain

Z =
1√
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(
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0
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)H
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0
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(
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0
eq

)H
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0
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Define z = vec (Z0p), where Z0p is defined in Theorem 1.
From (22), we can re-express the equivalent received signal
during the pilot transmission phase as follows

z =
√
P0

K∑

t=1

(ωt ⊗ IK)heq,0t + n (23)

where

n =




(
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0
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n
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V

0
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 (24)

and n
0
pt in (24) is the tth column of N0

p.

Based on (23), the MMSE estimate of heq,0k is given by

ĥeq,0k =
√
P0(P0τIK +N0IK)

−1
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H
z

=

√
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P0τ +N0

(√
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)
. (25)

For the noise term in (25), we have

(ωk ⊗ IK)
H
n =

(
V

0
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ω∗
ktwt

=
(
V

0
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(
V

0
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where ωkt is the tth element of ωk. Combining (25) and (26)
completes the proof.

APPENDIX B
PROOF OF THEOREM 2

First, based on the property of MMSE estimates, we know

that E
[
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]
=
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.

Based on (3) and (16), we have∥∥∥ĥeq,0k
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When Nt → ∞, based on [18, Corollary 1], we have
1

Nt

(
h
0
0k

)H
h
0
0t

(
β0
0t

)−1(
h
0
0t

)H
h
0
0k

Nt→∞→ β0
0k

(
β0
0t

)−1

Nt
tr
(
h
0
0t

(
h
0
0t

)H)
Nt→∞→ β0

0k (28)

1

Nt

(
h
0
0k

)H
h
0
0k

(
β0
0k

)−1(
h
0
0k

)H
h
0
0k

Nt→∞→ β0
0kNt (29)

1

Nt
ñ
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From (28) and (29), we have
1

Nt

(
h
0
0k

)H [
h
0
01, · · ·h0

0K

]
B

−1
0

[
h
0
01, · · ·h0

0K

]H (
h
0
0k

)

Nt→∞→ β0
0kNt + β0

0k (K − 1)

1

N2
t

(
h
0
0k

)H [
h
0
01, · · ·h0

0K

]
B

−1
0

[
h
0
01, · · ·h0

0K

]H
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Combining (31), (33)–(38), and the definition of g00k,k, we
have
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where a2 and a1 are defined in (13) and (14).
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H
eq,0t∥∥∥ĥeq,0t
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For Ceve
k,upper in (9), we know from (16) that when Nt → ∞,(
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Substituting (31), (39), (40), (41), and (42) into (5) com-

pletes the proof.
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