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Abstract—Towards reducing the training signaling overhead
in large scale and dense cloud radio access networks (CRAN),
various approaches have been proposed based on the channel
sparsification assumption, namely, only a small subset of the
deployed remote radio heads (RRHs) are of significance to any
user in the system. Motivated by the potential of compressive
sensing (CS) techniques in this setting, this paper provides a
rigorous description of the performance limits of many practical
CS algorithms by considering the performance of the, so called,
oracle estimator, which knows a priori which RRHs are of
significance but not their corresponding channel values. By using
tools from stochastic geometry, a closed form analytical expres-
sion of the oracle estimator performance is obtained, averaged
over distribution of RRH positions and channel statistics. Apart
from a bound on practical CS algorithms, the analysis provides
important design insights, e.g., on how the training sequence
length affects performance, and identifies the operational condi-
tions where the channel sparsification assumption is valid. It is
shown that the latter is true only in operational conditions with
sufficiently large path loss exponents.

I. INTRODUCTION

Cloud radio access network (CRAN) is considered as one
of the enablers of future cellular networks [1], [2]. In CRAN,
multiple low-complexity, low-cost remote radio heads (RRHs)
are distributed over the network coverage area and are all
connected to a central, cloud-based baseband unit whose task
is to jointly process the signals received from or send to
the user equipment (UEs) in the system. This centralized-by-
design network architecture is, in principle, able to realize
the vision of large-scale, multi-cell cooperative networks [3].
However, a major challenge towards this goal is the need for
global channel state information (CSI) [2], [3], i.e., estimation
of the quality of all channel links among the RRHs and the
UEs. With a large number of RRHs, the standard training
procedure based on orthogonal pilot sequences results in an
unacceptably large overhead [4].

Recently, various research efforts have been made towards
reducing the training overhead in CRAN. All these works are
based on the premise that, in a large-scale CRAN deployment,
only a small subset of the RRHs will have significant contri-
bution to the downlink received energy by any UE (similar
consideration holds for the unlink as well). Therefore, an
(artificial) channel sparsification [5], [6] is assumed at the UE
side, which considers only the strongest RRH-to-UE links for
channel estimation purposes and ignores the remaining links.

This approach effectively allows for reduced training overhead
using small length pilot sequences. In [4], the problem of
identifying the subset of strongest RRH channels is inves-
tigated, assuming a priori knowledge of large-scale fading
(i.e., RRH-to-UE distances) without, however, providing an
explicit channel estimation scheme. RRH-to-UE distances are
also assumed known in [7] where a locally orthogonal training
scheme is proposed, with short-length training sequences
obtained as the solution of a graph-based problem, which,
however, depends on the positions of RRHs and UEs. Another
approach is considered in [8], [9], where CSI is treated as
a sparse vector and estimation algorithms inspired by the
compressive sensing (CS) framework [10] are applied. Good
estimation performance with small length training sequences
is demonstrated only via simulations and for certain system
setups. All these works provide valuable insights on the
effectiveness of small-length training sequences, however, the
operational conditions, e.g., propagation losses and small-
scale fading statistics, under which the channel sparsification
assumption is applicable are not clear.

In this paper, the performance potential of applying CS tech-
niques towards reducing downlink training overhead in large-
scale CRAN deployments is investigated. In particular, for a
CS-motivated training sequence design that is independent of
number and positions of RRHs and UEs, the performance
of the, so called, oracle estimator is analytically obtained.
The oracle estimator has a priori knowledge of the set of
RRHs with the strongest links, but not their channel values,
and its performance serves as a optimistic estimate for the
performance of many practical CS estimation algorithms (that
have no a priori information) [11], [12].

By employing tools from stochastic geometry, a closed-
form upper bound of the oracle estimator mean squared error
performance is obtained, that is averaged over the distribution
of RRH positions and channel statistics, and is independent of
the UE position within the CRAN deployment. The bound ex-
pression is tight for large scale, dense CRAN deployments and
provides insights on how estimation performance is affected
by (a) system design parameters, e.g., training sequences
length and number of (strongest) channels to be estimated,
and (b) operational conditions, e.g., RRH density and channel
statistics. One of the main takeaways of the analysis is that the
channel sparsification assumption is not valid for operational
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conditions with small path loss exponent, suggesting that
training overhead reduction is not possible in these cases,
irrespective of the approach to do so (not necessarily CS-
based).

Notation: [N ] denotes the set {1, 2, . . . , N}. (·)T , (·)H
denote transpose and Hermitian transpose, respectively. | · |
will be used to denote the modulus of a complex number, or
the (Lebesgue) measure of a set, depending on context. The
Frobenius norm of a vector (possibly infinite-dimensional) will
be denoted as ‖ · ‖. The n-th element of an N -dimensional
vector x is denoted as [x]n, n ∈ [N ], and I is the identity
matrix of appropriate dimensions. XB (xB) is the matrix
(vector) obtained by considering only the columns (elements)
indicated by the set B.

II. SYSTEM MODEL AND PERFORMANCE METRICS

A dense CRAN deployment is considered employing NRRH
single-antenna RRHs whose positions are independently and
uniformly distributed over a large deployment area A ⊂ R2,
resulting in an RRH density (i.e., average number of RRHs per
unit area of deployment) equal to λ , NRRH/|A|. Let Φ ⊂
R2 denote the set of RRH positions and hx ∈ C, denote the
baseband, flat-fading channel on a single OFDM subcarrier of
the link between an RRH positioned at x ∈ Φ and a UE located
at an arbitrary position xu ∈ R2. This channel is commonly
modeled as [6], [7], [13]

hx = cx‖x− xu‖−α/2, x ∈ Φ, (1)

where α > 2 is the (deterministic) path loss exponent, and
cx ∈ C represents small and/or large scale fading effects. The
variables {cx}x∈Φ are assumed to be independent, identically
distributed (i.i.d.) with E(cx) = 0 and E(|cx|4/α) < ∞. The
seemingly random last assumption is only a technical one that
will be employed later in the analysis and is actually satisfied
by many models used in practice for the statistics of cx such
as Rayleigh and lognormal fading.

Towards acquiring downlink CSI, each RRH transmits a
signature training (pilot) sequence that is known by each UE
in the system. It is assumed that the transmission of training
sequences is done synchronously among RRHs and lasts for
Np symbols. Let px ∈ CNp denote the column vector of Np
pilot symbols transmitted by the RRH positioned at x ∈ Φ with
a normalized average transmit power equal to 1

Np
E(pHx px) =

1, for all x ∈ Φ. The received signal y ∈ CNp of the UE at
xu during the training period equals

y =
∑
x∈Φ

hxpx + w = Ph + w (2)

where h ∈ CNRRH is a vector containing the NRRH channel val-
ues in some arbitrary order, P ∈ CNp×NRRH is the pilot matrix
whose columns are the RRH training sequences with the same
ordering as the elements of h, and w ∈ CNp represents noise,
consisting of i.i.d. complex Gaussian elements of zero mean
and variance σ2

w.
Under the conventional, orthogonal training sequence ap-

proach, i.e., when it holds PHP = NpI, global CSI can be

acquired at the UE by simply computing 1
Np

PHy. However,
the orthogonality condition requires Np ≥ NRRH, which results
in an unacceptable pilot overhead when NRRH � 1. This
observation motivates the investigation of channel estimation
procedures under the condition Np < NRRH, i.e., with small-
length training sequences, that are necessarily non-orthogonal.
Even though this approach does not allow for a reliable
estimate of the global CSI (less observations than unknowns),
it is motivated by the channel sparsification assumption [6],
namely, that out of the NRRH elements of h, only s� NRRH
are of significant modulus, whereas the others can be safely
considered as equal to zero. This, in turn, motivates the use of
CS techniques that achieve reliable estimates with Np = O(s)
[10].

Unfortunately, the performance of CS estimation algorithms
is difficult to describe accurately. For this reason, a com-
monly used approach is to lower bound their performance
by considering the performance of the, so called, oracle
estimator [12], which is essentially the standard least squares
(LS) channel estimator of the s largest-modulus elements of
h under the assumption that their positions within h are
known. In addition to providing a performance bound, the
oracle estimator performance will provide insights on how
accurate the channel sparsification assumption is under various
operational conditions, which is critical for the effectiveness
of any short-length training approach (not necessarily based
on CS techniques).

Let S ⊆ [NRRH] denote the set of s , |S| ≥ 1 indices
of largest-modulus elements in h, which are known by the
oracle estimator. The value of s is treated here as a free design
parameter to be optimized in the following. Note that it is not
clear at this point of the discussion how to optimally choose
s due to the conflicting requirements of small-length training
sequences and accurate global CSI, suggesting small and large
values for s, respectively. Assuming that PS is full column
rank (which implies Np ≥ s), the LS estimate of hS equals

ĥS ,
(
PHS PS

)−1
PHS y

= hS +
(
PHS PS

)−1
PHS (PS̄hS̄ + w) , (3)

where S̄ , [NRRH]\S denotes the indices of elements of h that
are not estimated. Note that since P consists of non-orthogonal
columns, the product PHS PS̄ in (3) does not vanish, therefore,
the pilot transmissions from RRHs corresponding to S̄ act as
interference for the channel estimation procedure.

It directly follows from the channel statistics assumptions
that the error term of the LS estimate appearing on the right
hand side (RHS) of (3) is zero mean, i.e., the LS estimate is
unbiased, irrespective of the choice of S and P. However, the
latter do affect the average mean squared error (MSEav) of the
estimate, which provides a measure of the estimation accuracy
for each element of ĥS and is defined as

MSEav ,
1

s
E
(
‖hS − ĥS‖2

)
=

1

s
E
(∥∥∥(PHS PS)−1

PHS (PS̄hS̄ + w)
∥∥∥2
)
.



Another related metric for evaluating the channel estimation
performance, of particular importance in a CRAN setting, is
the total mean squared error (MSEtot), defined as

MSEtot , E
(
‖hS̄‖2

)
+ E

(
‖hS − ĥS‖2

)
= E

(
‖hS̄‖2

)
+ sMSEav. (4)

MSEtot provides an indication of how well the LS estimate
ĥS (of s elements) can be used to approximate the complete
channel vector h (of NRRH elements) under the channel
sparsification assumption, i.e., by treating the elements of hS̄
as zeros.

III. MEAN SQUARED ERROR PERFORMANCE OF THE
ORACLE ESTIMATOR

The MSE performance of the oracle channel estimate de-
pends on multiple parameters, namely,
• positions Φ of the RHHs;
• position xu of the UE in consideration;
• path loss exponent α;
• channel fading statistics;
• number s of estimated channels;
• pilot matrix P.

From this set of parameters, only the last two are design
parameters that should, in principle, be optimized given the
values of the remaining parameters describing operational
conditions. However, such a design approach is of little
practical interest as it is dependent on the UE position, whereas
practical systems employ a fixed set of training sequences that
(hopefully) results in a good channel estimate at the UE side
irrespective of its position.

Towards such a training sequence design and analysis, the
following assumption on the pilot matrix will be employed.

Assumption. The elements of the pilot matrix P are generated
as i.i.d. real-valued Gaussian variables of zero mean and
variance 1.

Although this design choice is not necessarily optimal, it is
motivated by noting that, in the observation model of (2), P
acts as a sensing matrix in a standard CS estimation setting.
It is well known that a sensing matrix generated as per the
previous assumption is a good design choice [10]. Note that
Np is not specified in the above assumption, i.e., it is a free
design parameter to be optimized in the following.

For a Gaussian pilot matrix, a preliminary characterization
of the MSE, averaged over all possible pilot matrix realizations
can be obtained.

Lemma 1. With Gaussian training sequences, the average
mean squared error performance of the oracle estimator
considering the s ≤ Np − 4 largest-modulus elements of h
equals

MSEav =
E
(
‖hS̄‖2

)
+ σ2

w

Np − s− 1
, (5)

whereas the total mean squared error equals

MSEtot =
(Np − 1)E

(
‖hS̄‖2

)
+ σ2

w

Np − s− 1
. (6)

Proof: Direct application of [12, Theorem 1] for the
LS estimate of hS based on the observation y = PShS +
(PS̄hS̄ + w) yields

MSEav =
E
(
‖PS̄hS̄ + w‖2

)
Np (Np − s− 1)

=
E
(
‖PS̄hS̄‖2

)
+Npσ

2
w

Np (Np − s− 1)
.

Noting that E
(
‖PS̄hS̄‖2

)
= E

(
hHS̄ E

(
PHS̄ PS̄

)
hS̄
)

=
NpE

(
‖hS̄‖2

)
, since E

(
PHS̄ PS̄

)
= NpI by construction, leads

to (5). Substituting (5) into (4) leads to (6).
Remark: The upper bound Np−4 for s appearing in Lemma

1 is a technical one [12] and has no effect on the design, as
it will be shown that values of s far smaller than this bound
are of interest.

The expectation appearing on the RHS of (5) is over the
statistics of hS̄ for a given UE position xu ∈ R2. In order
to obtain a robust (i.e., worst case) design that is independent
of the UE position, it is natural to consider the case where
xu lies “in the middle” of the RRH deployment area since,
in that case, the effect of the interference is expected to
be greater, compared to the case when the UE lies on the
edge of the RRH deployment area. However, it is not clear
which is this “middle” position and how it depends on the
RRH deployment area A. In order to avoid these issues, the
following approximation on the distribution of RRH positions
will be considered.

Approximation. The positions of the RRHs are distributed
over all R2 as a homogeneous Poisson point process (HPPP)
Φ̃ ⊂ R2 of density λ.

This approximation can be viewed as extending the original
RRH deployment area A to the whole R2, thus implying
an infinite number of RRHs (instead of NRRH), however,
with the same density as the actual deployment. Clearly, this
approximation leads to a pessimistic performance analysis,
since, for a given S, the power of the interference term in
(3) statistically increases for any UE position. However, this
approximation is expected to be accurate under sufficiently
large NRRH and/or α for a UE lying “in the middle” of the
actual deployment. Note that, due to the stationarity of the
HPPP [13], the statistics of h (over fading and RRH positions)
are independent of the UE position, hence, it will be assumed
for convenience that xu = (0, 0), i.e, the UE in consideration
lies at the origin of the plane.

Under the HPPP approximation, a closed-form expression
for the term E(‖hS̄‖2) appearing in (5) and (6) can be
obtained.

Proposition 2. Under the HPPP approximation for the RRH
distribution, it holds

E(‖hS̄‖2) =
2
(
πλE

(
|cx|4/α

))α
2 Γ
(
s+ 1− α

2

)
(s− 1)! (α− 2)

, (7)

for all s > α
2 −1, where Γ(t) ,

∫∞
0
zt−1e−zdz is the Gamma

function.

Proof: See Appendix A.



Remark: The restriction s > α
2 − 1appearing in Prop. 2 is

only a minor one since, as will be shown in the following,
much greater values are of interest.

By combining Lemma 1 with Prop. 2, a closed form upper
bound for the oracle estimator MSE directly follows.

Proposition 3. Consider a CRAN deployment with an arbi-
trary number of RRHs independently and uniformly distributed
over a large deployment area employing Gaussian training
sequences of length Np. For any UE in the system, the
MSEav and MSEtot of the oracle estimate considering the
s ∈ (α2 − 1, Np − 4] largest-modulus elements of h is upper
bounded as

MSE < β
2
(
πλE

(
|cx|4/α

))α
2 Γ
(
s+ 1− α

2

)
(Np − s− 1)(α− 2)(s− 1)!

+γ
σ2
w

Np − s− 1
,

(8)
with {β = 1, γ = 1} and {β = Np − 1, γ = s}, for MSEav
and MSEtot, respectively.

The following remarks regarding the upper bound of the
MSE are in order:
• It is independent of the number NRHH of actually de-

ployed RRHs. This is due to the infinite number of RHHs
implied by the HPPP approximation.

• Its dependence on the channel fading statistics is only
via the moment E

(
|cx|4/α

)
, i.e., fading statistics with the

same moment are indistinguishable in terms of estimation
performance.

• For α → 2, it grows unbounded, irrespective of the
values of the other parameters, since the sum power of
the interfering signals becomes very large.

• When the noise effect is negligible (i.e., σ2
w = 0),

it grows as O(λα/2), implying that RRH densification
(i.e., increasing λ) under conditions with high path loss
exponent has more impact on the estimation performance
than under small path loss exponents.

• For Np →∞ it scales as O(1/Np) and O(1) for MSEav
and MSEtot, respectively, implying that, for a fixed s,
increasing Np is beneficial only in terms of accuracy of
ĥS but has no effect on the accuracy of the complete
channel vector estimate since, by default, the elements of
ĥS̄ are set to zero irrespective of Np.

• Under conventional, orthogonal training, it is easy to see
that MSEav = σ2

w/Np, irrespective of s. In contrast,
the upper bound MSE expression for the non-orthogonal
case indicates that there exists a value of s that achieves
minimum MSE by optimally balancing between two
contradicting requirements: (a) consideration of a small s,
suggested by estimation theory in a multiple parameter
estimation setting in the presence of noise/interference,
and (b) consideration of a large s in order to reduce both
the number and interference power of ignored RRHs.

In regards to the last remark, the closed form expression
provided by Prop. 3 allows for an efficient optimization with
respect to (w.r.t.) s, without the need to resort in time-
consuming simulations. In particular, for the case of σ2

w = 0

(i.e., no noise), a closed form asymptotic characterization of
the optimal s is available.

Proposition 4. With σ2
w = 0, the upper bounds for MSEav

and MSEtot of the oracle estimator are minimized for the same
value of s, which is asymptotically equal to (for Np →∞)

s∗ ∼ (α− 2)(Np − 1)

α
, (9)

resulting in the asymptotic upper bound for the minimum MSE

MSE∗ < β

(
απE

(
|cx|4/α

)
(α− 2)

· λ

Np − 1

)α/2
, (10)

with β = 1 and β = Np − 1, for MSEav and MSEtot,
respectively.

Proof: With σ2
w = 0, it directly follows from Prop. 3

that the optimal s for both MSEav and MSEtot is the one

maximizing the term
Γ(s+1−α2 )

(Np−s−1)(s−1)! . Numerical examination
of this term indicates that the optimal s is an increasing
function of Np, which, in turn, suggests that for Np � 1 it will
also be s∗ � 1. Noting that Γ(s+1−α/2)

(s−1)! ∼ s1−α/2 for s� 1,
s∗ can be found as the minimizer of s1−α/2/(Np − s − 1),
which is given by (9). Substituting the latter into the (8) results
in (10).

As it will be shown in the next section, the asymptotic
expressions given in Prop. 4 are very accurate even for
moderate values of Np. Interestingly, the above result shows
that when interference is the main source of estimation error,
the optimal number of estimated channels is increasing with
α and/or Np and is the same for both average and total
MSE performance metrics. However, even with optimal s, the
MSE performance severely degrades when α→ 2, indicating
a fundamental performance limitation of the non-orthogonal
training approach under sufficiently small α as the channel
sparsification assumption in that regime is not applicable.
For α > 2, the optimal upper bound scales as O(N

−α/2
p )

and O(N
1−α/2
p ) for MSEav and MSEtot, respectively, showing

that increasing Np does help in improving both average and
total estimation performance, with a more prominent effect
for larger values of α. This suggests that for operational
conditions with sufficiently large α, good oracle estimator
performance is possible with Np � NRRH. This, in turn,
implies that the channel sparsification assumption is valid in
the large α regime, which can be exploited to reduce training
signaling overhead by, e.g., use of CS estimation algorithms.

IV. NUMERICAL RESULTS

1) Comparison of upper bound on MSEav with simulated
performance: A CRAN deployment of NRRH = 500 RRHs
with a density λ = 1, uniformly distributed over a rectangular
area A was simulated. The channel fading variables cx where
generated as i.i.d. complex Gaussians of zero mean and
variance 1 (Rayleigh fading), and a training sequence length
of Np = 81 was considered with Gaussian pilot symbols,
as described in the previous section. Note that this training
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Fig. 1. MSEav vs s (number of estimated channels) of the oracle estimator.
Solid lines corresponds to the bound of Prop. 3 and markers are obtained by
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sequence length corresponds to an 83.8% overhead reduction
compared to the minimum requirements under orthogonal
training. Figure 1 shows the MSEav of the oracle estimator
for a UE located at the center of A, as a function of the
number s of estimated channels, for various values of α and
with σ2

w = 0. The MSEav values were obtained by averaging
over multiple independent realizations of RRH positions and
channels. In addition, the upper bound of the MSEav, given in
Prop. 3 (with E(|cx|4/α) = Γ(1 + 2/α)), is also shown.

It can be seen that the MSE performance depends strongly
on α, with larger values being beneficial due to reduced
interference power, even though the power of the strongest
channels is also reduced in this case as well. This provides a
strong motivation for reduced length training sequences under
operational conditions with large α (e.g., in urban areas). In
addition, the existence of an optimal value of s, depending on
α, is clear. Note that the analytical upper bound provides an
excellent indicator of the performance for α ≥ 4 but becomes
increasingly loose for values of α→ 2. However, the bound is
still able to follow the actual performance trends rather closely.

2) Optimal number of estimated channels: Figure 2 shows
the optimal value of s (s∗) that minimizes the analytical
upper bounds for the MSEav and MSEtot given in Prop. 3,
as a function of α and for various values of Np. A case
with no noise (σ2

w = 0) and a case with noise (σ2
w = 0.1)

is depicted. As was observed in Prop. 4, the optimal s is
the same for both MSEav and MSEtot with no noise. For
that case, the asymptotic expression of (9) is also depicted,
which can be seen to be an excellent indicator of s∗, even for
moderate values of Np. Interestingly, when noise is present,
the value of s∗, even though increasing with Np, depicts a
non monotonic behavior w.r.t. α. In particular, for the small
α regime, s∗ increases with α since the interference power is
reduced allowing for the reliable estimation of more (strong)
channels. However, beyond a certain value of α, most of
the channel powers become comparable to the noise level,
therefore, it is beneficial to concentrate the estimation efforts
on a limited set of strongest channels.

3) Compressive sensing channel estimation: When the UE
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Fig. 2. Optimal s that minimizes the analytical upper bounds for the MSEav
and MSEtot as a function of α with and without noise.
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Fig. 3. MSEtot for the CS-based channel estimator as a function of the training
sequence length Np. The analytical upper bound for the MSEtot of the oracle
estimator with optimized s is also shown.

has no a priori knowledge of the set of largest-modulus
elements of h, a CS estimation approach can be employed
for estimating the complete channel vector h as long as the
channel sparsification assumption is valid [8], [9]. Figure 3
shows the simulated MSEtot performance of the estimator
applying the standard Basis Pursuit algorithm on the received
signal y [10], as a function of Np and for various values
of α, for the exact same system setup considered in Fig. 1
(NRRH = 500, σ2

w = 0). It can be seen that the CS estimator
performance improves with increasing Np, as expected from
standard CS theory, and has similar dependence on α as the
oracle estimator, i.e., very good performance is achieved in
the large α regime even with small Np. Figure 1 also depicts
the MSEtot expression of (8) with optimal s. It can be seen
that it can serve as a reasonable lower bound for the CS-based
estimator performance for large α, whereas this is not the case
for small α, since, as discussed previously, the bound is not
tight in this regime.

V. CONCLUSION

This paper considered the mean squared error performance
of the oracle estimator as an attempt to identify the limits



of practical CS-based techniques towards reducing down-
link training signaling overhead in CRAN. Using tools from
stochastic geometry, an upper bound for the oracle estimator
performance was obtained in closed form, clearly demonstrat-
ing the effects of design parameters, e.g., training sequence
length, and operational conditions, e.g., path loss exponent.
It was shown that good estimation performance can be ex-
pected with significant training overhead reduction only under
sufficiently large path loss exponent.
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APPENDIX A
PROOF OF PROPOSITION 2

Let gs > 0 denote the received power form the RRH with
the s-th largest modulus channel gain. Expressing ‖hS̄‖2 as

‖hS̄‖2 =
∑
x∈Φ

I(|cx|2‖x‖−α < gs)|cx|2‖x‖−α,

where I(·) is the indicator (0− 1) function, it follows that

E(‖hS̄‖2)
(a)
= λ

∫
R2

|x|−αE
(
I(|cx|2|x|−α < gs)|c|2

)
dx

(b)
= λ2π

∫ ∞
0

r1−αE
(
I(|c|2r−α < gs)|c|2

)
dr

(c)
= λ2πE

(
|c|2

∫ ∞
(|c|2/gs)1/α

r1−αdr

)

=
2πλE

(
|c|4/α

)
α− 2

E
(
g1−2/α
s

)
where (a) is an application of Cambell’s Theorem [13, The-
orem A. 2], (b) follows by switching to polar coordinates for
the integration and dropping the explicit dependence of c on
x (by definition cx is independent of x), and (c) follows by
switching the order of integration and expectation (Fubini’s
theorem).

In order to obtain E(g
1−2/α
s ), the probability distribution

function (pdf) of gs is pursued next. To this end, note that
gs represents the s-th largest element of the one-dimensional
point process Π , {gx = |cx|2‖x‖−α}x∈Φ obtained by a
transformation of the points of Φ. It can be shown that Π
is an inhomogeneous PPP with density function λΠ(g) =
2π
α λE

(
|cx|4/α

)
g−(1+2/α), g ≥ 0 [14, Theorem 4.1]. This, in

turn, means that the number N>δ of points in Π that are greater
than a value δ ≥ 0 is a Poisson random variable of mean

E(N>δ) =

∫ ∞
δ

λΠ(g)dg

= πλE(|cx|4/α)δ−2/α.

Following the approach of [15], the cumulative distribution
function (cdf) of gs equals

P(gs < δ) = P(N>δ < s) =

s−1∑
k=0

P(N>δ = k)

=

s−1∑
k=0

(πλE(|cx|4/α)δ−2/α)k

k!
e−πλE(|cx|4/α)δ−2/α

,

and differentiation of the cdf w.r.t. δ gives the probability
distribution function (pdf) of gs as

fgs(δ) =
2
(
λπE(|cx|4/α)

)s
e−λπE(|cx|4/α)δ−2/α

δ
2s
α +1α(s− 1)!

, δ ≥ 0.

E(g
1−2/α
s ) can now be computed as

∫∞
0
fgs(δ)δ

1−2/αdδ,
which has a closed form expression for s > α

2 − 1, finally
leading to (7).
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