
ar
X

iv
:1

61
2.

03
75

7v
1

 [c
s.

IT
]

12
 D

ec
 2

01
6

Cache-enabled Uplink Transmission in Wireless
Small Cell Networks

Zhanzhan Zhang∗, Zhiyong Chen∗, Hao Feng∗, Bin Xia∗, Weiliang Xie†, and Yong Zhao†
∗Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China

†China Telecom Corporation Limited Technology Innovation Center
Email: {mingzhanzhang, zhiyongchen, fenghao, bxia}@sjtu.edu.cn,{xiewl, zhaoyong}@ctbri.com.cn

Abstract—It is starting to become a big trend in the era
of social networking that people produce and upload user-
generated contents to Internet via wireless networks, bringing
a significant burden on wireless uplink networks. In this paper,
we contribute to designing and theoretical understanding of
wireless cache-enabled upload transmission in a delay-tolerant
small cell network to relieve the burden, and then propose
the corresponding scheduling policies for the small base station
(SBS) under the infinite and finite cache sizes. Specifically,the
cache ability introduced by SBS enables SBS to eliminate the
redundancy among the upload contents from users. This strategy
not only alleviates the wireless backhual traffic congestion from
SBS to a macro base station (MBS), but also improves the
transmission efficiency of SBS. We then investigate the scheduling
schemes of SBS to offload more data traffic under caching size
constraint. Moreover, two operational regions for the wireless
cache-enabled upload network, namely, thedelay-limited region
and the cache-limited region, are established to reveal the
fundamental tradeoff between the delay tolerance and the cache
ability. Finally, numerical results are provided to demonstrate
the significant performance gains of the proposed wireless cache-
enabled upload network.

I. I NTRODUCTION

With the significant growth of mobile Internet, which offers
a convenient way to exchange information ubiquitously, people
are no longer only consuming content but have started creating
content. For example, users can capture the real-time events
using smartphones and share them with other users through
mobile applications, such as YouTube or Facebook. This
growing trend of user-generated content (UGC) leads to the
unprecedented increase of mobile data traffic and imposes a
great uploading pressure to the wireless networks.

To cope with themobile data tsunamiof mobile data traffic,
lots of research efforts have been devoted towards content
downloading in mobile cellular networks [1]–[3], while little
efforts have been made to facilitate the uplink of mobile
cellular networks to meet the increasing demands of UGC
uploading. Different with the downloading, there exist many
constraints for the upload of multimedia contents. First, the
mobile cellular networks are asymmetric in terms of band-
width between downlink and uplink communications. It is
reported that the downlink bandwidth could be 10–1000 times
the uplink bandwidth [4], yielding the low throughput on the
uplink channels, long upload time and degraded quality of
experience (QoE) as uploading multimedia contents. Second,
the resources of mobile devices are limited, such as the

caching size, the transmit power and battery capacity. Thus
it is imperative and challenging to alleviate the upload traffic
load of the mobile cellular network based on the traditional
capacity-increasing solutions, e.g., additional uplink spectra.

Exploiting the caching resource in the network to reduce
the duplicate content transmissions is a potential solution
for the above wireless data challenge, independent of the
limited communication resources. [5] reported that a large
number of the edited videos were uploaded on the same day
as the original video or within a week. Besides, contents
can be modularized today. For example, the Moving Picture
Experts Group (MPEG) has developed the new MPEG Media
Transport (MMT) standard, with which the logical entity
MMT package consists of MMT assets and information about
the data combining and delivering [6]. In a word, the content
popularity and modularization provide a higher potential to
redundancy among contents by combining with caching.

There has been a few works done to address the content
uploading problems with cache considered [7]–[10]. In [7],
the joint upstreaming of real-time and time-shifted on-demand
videos under scarce uplink resources was optimized by con-
sidering cache at mobile terminals. Then the authors in [8]
proposed a upload cache scheme in edge networks to shorten
the duration and reduce the peak traffic volume, by dividing
the traditional upload process into two phases: from the client
to the gateway cache and from the gateway to the destination
server. In addition, both [9] and [10] also divided the upload
process in the same way as in [8] and placed cache at the
nearby WiFi access points. Specifically, [9] demonstrated that
larger contents could save more connection time for users.
And [10] proposed a smart offloading mechanism for content
uploading and considered the WiFi bandwidth scheduling.
However, how to schedule the contents in the cache and how
much cache space is needed are not addressed in [8]–[10].

In this paper, we investigate the content uploading in a small
cell network, where multiple users are served by a small base
station (SBS) which connects to the core network through a
macro base station (MBS). The SBS is equipped with a cache
memory for temporarily buffering the received contents from
users, which implies that data transfers can be delayed at the
SBS with some deadlines, this delay assumption is reasonable
in most cases, such as in upload cache [8] and WiFi offloading
[11]. The SBS cache space and the content delay tolerance
enable the SBS to perform redundancy elimination among

http://arxiv.org/abs/1612.03757v1

Core network

MBSSBS

Wireless

backhaul

Wired

backhaul

K users

SBS cache size:

1 2 K

Fig. 1. Uplink cache-enabled small cell networks with cacheat the SBS.

similar files. Our contributions are summarized as follows:

• We propose upload cache in small cell networks based on
redundancy elimination, which improves the transmission
efficiency of the SBS and the effective bandwidth.

• Scheduling policies of the SBS on cached contents are
derived based on the probabilistic knowledge of users’
future upload requests to further improve the efficiency.

• Elaborated numerical results provide valuable insights on
how to design the system parameters, such as the cache
size, delay tolerance and the user number.

II. SYSTEM MODEL

A. SBS Caching

As illustrated in Fig. 1, we consider the wireless uplink
transmission in a cache-enabled single small cell network,
where a SBS servesK mobile users. In the small cell network,
the SBS is connected to a MBS over a wireless backhual,
and the MBS has a wired backhaul connection with the core
network. Thus, one user can upload a content to Internet
via the wireless transmission, wireless backhaul, and wired
backhual. As a result, the wireless backhual between the SBS
and the MBS is to restrict the wireless upload performance. In
this paper, we propose a new architecture for wireless content
uploading, where the SBS can cache some of contents from
users and then do duplication elimination among the contents
to reduce the backhaul payload.

In the traditional uplink processing, the user performing
the content uploading will not leave the connection with the
SBS until the uploading task to the target server is finished,
which consumes more user’s energy. In this paper, however,
the uploaded content will firstly be received and cached at
the SBS temporarily, and the user will leave the system once
the uploading to the SBS is finished, then the SBS starts the
backhaul uploading at a proper time.

We assume that the SBS can detect and eliminate the du-
plication among similar contents, which requires the ability of
content chunking and hashing computation, while the mobile
users don’t have the chunking ability due to constraints of
the battery life and computing resource. Besides, the file-level
deduplication technique is assumed to be employed at mobile
users, i.e., one user will compute and transmit the hash value of

a content before uploading. The user will finish the uploading
and go on to next task if this content has already existed at the
target server or at the SBS, and otherwise start the uploading.

Remark1: Note that caching at the SBS has several bene-
fits although it prolongs the overall uploading processing.First,
it reduces users’ online time of connecting the SBS. Second,it
improves the transmission efficiency of the SBS and alleviates
the backhaul congestion. Moreover, caching the most recently
uploaded data at the nearest SBS can provide the user a fast
review experience.

B. System Description

Assume that the SBS is equipped with a finite cache
memory of S units. We denoteT as the considered time
horizon which is made up ofN time slots and the duration
of each time slot equalsTs. For detecting duplication among
similar contents, the SBS needs to divide the received contents
into a number of variable-sized chunks, e.g., MMT assets.
Therefore, we assume that all the variable-sized chunk con-
tents composing each whole content come from a set of all
possible chunk files, which is denoted byF = {f1, ..., fF }.
Chunk filefj has length oflj . The maximal file length in the
setF is denoted bylmax and we assume thatS > K · lmax.
Besides, we definepj as the file popularity of chunk filefj,
indicating the upload probability of requesting filefj . Without
loss of generality, we only consider a file in the chunk-level
in the following.

The SBS allocates a virtual cache queue space for each
user, as shown in Fig. 1. In each time slot, each user,k (k =
1, · · · ,K), requests to upload a file to its cache queue from the
set F based on the file popularity. The transmitting duration
of each file is fixed to beTs, then filefj is transmitted at a
constant ratelj/Ts. In addition, a user is assumed to transmit
file f0 with zero length if it keeps silent in a time slot. We
consider that the arisings of contents among different time
slots in a cache queue are independent1, so are the arisings
among different cache queues.

We consider a delay-tolerant network, in which we denote
by td the duration of stay that one user can tolerate its
content being cached at the SBS, and one content must be
transmitted by the SBS whentd expires or before. Without loss
of generality, we considertd = ndTs (nd ∈ Z

+). Once a time
slot ends, the SBS compares the just received data with the
cached contents immediately. If there is duplication, the SBS
will delete the new received data and keep the corresponding
earlier version to meet the deadline requirement. Note that
enough auxiliary information will be created to reconstruct

1This means that the same contents may arise in a cache queue indifferent
time slots. In reality, a user is less likely to upload two same contents during
a short time. But usually, there are more thanK users in a small cell. For
a cache queue, another user will replace the current user’s position if the
current user leave the system after finishing its upload, andthe total number
of users that have data to send keepsK. Thus this independent assumption
is reasonable.

the whole content in the destination server2. Meanwhile, the
SBS determines which contents to be transmitted based on a
scheduling policy, in order to satisfy the cache memory and
the deadline requirements.

We denote byδk(j, i) thefile upload indicatorwhich equals
1 if userk chooses to upload filefj (j = 1, ..., F) in time slot
i and value0, otherwise (upload filef0). Besides, one user
can only transmit one content in every time slot, as a result,
we get

∑F

j=0 δk(j, i) = 1.
Definition 1 (File Arrival Rate). We definedk(t) (t ∈ [0, T])

as the file arrival rate at which userk transmits data to the
SBS, and it’s given bydk(t) =

∑N

i=1 dk,irect
(

t−(i− 1

2
)Ts

Ts

)

,

wheredk,i =
∑F

j=0 δk(j, i)
lj
Ts

represents the transmit rate of
userk in time slot i, andrect(t−a

b
) indicates the rectangular

function which is centered ata and has durationb.
Definition 2 (File Arrival Rate after Deduplication). We

define vk(t) (t ∈ [0, tps]) as the file arrival rate of userk
seen by the SBS after duplication elimination, andtps = nTs

stands for the present scheduling time instant (STI). Note
that multiple users might upload one same file simultaneously
which the current cache doesn’t contain. Without loss of gen-
erality, we only keep the uploaded version from the user with
the smallest indexk, and delete the other counterparts. As a
result, letσk(j, n) denote thefile indicator after deduplication
which takes value1 when userk is scheduled to upload file
fj (j 6= 0) in time slot n with the smallest indexk and no
duplication is detected in the cache, and0 otherwise. There-
fore, we havevk(t) =

∑n

i=1 vk,irect
(

t−(i− 1

2
)Ts

Ts

)

, where

vk,i =
∑F

j=0 σk(j, i)
lj
Ts

signifies the file arrival rate of userk
in time slot i after deduplication.

Definition 3 (File Status Indicator). We definecnk,i (i 6 n)
as the status of the file transmitted by userk in the i-th time
slot (this file is also denoted byfk,i) when then-th time slot
ends. We havecnk,i = 1 if fk,i is still buffered in the SBS at
tps = nTs, andcnk,i = 0, otherwise. Besides,cnk,n is given by

cnk,n =
∑F

j=0 σk(j, n).
Definition 4 (SBS Scheduling Indicator). We defineank,i

(i 6 n) as the SBS scheduling indicator attps = nTs with
regard to the filefk,i. We haveank,i = 1 if file fk,i is going
to be transmitted by the SBS in the (n+ 1)-th time slot, and
ank,i = 0, otherwise. Therefore, we obtaincn+1

k,i = 1− ank,i.
Accordingly, the transmit rate of the SBS in the (n+ 1)-th

time slot can be expressed asrn+1 =
∑K

k=1

∑n

i=1 c
n
k,ia

n
k,ivk,i.

III. SBS SCHEDULING POLICY

In this section, for reducing the total data volume that are
transmitted by the SBS in the long term, we propose the
SBS scheduling strategies on the cached contents. Besides,we
consider the online scheduling policy, i.e., the SBS does not
know what contents the users are going to upload exactly, but
only knows the probabilistic knowledge of users’ future upload

2For example, the auxiliary information can be file recipes which are used
to rebuild the whole files based on chunk files and their hash values. Except
those, the hash values of whole files are also needed to be stored in the SBS
cache temporarily as auxiliary information for file-level duplication detection.

requests. Therefore, the SBS cannot make scheduling policies
for the future time slots just like the offline scenario [12]
where the complete knowledge of the future upload requests
is known. The SBS can only make scheduling decisions at
every time slot transition, under the constraints of the contents
deadlines and the limited SBS cache.

We denote byD0 the data volume transmitted by the SBS
to finish the upload requests inN time slots if no cache
and no deduplication technique are employed, and byD1 the
corresponding data volume when cache and the deduplication
technique are adopted. Then, we have

D0 =

N
∑

i=1

K
∑

k=1

dk,iTs, (1)

D1 =

N
∑

i=1

K
∑

k=1

vk,iTs. (2)

We consider the percentage of the saved data traffic that are
eliminated due to duplication as the performance metric of the
system, which is denoted byη = D0−D1

D0

· 100%.
For disclosing the insights of the impact of the cache

memory size on the system performance, we consider two
cases: 1) infinite cache and 2) finite cache. And for simplicity,
the deadlines for all contents in the setF are assumed to be
the same.

A. Infinite SBS Cache

WhenS → ∞, the SBS makes scheduling decisions only
based on the content deadlines,td. In order to eliminate as
much duplicated data as possible, each content will always stay
in the SBS cache to be used for duplication detection unless
it has to be scheduled. As a result, the SBS just schedules to
transmit all the contents whose deadlines expire at every STI,
when the cache size is infinite. Thus this case is also called the
delay-limited region, where increasing the contents deadlines
can improve the uploading performance.

B. Finite SBS Cache

When the SBS cache size is finite, the scheduling strategies
of the SBS are dependent on the cache utilization, the dead-
lines of cached contents and the probabilistic knowledge of
users’ future upload requests. In addition, we assume that the
SBS is able to access the users’ upload rates in the following
time slot (dk,n+1) at tps, which helps to ensure the unused
cache is enough to hold the upcoming contents.

We denote bySn
u the used cache space after duplication

elimination attps. For contentfk,i that cnk,i = 1 at tps, we
denote bywk,i andpk,i the corresponding file length and the
probability that it is uploaded by one user in a future time
slot, respectively. Thus we havewk,i = vk,iTs and pk,i =
∑F

j=0 σk(j, i)pj .
Note that the contents transmitted at time slotin = n−nd+

1 will expire at tps and have to be transmitted by the SBS at
tps. As a result, when the SBS cache size is finite, the SBS
has to make scheduling among the unexpired cached contents
at tps in the following scenario:

• when
∑K

k=1 dk,n+1Ts > S − Sn
u +

∑K

k=1 c
n
k,in

wk,in ,
which means there is no enough cache space to contain
the upcoming upload contents.

Now, there is a problem abouthow to decide what contents
to be transmitted and what to stay. Thus we define the cache
benefit score (CBS) for each content buffered in the cache in
the following.

The remaining time to deadline for filefk,i is given bytni =
[nd − (n− i+ 1)]Ts. Considering that there areK users, thus
the maximal times that filefk,i may be transmitted in the
following tni /Ts time slots isqni = K · [nd − (n − i + 1)].
Then the probability that filefk,i will be transmitted at least
once in the followingtni /Ts time slots is denoted bypnk,i =

1− (1− pk,i)
qni . Note that filefk,i must be transmitted by the

SBS at time instant (tps + tni) or before, thus its CBS doesn’t
involve the time slots after (tps + tni).

Definition 5 (Cache Benefit Score). We define CBS of file
fk,i (cnk,i = 1) at tps as the difference between the probable
data volume to be deleted iffk,i will not be transmitted until
its deadline and that if filefk,i will be transmitted immediately
at tps, and it’s given by

CBS(fk,i|c
n
k,i = 1) =

[

1− (1− pk,i)
qni

]

wk,i. (3)

To detect more duplication with the remaining contents, the
scheduling policy tries to maximize the CBS of the contents
which are chosen to stay. Letbnk,i = 1 − ank,i, thus the value
of bnk,i has the reverse meaning ofank,i, i.e., file fk,i will stay
in the SBS cache ifbnk,i = 1, or be transmitted ifbnk,i = 0.
In addition, we havern+1Ts 6 Sn

u sinceS > Klmax, which
implies that buffer overflow will not be triggered.

Then, the scheduling problem can be formulated by the
following maximization problem

max
bn
k,i

K
∑

k=1

n
∑

i=i0

cnk,ib
n
k,i

[

1− (1− pk,i)
qni

]

wk,i, (4a)

s.t.

K
∑

k=1

n
∑

i=i0

cnk,ib
n
k,iwk,i 6 S −

K
∑

k=1

dk,n+1Ts, (4b)

∀cnk,i = 1, (4c)

where i0 = max{1, in + 1}, and (4b) indicates the cache
constraint.

Fortunately, the optimization problem is a 0-1 knapsack
problem, whereΘn = {fk,i|c

n
k,i = 1, ∀k, i0 6 i 6 n} is

the given set of items with cardinal numberMn = |Θn|, each
item has a weightwk,i and a valuepnk,iwk,i, and the knapsack

capacity is denoted byCn = S−
∑K

k=1 dk,n+1Ts. It is known
that the 0-1 knapsack problem is NP-hard and there are many
approaches to solve this extensively-studied problem so far.
Of those, the dynamic programming (DP) is one effective
and accurate way to seek the optimal solution. However, the
pseudo-polynomial time complexityO(MnCn) of DP goes
very large whenMn and/or Cn increase. In addition, the
greedy algorithm is an approximation method with which the
solution may not be optimal, but it has a lower time complexity

of O(Mn log(Mn)). In the greedy algorithm, we can first sort
the items in the setΘn in descending order of value per unit
of weight, which is denoted byun

j = pnk,i with the subscript
index j corresponding to the subscript index(k, i), and then
we haveun

1 > un
2 > · · · > un

Mn . Next, starting withun
j in

the descending order, the correspondingbnj (i.e., bnk,i) will be
taken to be1 if the weightwj (i.e.,wk,i) is no larger than the
remaining knapsack capacity, or0, otherwise. Thus we have

bnk,i = bnj =

{

1, if wj 6 Cn −
∑j−1

m=1 b
n
mwm,

0, otherwise.
(5)

With respect to the accuracy, the Lemma 1 in [13] indicates
that the greedy algorithm is near-optimal when the knapsack
capacity (Cn) is relatively large compared to the average file
length.

IV. N UMERICAL RESULTS

In this section, numerical results are illustrated to validate
the performance gain of the proposed scheme. We consider
the duration of each time slotTs = 10 (s) andF = 1000
chunk files. Besides, we consider a uniform distribution with
an interval[1, 20] Mbits concerning the file length. And the
file popularity pj obeys the Zipf distribution with skewness
parameterα in the simulation [5], [14], and is independent and
identically distributed across different time slots and different
users. The file popularity follows a uniform distribution when
α = 0 and gets more skewed whenα increases. In addition,
we setN = 20, K = 5 andα = 1 unless otherwise specified.

Since the scheduling policy is solved based on the future
upload request probability, the numerical results are obtained
by taking an average on 200 times simulations.

A. Impact of the Cache Size and Delay Tolerance

In Fig. 2, the percentages of saved data traffics vs. the SBS
cache size under different delay tolerances are described.Both
the DP and the greedy algorithm are used to solve knap-
sack problems. The upper bound is obtained by performing
ηmax = (D0 − min(D1))/D0. This figure shows that the
greedy algorithm suffers little performance degradation.

In Fig. 2, we observe that the SBS can save about 7.19%
data traffic whennd = 1, while increasing the cache size can’t
bring any benefit, since cache sizeS = 100 is already enough
for nd = 1 and this corresponds to the delay-limited region.
In addition, when the cache size is small (such asS < 300),
the system performance gets improved with the increase of
S as nd = 5, 10, 20, since small cache size will induce the
0-1 knapsack scheduling problem and the knapsack capacity
increases with the cache size, thus more data can be chosen
to stay in the SBS for deduplication. Moreover, enough delay
tolerance and cache size (such asnd = 20, S = 800) can reach
the upper bound and save about 41.86% data traffic.

Fig. 3 depicts the percentages of saved data traffics vs. the
delay tolerance under different SBS cache sizes considering
N = 100 time slots. We can see that increasing the delay
tolerance can achieve better performance, while in cases of

100 200 300 400 500 600 700 800
5

10

15

20

25

30

35

40

45

S: SBS cache size (Mbits)

S
a

v
e

d
 d

a
ta

 t
ra

ff
ic

 (
%

)

upper bound
DP
Greedy

100 110

24.5

25

nd = 20

nd = 5

nd = 10

nd = 1

Fig. 2. Saved data traffic vs.S.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

nd: delay tolerance

S
a

v
e

d
 d

a
ta

 t
ra

ff
ic

 (
%

)

upper bound
Greedy

S = 100, 200, 800, 2000

Fig. 3. Saved data traffic vs.nd.

0 0.5 1 1.5 2
0

20

40

60

80

100

α: Zipf parameter

S
a

v
e

d
 d

a
ta

 t
ra

ff
ic

 (
%

)

upper bound
nd = 1, S = 100
nd = 5, S = 100
nd = 5, S = 800
nd = 20, S = 100
nd = 20, S = 200
nd = 20, S = 800

Fig. 4. Saved data traffic vs.α.

2 4 6 8 10
0

10

20

30

40

50

60

70

K : number of users

S
a

v
e

d
 d

a
ta

 t
ra

ff
ic

 (
%

)

upper bound
nd = 1, S = 200
nd = 5, S = 200
nd = 5, S = 1000

nd = 20, S = 200
nd = 20, S = 400
nd = 20, S = 1000

Fig. 5. Saved data traffic vs.K.

S = 100 and S = 200, the performances will saturate
when content deadlines go larger than some certain values
(which grow with the increase ofS), since increasing content
deadlines doesn’t change the scheduling results of the knap-
sack problem and these scenarios correspond tocache-limited
region. Besides, we observe the delay-limited region (suchas
nd 6 5 for S > 200 andnd 6 30 for S > 800). Furthermore,
when nd falls in the middle range (such as5 6 nd 6 60
for S = 200), the performance improvement benefits from the
scheduling gain of the 0-1 knapsack problem.

B. Impact of Zipf Parameterα

We describe the impact of the parameterα of Zipf dis-
tribution on the system performance in Fig. 4. It is seen
that the larger the parameterα gets, the more data traffic
the SBS can save, and the system will achieve the better
performance. In addition, we observe that whennd = 20 and
S = 200, larger parameterα achieves almost the optimal
performance, since we obtain the online scheduling policy
based on the probabilistic knowledge of future upload requests,
and the probabilities for a small number of contents will
become greater asα grows, thus more of the contents that are
scheduled to stay will match with the future upload requests
and more data traffic can be saved.

C. Impact of the Number of UsersK

Fig. 5 describes the percentage of saved data traffic vs. the
number of users. We see that in most cases, the percentage of
saved data traffic grows with the increase ofK. Specifically, it
grows linearly as the number of users increases in the scenario
of nd = 1. Besides, whennd = 20, S = 200 andK > 7, the
system suffers a little performance degradation asK increases
since in the cache-limited region, with largerK, the cached
contents that the SBS can hold with the same cache size will
involve less time span, then a smaller portion of duplication
can be detected. This performance degradation can be made
up by adding the cache space.

V. CONCLUSION

In this paper, we proposed a upload cache system where
a SBS equipped with a cache space helped the users to
upload contents to servers. The contents were assumed to be
delayed a certain duration of time at the SBS, which was

exploited to perform the duplication elimination among similar
contents. In order to improve the transmission efficiency of
the SBS, scheduling policies were investigated for the cases
of delay-limited region and cache-limited region, respectively.
In particular, a 0-1 knapsack problem was derived for the
case of cache-limited region and was efficiently solved through
the greedy algorithm. The numerical results provide valuable
insights on how to design the system parameters.

REFERENCES

[1] Z. Zhao, M. Peng, Z. Ding, W. Wang, and H. V. Poor, “Clustercontent
caching: An energy-efficient approach to improve quality ofservice
in cloud radio access networks,”IEEE Journal on Selected Areas in
Communications, vol. 34, no. 5, pp. 1207–1221, May 2016.

[2] H. Liu, Z. Chen, X. Tian, X. Wang, and M. Tao, “On content-centric
wireless delivery networks,”IEEE Wireless Commun., vol. 21, no. 6, pp.
118–125, December 2014.

[3] H. Liu, Z. Chen, and L. Qian, “The three primary colors of mobile
systems,”IEEE Commun. Mag., vol. 54, no. 9, pp. 15–21, Sep. 2016.

[4] Y. S. Li, T. M. Cao, S. T. Wang, andet al., “A Resource-Constrained
Asymmetric Redundancy Elimination Algorithm,”IEEE/ACM Trans.
Netw., vol. 23, no. 4, pp. 1135–1148, Aug. 2015.

[5] M. Cha andet al., “I tube, you tube, everybody tubes: analyzing the
world’s largest user generated content video system,” inProc. ACM
SIGCOMM conf. Internet measurement, Oct. 2007, pp. 1–14.

[6] Y. Lim and et al., “MMT: An Emerging MPEG Standard for Multimedia
Delivery over the Internet,”IEEE MultiMedia, vol. 20, no. 1, pp. 80–85,
Jan. 2013.

[7] A. E. Essaili, L. Zhou, D. Schroeder, andet al., “Qoe-driven live and
on-demand lte uplink video transmission,” inProc. IEEE Int. Workshop
Multimedia Signal Process. (MMSP), Oct. 2011, pp. 1–6.

[8] Y. Zhu and A. Nakao, “Upload cache in edge networks,” inProc. IEEE
Int. Conf. Advanced Inf. Netw. Applications (AINA), March 2012, pp.
307–313.

[9] Y. Pu and A. Nakao, “A deployable upload acceleration service for
mobile devices,” inProc. IEEE Int. Conf. Inf. Netw., Feb. 2012, pp.
350–353.

[10] H. T. Tai andet al., “Sop: Smart offloading proxy service for wireless
content uploading over crowd events,” inProc. Int. Conf. Advanced
Commun. Technol. (ICACT), July 2015, pp. 659–662.

[11] K. Lee and et al., “Mobile Data Offloading: How Much Can WiFi
Deliver?” IEEE/ACM Trans. Netw., vol. 21, no. 2, pp. 536–550, April
2013.

[12] M. Gregori, J. Gmez-Vilardeb, J. Matamoros, and D. Gndz, “Wireless
Content Caching for Small Cell and D2D Networks,”IEEE J. Sel. Areas
Commun., vol. 34, no. 5, pp. 1222–1234, May 2016.

[13] H. Feng, Z. Chen, and H. Liu, “On the push-based converged network
with limited storage,” inProc. IEEE Int. Conf. Commun. (ICC), June
2015, pp. 4474–4479.

[14] ——, “Performance analysis of push-based converged networks with
limited storage,” IEEE Transactions on Wireless Communications,
vol. PP, no. 99, pp. 1–1, 2016.

	I Introduction
	II System Model
	II-A SBS Caching
	II-B System Description

	III SBS Scheduling Policy
	III-A Infinite SBS Cache
	III-B Finite SBS Cache

	IV Numerical Results
	IV-A Impact of the Cache Size and Delay Tolerance
	IV-B Impact of Zipf Parameter
	IV-C Impact of the Number of Users K

	V Conclusion
	References

