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Abstract—We propose a novel scheme for estimating the large-
scale gains of the channels between user terminals (UTs) and base
stations (BSs) in a cellular system. The scheme leverages TDD
operation, uplink (UL) training by means of properly designed
non-orthogonal pilot codes, and massive antenna arrays at the
BSs. Subject to Q resource elements allocated for UL training
and using the new scheme, a BS is able to estimate the large-scale
channel gains of K users transmitting UL pilots in its cell and
in nearby cells, provided K ď Q2. Such knowledge of the large-
scale channel gains of nearby out-of-cells users can be exploited
at the BS to mitigate interference to the out-of-cell users that
experience the highest levels of interference from the BS. We
investigate the large-scale gain estimation performance provided
by a variety of non-orthogonal pilot codebook designs. Our
simulations suggest that among all the code designs considered,
Grassmannian line-packing type codes yield the best large-scale
channel gain estimation performance.

I. INTRODUCTION

Massive MIMO, originally introduced by Marzetta in [1],
has been widely recognized as a key enabling technology of
5G/B5G. To harvest massive MIMO gains in the downlink
(DL) with multiuser (MU)-MIMO, channel state information
(CSI) of the users is needed at the BS, referred to as CSI
acquisition. In the FDD systems, UTs first learn the channels
based on DL reference signals and subsequently feed their
CSI to BS in the UL. The overwhelming CSI-overhead trends
of conventional FDD-based schemes, such as those in FDD-
based 4G-LTE systems, have spurred a lot of activities and
more efficient schemes design [2]. Alternatively, in TDD
systems, DL CSI can be directly obtained at the BS from
UL training and by capitalizing on the principle of UL/DL
channel reciprocity [1]. Reciprocity-based schemes offer fast
acquisition of channels between users and a massive BS array
and with low overheads, as they require allocating as few
UL pilot dimensions as the number of simultaneously served
single-antenna users [3].

At higher carrier frequency (e.g., mmWave) bands where
large chunks of bandwidth would be available, more massive
antennas can be readily deployed on the same footprint due to
the shorter wavelengths. Also, due to physics, channels decor-
relate much faster at these bands than at the sub-6GHz bands
used by LTE, which make the fast low-overhead CSI acquisi-
tion of TDD/reciprocity-based schemes even more attractive.
In addition, at these higher frequencies, dynamic shadowing
and intermittent signal blocking due to the appearance of

obstacles lead to shorter intermittent coverage and dramatic
pathloss swings, implying the need for much denser, inherently
irregular BS/radio-head deployments.

In densely deployed inherently irregular networks, however,
managing resource allocation and interference becomes very
challenging. For example, the notion of traditional cell plan-
ning (along with traditional frequency reuse) is no longer prac-
tical, and new access techniques are needed (whether slotted
or random access) that readily scale with the densification of
the infrastructure. Recently, a class of non-orthogonal pilot
codes were proposed in [4] for radio remote head (RRH)
networks, called “Spotlight”, where users using common pilot
dimensions over a slotted-access system are opportunistically
served by a subset of nearby RRHs. Spotlight relies on
aggressive pilot reuse where many users are aligned on a
UL pilot dimension, and exploits very fast user detection at
each RRH based on a simple binary energy detection scheme.
Although [4] focuses on slotted scheduled access, the same
principles can be employed in the context of random access.

In this paper, we focus on a TDD/OFDM-based system
which relies on reciprocity-based CSI acquisition, much like
the ones considered in e.g., [1] and [4]. Assuming slotted
transmission, we consider the OFDM plane is split into
resource blocks (RBs), each of which consists of resource
elements (REs) within the coherence time and bandwidth of
the channel. Also, assuming Q REs in an RB are allocated for
UL training, we consider the scenario where K users are in the
vicinity of a massive-array BS and transmit pilots over these Q
pilot REs using pre-assigned codewords. Focusing on a quasi-
static channel model where the user-channels stay constant
within any given RB, we study the problem of estimation of
the large-scale gains of the user channels based on massive-
array observations over the Q pilot REs. In particular, we
first determine the conditions on the number of users and
the number of pilot REs which ensure large-scale channel
gain estimation is feasible. Then we develop and analyze
high-performing pilot designs. Due to the space limitation,
for more design options and analysis, including extensions
to frequency-selective MIMO channel models, please see the
extended version [5].

Designing the UL pilot frame to enable the BS to learn
large-scale channel gains in addition to small-scale channels
has several important application scenarios. For instance, it
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can be used in the context of dense small-cell deployments to
allow a BS to learn the large-scale channel gains of the strong
(nearby) out-of-cell users simultaneously served by nearby
BSs, so that it can subsequently exploit them for interference
mitigation purposes, which we will investigate in detail in [5].
Another example where the need to learn these large-scale
channel gains naturally arises, involves slotted random access,
where the BS would also wish to know the subset of the K
users that decided to access the medium during any given RB.

II. SYSTEM MODEL

We consider a setting where a single BS is equipped with
an M -element antenna array and K single-antenna UTs are
randomly distributed around the BS (e.g., in its cell and in
nearby cells). We assume TDD operation over OFDM, and
employ a quasi-static channel model where each user channel
remains constant within an RB comprising a set of T OFDM
REs within the user-channel coherence time and bandwidth.

To provide context for the problem of interest, we consider
reciprocity-based training for DL transmission over a generic
RB, and the DL user channels are learned at the BS via
UL user pilots broadcasted within that RB1. Moreover, we
assume that Q REs are allocated for UL pilot transmission
in the RB, and user k broadcasts a pre-assigned Q ˆ 1 pilot
pattern, denoted by pk, over these Q REs. When K users
simultaneously transmit their pilot patterns over an RB to train
their channels, the received signal at the BS is given by:

Y “

K
ÿ

k“1

pkh
T
k `W (1a)

where

Y “
“

yp1q ¨ ¨ ¨ ypMq
‰

and W “
“

wp1q ¨ ¨ ¨ wpMq
‰

(1b)

are both Q ˆ M matrices. The M ˆ 1 random vector
hk “ rhk1 ¨ ¨ ¨hkM s

T „ CN p0, gkIM q represents the UL/DL
channel between the BS and user k within the RB, with gk
representing the large-scale gain of the user k’s channel. In
addition, the Q ˆ 1 vectors ypmq, wpmq „ CN p0, σ2

wIM q
represent the received signal vector and the additive white
Gaussian noise vector at the mth antenna over the Q REs
respectively, and they satisfy

ypmq “
K
ÿ

k“1

pkhkm `wpmq “ Phpmq `wpmq (2)

where hpmq fi rh1m ¨ ¨ ¨hKms
T is a K ˆ 1 vector and P fi

rp1 ¨ ¨ ¨ pKs “ ppqkqQˆK is a QˆK matrix.
In this paper, we focus on the problem of estimating the

large-scale user-channel gains tgku based on the observation
of Y in (1a) and a priori knowledge of the pilot sequences P
pre-assigned to the BS.

Instances of such a problem where the large-scale gains are
unknown and need to be estimated naturally arise in cellular
networks, whereby each BS independently serves UTs in its

1Due to to radio channel reciprocity, the UL and DL radio channels between
the BS and a given user are the same within any given RB.

cell. In the context of slotted transmission, the K nearby
users transmitting UL pilots also include all scheduled users
in neighboring cells whose channel gains are unknown at the
given BS. Learning the out-of-cell user’s channel gains can
be used for combating interference to the nearby (strong) out-
of-cell users. The problem also naturally arises in the context
of slotted random-access, where K represents the number of
users in the system, and only a fraction of them are active
(i.e., access the UL channel with pilot transmissions) within a
given RB. In this case, gk represents the “effective” channel
gain of user k (which is zero if user k is not active) and
can be thus treated as unknown at the BS. In either case, it
is natural to estimate the large-scale channel gains of the K
users first, and then proceed to estimation of the small-scale
channel coefficients of the dominant/detected users.

In the following, we provide our solutions to the large-
scale gain estimation problem in Sec. III. In the process we
also determine the maximum number of users, K, that can be
supported for a given number of pilot REs, Q, in the sense that
all K large-scale gains can be estimated via the observation in
(1a). In Sec. IV and V, we present theoretical and simulation-
based performance analysis for a class of pilot designs.

III. PROPOSED SCHEME: EXTRACTING LARGE-SCALE
CHANNEL GAINS WITH LARGE ARRAYS

Our proposed method estimates the large-scale channel
gains tgku using the sample covariance matrix of Y:

pRy fi
1

M
YYH “

1

M

M
ÿ

m“1

ypmqy
H
pmq. (3)

In particular, the method leverages the presence of a large array
(i.e., large M ) at the BS, where the sample covariance pRy

in (3) converges to the covariance of ypmq. The next theorem
gives conditions under which (accurate) estimation of the tgku
is possible with large arrays at the BS.

Theorem 1: Consider the matrix P “ ppqkqQˆK where pqk
is complex and generic. When M Ñ8, the BS can estimate
the large-scale channel gains gk’s of all the K users from (3)
almost surely if K ď Q2.

Proof: Since hpmq and wpmq are both i.i.d. over m, (2)
automatically implies that ypmq is also i.i.d. over m. Hence, we
can drop the foot script m of the relevant notations for brevity.
Also, when M Ñ8, pRy converges to its mean ErpRys almost
surely, where

ErpRys “ ErypmqyHpmqs. (4)

Letting Ry denote the covariance of ypmq, we have

lim
MÑ8

1

M2
}pRy ´Ry}

2
F “ 0, (5)

which implies that, if M Ñ 8, then Ry is also available at
the BS almost surely.

Next, we elaborate on how to estimate tgku from Ry. First
of all, we decompose Ry in the following form:

Ry “ PErhpmqhHpmqsP
H ` ErwpmqwH

pmqs (6)



“ PGPH ` σ2
wI (7)

where G “ diagprg1, g2, ¨ ¨ ¨ gKsq. Rewriting (7) as

Ry ´ σ
2
wI “

K
ÿ

k“1

gkpkp
H
k (8)

yields Q2 linear equations with the gk’s as the only unknowns.
Alternatively, (8) is a system of Q2 linear equations and K
unknowns. To see this, we rewrite (8) into a canonical form.
Specifically, we first reshape Ry and σ2

wI to

ry fi vecpRyq “ rr
T
y1 ¨ ¨ ¨ r

T
yQ s

T , (9)

rw fi vecpσ2
wIq “ σ2

wre
T
1 ¨ ¨ ¨ eTQ s

T , (10)

where ryq denotes the q-th column of Ry, and eq represents
the unit column vector with eql “ δpq ´ lq as the l-th entry.
Next, we define

D “ rvecpp1p
H
1 q vecpp2p

H
2 q ¨ ¨ ¨ vecppKpHKqs (11)

“ rp˚1 b p1 p˚2 b p2 ¨ ¨ ¨ p˚K b pKsQ2ˆK (12)
fi rd1 d2 ¨ ¨ ¨ dKs (13)

where “b” is the Kronecker product operator, and its kth

column is dk “ p˚k b pk. Then (8) can be rewritten as

r fi ry ´ rw “ Dg (14)

where g “ diagpGq “ rg1, ¨ ¨ ¨ , gKsT . Note that r is obtained
from Ry and the noise power σ2

w only, and D depends on
P only. Thus, given Ry, σ2

w and P, we can obtain a unique
g satisfying the Q2 linear equations in (14), as long as the
fat Q2 ˆK matrix D (due to Q2 ď K) has full rank K. As
shown in Appendix A, since rankpDq “ K, the solution is

g “ D:r. (15)

Therefore, we complete the proof of Theorem 1.
Remark 1: Theorem 1 shows that Q pilot REs allow the BS

to estimate the large-scale channel gains of up to Q2 users.
The key insight behind this fact is that a complex covariance
matrix has Q2 degrees of freedom, so that we can collect up
to Q2 linearly independent equations.

In the finite M case where pRy differs from Ry, the proof
of Theorem 1 suggests a method for estimating g from the
sample covariance pRy in (3). Following the same vectorization
operation as in (9), we first compute

pr “ vecppRyq ´ rw, (16)

and then obtain pg (the estimate of g) as the solution to the
following optimization problem:

minimize
θ

}pr´Dθ}2 (17a)

subject to θ ľ 0. (17b)

Problem (17) is a non-negative least-squares (NNLS) problem,
a special quadratic programming problem, which has been
intensively studied recently [11], [12], and can be readily
solved by general-purpose quadratic-programming solvers2.

2In fact, seeking efficient and special-purpose solvers of (17) which exploit
the sparsity promoting properties of NNLS are a topic and worth further
investigation.

It is worth making a few remarks. First, massive arrays
improve the estimation performance, as increasing the size of
the BS antenna array improves the sample covariance estimate
and thus the quality of the large-scale gain estimates provided
by (17). In addition, the pilot design matrix P’s, with random
entries sufficing in principle systematic designs as we will
show later in Sec. V, can provide D’s with desirable properties
and superior performance.

While Theorem 1 is stated for the entries of P being
complex and generic, we also consider practical constraints
such as restricting all pilot values to be real-valued, or have a
constant amplitude but random phases. Based on Theorem 1,
we have the following two corollaries.

Corollary 1: Consider P “ ppqkqQˆK where pqk’s are real
and generic. When M Ñ8, the BS is able to identify all the
K users almost surely if K ď QpQ` 1q{2.

Proof: The proof is deferred to Appendix B.
Corollary 2: Consider P “ ppqkqQˆK where pqk “ eθqk

and θqk „ Ur0, 2πq is i.i.d. generated. When M Ñ 8, the
BS is able to identify all the K users almost surely if K ď

Q2 ´Q` 1.
Proof: The proof is deferred to Appendix C.
Remark 2: The intuition behind the corollaries above is that

the degrees of freedom of their covariance matrices reduce to
QpQ` 1q{2 and Q2 ´Q` 1, respectively.

In fact, in both motivating examples we described at the
onset, only a fraction of users are expected to have signifi-
cantly nonzero (or appreciable) large-scale channel gains with
respect to the BS, say K 1 users. If K 1 ! K, then (17) becomes
a compressed sensing problem, such as in [10].

Finally, we briefly discuss the setting with K ą Q2 where
Theorem 1 cannot be applied. As a matter of fact, as long as
K 1 ď Q2, certain accurate solutions can still be found with
high probability even with K ą Q2. In this case, (17) can
be directly solved using an NNLS solver (without the need
for regularization). If K 1 ! K, then the solution can still be
uniquely identified with high probability (see [11]).

IV. PERFORMANCE METRIC ANALYSIS

In this section, we investigate the estimation performance of
large-scale gains. Using “˝” as the Hadamard product operator
and “| ¨ |” as the element-wise amplitude-taking operator, we
first show a key property between the column inner products
of D and P in the following proposition:

Proposition 1: dHi dj “ |p
H
i pj |

2 for @i and @j. In addition,
DHD “ pPHPq ˝ pPHPqH “ |PHP|˝2.

Proof: We first prove the first equality in the following:

dHi dj “
Q2
ÿ

l“1

d˚lidlj “
Q
ÿ

q“1

˜

Q
ÿ

q1“1

pp˚qipq1iq
˚pp˚qjpq1jq

¸

(18a)

“

Q
ÿ

q“1

pqippqjq
˚

˜

Q
ÿ

q1“1

pq1ippq1jq
˚

¸˚

(18b)

“ |pHi pj |
2. (18c)



It can be seen that no matter if D is real-valued or complex-
valued, the inner product of its any two columns is always
real-valued and non-negative. From (18), we can directly
obtain the other equations pDHDqi,j “ dHi dj “ |p

H
i pj |

2 “

|PH:,iP:,j |
˝2 “ p|PHP|˝2qi,j for any i, j.

Remark 3: The proposition reveals that DHD is real,
symmetric, and non-negative, and each of its diagonal entries
dominates all the entries on the same row and column.

In the rest of this section, we restrict our attention to the
case of K ď Q2, i.e., in the range where Theorem 1 is valid.
Let us go back to problem (17) where we aim to minimize
}pr´Dθ}2 subject to θ ľ 0. Recall that in the finite M case
pr differ from r. Letting re “ pr´ r denote the large-scale gain
estimation error and using (14), we obtain

pr “ Dg ` re. (19)

We ignore the non-negativity constraint on tgku and thereby
focus on the analysis of the ZF estimator:

pg “ D:pr “ pDHDq´1DH
pr “ g ` pDHDq´1DHre

looooooooomooooooooon

fi z: estimation noise

. (20)

To see the estimation performance of pg, we can analyze the
noise enhancement, captured by the KˆK covariance matrix
of the estimation noise (error) vector z:

Rz fi EpzzHq “ pDHDq´1DHEprerHe qDpDHDq´1. (21)

As a closed-formed expression of EprerHe q is cumbersome and
g dependent, we opt to use CN p0, σ2

eIq in place of the true
distribution3 of re, and σ2

e “ maxqppEprerHe qqq,qq. Also, note
that this distribution has the same asymptotic behavior as the
true distribution, since σ2

e Ñ 0 when M Ñ 8. Hence, we
simply the expression of Rz to

Rz “ σ2
epD

HDq´1. (22)

Inspection of the expression above reveals that Rz arises as
the combined effect of pDHDq´1 which clearly is a function
of the pilot code design, P, and of σ2

e , which captures the
accuracy of the sample covariance estimate and does not
depend on P. As a result, we opt to evaluate the impact in
estimation performance of any given pilot code design, via
the distribution of the eigenvalues4 of pDHDq´1 and their
aggregate effect via the trace of pDHDq´1. Given that the
trace is minimized when D is unitary, we can view the trace
of pDHDq´1 as a measure of noice enhancement.

A. Noise Enhancement Analysis

In this section, we will consider Grassmannian line packing
[9] to design the pilot code sequences, since it provides good
properties of the inner product between arbitrary two vectors.
Using algorithms such as in [7], we can find out a Q ˆ K

3It is worth noting that the covariance matrix of re involves fourth-order
statistics of the hk’s and the unknown gk’s. The i.i.d. complex Gaussian
assumption represents a worst-case scenario distribution in the context of
power constraints, which also simplifies performance analysis.

4Characterizing the distribution of its eigenvalues is still an active research
direction in random matrix theory, such as [6].

matrix P, i.e., we can pack K 1-dimensional lines in the Q-
dimensional space, so that for any two columns pi and pj , the
amplitude of their inner product cp fi maxP mini‰jp|p

H
i pj |q

is as large as possible. Given Q and K, [8] (Theorem 2.3 and
Corollary 2.4) provided the following lower bound on cp, also
referred to as the Welch bound:

cp ě

d

K ´Q

QpK ´ 1q
. (23)

It was shown in [8] that this lower bound is tight and thus
|pHi pj | “

b

K´Q
QpK´1q for @i and @j ‰ i, when K ď Q2 if

P P CQˆK , and when K ď QpQ ` 1q{2 if P P RQˆK , i.e.,
satisfying the condition called the full frame. Note that the
conditions K ď Q2 and K ď QpQ` 1q{2 are consistent with
our Theorem 1 and Corollary 1 in Sec. III, respectively.

Next, we consider P P CQˆK , K ď Q2 and for any two
columns of P their cp “

b

K´Q
QpK´1q as an example. Because of

Proposition 1, denoting by cd “ c2p, we can explicitly obtain

DHD “

»

—

—

—

–

1 cd ¨ ¨ ¨ cd
cd 1 ¨ ¨ ¨ cd
...

...
. . .

...
cd cd ¨ ¨ ¨ 1

fi

ffi

ffi

ffi

fl

KˆK

(24)

which can be further written into the following compact form:

DHD “ cd1Kˆ1p1Kˆ1q
T ` p1´ cdqIK , (25)

where the diagonal entries are 1, and the off-diagonal entries
are cd. Hence, its eigenvalues are simply given by:

λk “

"

1` pK ´ 1qcd, k “ 1,
1´ cd, k “ 2, 3, ¨ ¨ ¨ ,K.

(26)

Finally, we obtain the eigenvalues of pDHDq´1 as follows:

λ1k “

" 1
1`pK´1qcd

, k “ 1,
1

1´cd
, k “ 2, ¨ ¨ ¨ ,K.

(27)

V. SIMULATION RESULTS

In this section, we will investigate the noise enhancement
via simulation for P P CQˆK and K ď Q2.

First, we consider K “ Q2 by employing the codebooks
generated by Gaussian complex random variables, the theoret-
ical Grassmannian line packing, and the packet of Grassman-
nian line packing provided in [9], respectively. In particular,
we will look into the eigenvalues of corresponding pDHDq´1.

1) Gaussian Random Codebook: The matrix P is con-
structed by first drawing each entry from CN p0, 1q and then
normalizing every column to have unit norm. Once pDHDq´1

is obtained, the average noise enhancement per dimension is
given by 10 log10p

řK
k“1 λ

1
k{Q

2q dB.
2) Theoretical Grassmannian-Line-Packing Codebook: The

eigenvalues of pDHDq´1 under K “ Q2 can be simplified
to: λ11 “ 1{Q and λ1k “ 1 ` 1{Q for k “ 2, ¨ ¨ ¨ ,K. Thus,
the average noise enhancement per dimension is 10 log10p1`
pQ ´ 1q{Q2q dB. Note that P archiving the equality in (23)
can be explicitly expressed in the closed form for special cases



only (see discussion in [8]). In addition, when Q is large, the
average noise enhancement per dimension is approximately
p10 log10 eq{Q dB (close to 0 dB), where e is the natural
logarithmic base number.

3) Simulated Grassmannian-Line-Packing Codebook: Ow-
ing to the existence of the Grassmannian line packing limit but
the lack of general close-formed construction, a vast amount
of iterative algorithms have been developed to construct a set
of vectors approximating the theoretical limit. By running the
package provided by [9] to generate P and then pDHDq´1,
the average noise enhancement per dimension is given by
10 log10p

řK
k“1 λ

1
k{Q

2q dB.
Based on the three types of codebook design introduced

above, we will show their noise enhancement performance
for K “ Q2 where Q “ 2, 3, ¨ ¨ ¨ , 10. Fig. 1 shows the
comparison of average noise enhancement per dimension. The
noise enhancement of the Gaussian codebook could be even 50
dB higher than the Grassmannian approach at Q “ 10, which
means that Grassmannian approach is much better. Note that
the red dashed curve (line packing algorithms) diverges from
the black curve (the theoretical limit) when Q ě 7. This is
because when we ran the package provided by [9], we kept the
output once we were asked whether to stop, which implies that
when Q is large, the number of iterations is not large enough
to produce more precise result. As we tested for several exam-
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ples, running more iterations would make the simulated curve
closer to the theoretical curve at cost of the time complexity5.
In Fig. 2, we show the the noise enhancement of codebooks in
each of the corresponding Q2 “ 36 dimensions. It can be seen
that the noise enhancement of the Grassmannian Line Packing
codebook is very close to 0 dB in all dimensions. In contrast,
although the noise enhancement of the Gaussian codebook is
even less in some dimensions, it could much higher (up to 78
dB) in the other dimensions than the Grassmannian approach.

Besides K “ Q2, we also study the setting with K ă Q2

since we might not need to deal with fully loaded systems.
Since K ď Q implies orthogonal pilot design, we consider
Q ă K ă Q2 only. Note that for “Theoretical Grassmannian
Line Packing”, we need to replace with the following result:

10 log10

´ Q

K2
`
QpK ´ 1q2

pQ´ 1qK2

¯

dB. (28)

Moreover, we also consider the Gaussian real codebook when
K ď Q2 ´ Q ` 1 and the random phase codebook when
K ď QpQ` 1q{2 specified in Sec. III. Fig. 3 shows the noise
enhancement in each dimension in response to K by using the
5 methods of codebook construction for Q “ 6. Clearly, the
Grassmannian codebook outperforms all the others.

VI. CONCLUSION

In this paper, we propose a novel scheme for estimating
large-scale gains of the channels between the users and the
BSs on the fly when we apply non-orthogonal pilot codes for
UL training in TDD/reciprocity-based systems with massive
antenna arrays at the BSs. With Q REs allocated for UL
training, the new scheme enables the BS to estimate the large-
scale channel gains of up to all K users as long as K ď Q2.
The key of the new scheme is the use of the massive antenna
array incorporated with fully exploring the degrees of freedom
of the covariance matrix and non-orthogonal pilot codes.

5It is worth noting that while [8] implies the theoretical Grassmannian line
packing limit is achievable, the simulated curve differs from the theoretical
curve due to precision allowance and numerical errors accumulated through
algorithm iterations. The simulated curve can be made closer to the theoretical
one by either running more iterations of existing algorithms or inventing more
efficient algorithms, which are not the main focus of this paper.



Following our proposed scheme, several interesting prob-
lems need further investigation. For example, if channel de-
pendencies exist among the co-located antennas, how to use
the sample covariance matrix to better approximate the exact
covariance matrix is interesting. For another example, while
the Grassmannian line packing codebook is preferable for
estimating large-scale gains, it is well know that orthogonal
pilot code design is desired for estimating small-scale fad-
ing, because projecting the received signal into each spatial
dimension does not incur power loss. Therefore, it would be
of interest to investigate if there exist any other efficient and
intermediate scheme to inherit both of their good features.

APPENDIX

A. The Proof of rankpDq “ K for Theorem 1
To show rankpDq “ K almost surely for K ď Q2, it

suffices to show detpDq ‰ 0 almost surely when K “ Q2.
Note that detpDq is a polynomial of the generic entries (or
variables) pqk’s of P, defined in the continuous field. Thus,
detpDq “ 0 implies that either it always holds for arbitrary
choices of pqk’s or the finite number of solutions to satisfy
detpDq “ 0 constitute a subset with Lebesgue measure zero.
Hence, to prove detpDq ‰ 0 almost surely, we only need
to find one specific choice of pqk’s so that detpDq ‰ 06.
Specifically, we choose P to be a Vandermonde matrix:

P “

»

—

—

—

—

–

1 a1 pa1q
2

¨ ¨ ¨ pa1q
Q2´1

1 a2 pa2q
2

¨ ¨ ¨ pa2q
Q2´1

...
...

...
. . .

...
1 aQ paQq

2
¨ ¨ ¨ paQq

Q2´1

fi

ffi

ffi

ffi

ffi

fl

QˆQ2

(29)

where ai ‰ aj for @i, @j ‰ i. We will show that the resulting
D is also a Vandermonde matrix. To see this, we write the
kth column of D for each k “ 1, ¨ ¨ ¨ , Q2 as follows:

dk fi p˚k b pk

“ rpa1q
k´1

¨ ¨ ¨ ak´1
Q s

H
b rak´1

1 ¨ ¨ ¨ paQq
k´1
s
T (30)

“rppa1q
ḱ 1
q
˚
raḱ 1

1 ¨ ¨ ¨ ak´1
Q s, ¨ ¨ ¨ ,ppaQq

ḱ 1
q
˚
rak´1

1 ¨ ¨ ¨ aḱ 1
Q ss

T (31)

“rpa˚1 q
k´1
rak´1

1 ¨ ¨ ¨ ak´1
Q s, ¨ ¨ ¨ , pa˚Qq

k´1
rak´1

1 ¨ ¨ ¨ ak´1
Q ss

T (32)

“ rpa˚1 a1q
k´1, ¨ ¨ ¨ , pa˚1 aQq

k´1, pa˚2 a1q
k´1, ¨ ¨ ¨ , pa˚2 aQq

k´1,

¨ ¨ ¨ , pa˚Qa1q
k´1, ¨ ¨ ¨ , pa˚QaQq

k´1
s
T . (33)

It can be seen that each entry has the same exponential factor
k ´ 1 for the kth column of D. Next, we denote by d2 “

rb1, b2, ¨ ¨ ¨ , bQ2sT , and its lth entry can be easily written as

bl “ a˚l1al2 , l “ 1, ¨ ¨ ¨ , Q2 (34)

where l2 “ modpl ´ 1, Qq ` 1 and l1 “ pl ´ l2q{Q ` 1, i.e.,
l “ l2 ` pl1 ´ 1qQ. Thus, we directly obtain

detpDq “
ź

1ďiăjďQ2

pbj ´ biq “
ź

1ďiăjďQ2

pa˚j1aj2 ´ a˚i1ai2q, (35)

where i “ i2 ` pi1 ´ 1qQ, j “ j2 ` pj1 ´ 1qQ. Given any i, j
and i ‰ j, we must have pi1, i2q ‰ pj1, j2q. Since each aq ,
q “ 1, ¨ ¨ ¨ , Q is generic, we have bj ´ bi ‰ 0 almost surely,
which directly implies detpDq ‰ 0 almost surely.

6This approach has been widely used in network information theory to
study linear independencies among the row/column vectors of a matrix.

B. The Proof of Corollary 1
Observations of (7) reveal that Ry ´ σ2

wI “ PGPH “

PGPT is real symmetric, which means that the entries in its
upper triangle are the same as those in the lower triangle. Thus,
the number of equations that we need to consider are only
those corresponding to the diagonal entries and the entries in
one triangle, which is given by Q`pQ2´Qq{2 “ QpQ`1q{2.
Translating this observation into examining each row of the
resulting matrix D implies that its ith row and jth row are
identical, whenever i “ l2 ` pl1 ´ 1qQ, j “ l1 ` pl2 ´ 1qQ,
for @i, @j ‰ i. If we delete the repeated QpQ´ 1q{2 rows of
D and also the last QpQ´ 1q{2 columns of D, the resulting
pQpQ`1q{2qˆpQpQ`1q{2q matrix D1 is still a Vandermonde
matrix. Following the similar proof, we can show D1 has full
rank almost surely. Overall, if K ď QpQ ` 1q{2, (14) are
under-constrained, and thus g can be uniquely determined.

C. The Proof of Corollary 2
Observations of (7) reveal that the diagonal entries of Ry´

σ2
wI “ PGPH is a scaled identity matrix, which means that

the lth row of D is identical to its first row, when l “ q`pq´
1qQ for every q “ 2, ¨ ¨ ¨ , Q. If we delete the repeated Q´ 1
rows of D and also the last Q´1 columns of D, the resulting
pQ2´Q`1qˆpQ2´Q`1q matrix D1 is again a Vandermonde
matrix. Following the similar proof, we can show D1 has full
rank almost surely. Overall, if K ď Q2´Q`1, (14) is under-
constrained, and g can be uniquely determined.
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