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SUMMARY Network functions virtualization (NFV) enables telecom-
munications service providers to realize various network services by flexibly
combining multiple virtual network functions (VNFs). To provide such ser-
vices, an NFV control method should optimally allocate such VNFs into
physical networks and servers by taking account of the combination(s) of
objective functions and constraints for each metric defined for each VNF
type, e.g., VNF placements and routes between the VNFs. The NFV con-
trol method should also be extendable for adding new metrics or changing
the combination of metrics. One approach for NFV control to optimize
allocations is to construct an algorithm that simultaneously solves the com-
bined optimization problem. However, this approach is not extendable
because the problem needs to be reformulated every time a new metric is
added or a combination of metrics is changed. Another approach involves
using an extendable network-control architecture that coordinates multiple
control algorithms specified for individual metrics. However, to the best
of our knowledge, no method has been developed that can optimize allo-
cations through this kind of coordination. In this paper, we propose an
extendable NFV-integrated control method by coordinating multiple con-
trol algorithms. We also propose an efficient coordination algorithm based
on reinforcement learning. Finally, we evaluate the effectiveness of the
proposed method through simulations.
key words: NFV, Network Control, Reinforcement Learning

1. Introduction

Network functions virtualization (NFV) [4], [5] enables
telecommunications service providers (TSPs) to provide var-
ious network services by flexibly combining multiple virtual
network functions (VNFs). These network services in NFV
can be provided by combining multiple VNFs (e.g., virtual
machines (VMs), intrusion detection systems (IDSs)), each
of which is specified for each network service type, between
end-to-end hosts such as a content server and a user terminal.
To provide such services, a TSP should optimally allocate
virtual networks (VNs) consisting of VNFs and routes be-
tween the VNFs into underlying physical servers and net-
works. It has been reported that the inefficient manage-
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ment of network policies (e.g., VNF placements) accounts
for 78% of data-center (DC) downtime [6], [7]; therefore,
resources must be optimally allocated to provide carrier-
grade network services. To avoid inefficient management,
the NFV control method should determine the optimal allo-
cations of the VNFs and optimal routes between the VNFs
in the network by solving an optimization problem, which is
formulated by objective function(s) (e.g., minimizing link-
utilization, server-load), and constraint(s) (e.g., upper limit
link-bandwidth, server-CPU). However, though a significant
amount of research has been conducted [8], no unified al-
location problem has been formulated and solved that takes
into account all conditions consisting of combination(s) of
objective functions and constraints.

This paper addresses the challenge of developing an
NFV-integrated control method, i.e., how to formulate and
solve such a unified optimal allocation problem. This prob-
lem becomes more difficult due to the increase in the number
of control metrics and diversification of objective functions,
where the control metric is defined by parameter(s) to char-
acterize the state of a controlled network, e.g., VNF place-
ments and routes between the VNFs. In addition, the NFV-
integrated control method should be extendable, i.e., able
to handle new control metrics being added or constraints of
control metrics being changed. This requirement is crucial
because a optimization problem needs to be solved quickly
and easily even when a new network service starts or a new
constraint needs to be taken into account.

A simple way to achieve adequate extendability is to
solve independently pre-specified optimization problems for
each control metric. However, if we independently solve
each optimization problem taking into account only the prob-
lem’s constraints, we may not satisfy all the constraints.
Hereafter, we call this problem control conflict (see Sec-
tion 3 for details). To avoid control conflicts, NFV-integrated
control methods need to calculate the optimal allocation that
satisfies all conditions determined by combination(s) of con-
trol metrics.

Previous studies on NFV-integrated control methods
can be categorized into two approaches. One is the com-
bined approach [7], [9]–[15], which builds a specified algo-
rithm that simultaneously solves the combined optimization
problem. However, it is not extendable because we need
to reconstruct the problem formula every time the combina-
tion of controlmetrics changes. The other is the coordinated
approach [16]–[18], which involves using an extendable con-
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trol architecture that coordinates multiple control algorithms
pre-specified for individual control metrics. Though an ex-
tendable control architecture has been proposed, this archi-
tecture is only a concept and no specific implementation or
formulation is described.

In this paper, we propose an extendable NFV-
integrated control method based on the coordinated control
architecture, which consists of multiple pre-specified con-
trol algorithms and a single coordination algorithm between
the control algorithms. Our key idea for extendability is
modularization that divides a whole system into standard-
ized functional elements and reduces the interdependence
among the elements, which is a widely used technique for
designing/managing huge complex systems. We first prepare
and solve each control algorithm for each control metric and
then interactively improve the results using our coordina-
tion algorithm. We also propose an efficient coordination
algorithm on the basis of reinforcement learning (RL) [19].
The learning makes it possible to learn the strategy for how
to find better allocations efficiently from past exploration
steps. Our method requires more iterations than the com-
bined approach, but it achieves extendability through the
coordinated control architecture.

This paper is structured as follows. Section 2 describes
relatedwork and Section 3 describes ourmotivation in detail.
Section 4 describes our extendable NFV-integrated control
method and an efficient algorithm for our method using RL.
Section 5 describes the use cases for our method, the model-
ing and formulation of the proposed method, and its extend-
able implementation. Section 6 evaluates the performance,
and Section 7 concludes the paper.

2. Related Work

Previous studies on NFV-integrated control methods can be
categorized into two approaches: combined and coordinated.

2.1 Combined approach

The combined approach [7], [9]–[15] builds a specified algo-
rithm that simultaneously solves the combined optimization
problem.

Jiang et al. [9] studied a combined optimization prob-
lem of VM placement and routing to minimize traffic costs
in an intra-DC. They also proposed an efficient online al-
gorithm in a dynamic environment under changing traffic
loads by leveraging and expanding the technique of Markov
approximation. However, since the algorithm approximates
the combined optimization problem by utilizing the specific
problem structure, it is difficult to extend to another use case.

Yoshida et al. [10] designed a plug-in architecture to
satisfy various requirements related to NFV resources. They
also proposed a modified Multi-objective Genetic Algo-
rithm (MOGA) to obtain approximate solutions in reason-
able computation time. However, each plug-in should be
pre-formulated as a format of objective functions and/or
constraints of MOGA. Moreover, they evaluated only one

use case and did not mention extendability for adding and/or
changing plug-ins.

Jin et al. [11] proposed optimization method to mini-
mize the cost of caching, transcoding, and routing functions
for cost-efficient video distribution over the future Internet.
They developed two algorithms for maximizing total cache
hits and minimizing the networking cost. They improve
the solution by alternately calculating those two algorithms.
However, this method cannot be applied to general use cases
due to the control conflict between objective functions (a
detailed example is given in Section 3).

Cui et al. [7] formulated the Policy-VM Consolidation
problem, which can jointly optimize the VM placement as
the origin/destination node and VNF placement as the mid-
dle node, and the route between VMs via VNF. They also
proposed an efficient and synergistic scheme to jointly con-
solidate VNFs and VM. However, this scheme is heuristic
and specified for only one use case, so it is difficult to extend
to other use cases.

Herrera et al. [8] survey the research challenges of solv-
ing the resource allocation (RA) problem in NFV-based net-
work architectures, and this problem is called the NFV-RA
problem. They classify the NFV-RA problems into three
stages: VNFs chain composing, VNF forwarding graph em-
bedding, and VNFs scheduling. They mention that these
three stages of the NFV-RA problem are related to each
other, and a way to coordinate the three stages is a major
challenge of the NFV-RA problem. The aim is to optimize
the use of resources to improve the performance of the net-
work.

To coordinate NFV-RA problems, various studies have
been conducted [12]–[15]. In particular, Li et al. [15] formu-
lated a typical three-stage coordinated NFV-RA model as a
mixed integer programming (MIP) and proposed a heuristic
solution called merge-split viterbi (MSV). However, MSV
is a specified algorithm that simultaneously solves the com-
bined optimization problem, so it is difficult to extend to
other use cases. Other algorithms [12]–[14] are similar to
the case of MSV.

2.2 Coordinated approach

The coordinated approach [16]–[18] involves using an ex-
tendable control architecture that coordinates multiple con-
trol algorithms pre-specified for individual control metrics.

Tsagkaris et al. [16], [17] and Stamou et al. [18] pro-
posed a hierarchical network control framework for unifying
all control when a network contains multiple control metrics.
In particular, their proposed architectures [17], [18] include
a single Autonomic Network Management (ANM) Core and
multiple Autonomic Control Loops (ACLs). Each ACL is
a control module specialized for one control metric. The
ANM Core integrates control of all ACLs and determines
whether each ACL appropriately controls each control met-
ric. However, this extendable control architecture is only a
concept, and no specific implementation or formulation is
described.
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3. Challenges and motivation

In this section, we describe the challenges and motivation
for extendable NFV-integrated control methods with a con-
crete use case. We first consider the use case as an example
in which we provide a secure-cloud-computing service con-
sisting of routes between VMs via an IDS. In this case, the
control metrics are routes, VM placements, and IDS place-
ments, and each control algorithm is pre-formulated (detailed
formulation is given in Section 5.3.2).

Independently solving each optimization problem leads
to the following control conflicts.

(1) Conflict between constraints - Capacity overload:
Since each control algorithm takes into account only its con-
straints, all constraints might not be satisfied at the same
time. For example, when each problem for each control
metric is independently solved at the same time, VMs and
IDSs will be allocated on the same server, resulting in server
overload.

(2) Conflict between objective functions - Oscillatory
solution: If each algorithm with a different objective func-
tion is conducted independently, the network may become
unstable. For example, if the IDS-allocation algorithm to
balance server loads and the VM-allocation algorithm to
minimize electric power consumption (i.e., the number of
powered-on servers) are used independently (e.g., the latter
is done after the former repeatedly), most assignment results
are repeatedly changed.

The above conflicts can be avoided by sequentially solv-
ing each optimization problem for residual resources of each
allocated result. However, the obtained results after conduct-
ing all the algorithms are not guaranteed to become optimal.
This is because, since the result of the previous algorithm is
fixed, an inefficient solution may be inevitable. For example,
when the results of the physical distance between allocated
VMs are long, inefficient routing is inevitable.

The motivation for this paper is to avoid the conflicts
and inefficiency described above. In addition, we address the
challenge of extendability for changing control metrics that
are considered essential in NFV-integrated control. Our goal
is to construct an extendable NFV-integrated method, i.e.,
enabling NFV control metrics to be changed and added with-
out changing each control-algorithm formulation. Though
our proposed method cannot solve all the challenges of ex-
tendability or cover all use cases, to the best of our knowl-
edge, this is the first paper to tackle this problem, and we
expect that more complicated use cases can be solved by
enhancing the proposed method.

4. NFV-integrated control method

We have developed an extendable NFV-integrated control
method by coordinating multiple control algorithms. We
have also developed an efficient coordination algorithm by
using RL to find better solutions with fewer coordinating
iterations than the case without RL.

Network Observation Information/
User Demands (Constraints)

Control Result / Setting command

Physical Network (Node, Link, Server)

Coordination Engine (Proposal.)

Route
Control Engine

Route Control
Algorithm

VNF#1
Control Engine

VNF#1 Control
Algorithm

VNF#2
Control Engine

VNF#2 Control
Algorithm

VNF#3
Control Engine

VNF#3 Control
Algorithm

・・・

Constraints

Network
configuration

Input 
Management

Unit

NFV-integrated control engine

Control
Information

Fig. 1 Overview of our proposed NFV-integrated control method

In this section, we first describe the overview and proce-
dure of the proposedmethod and then give an overview of RL
and a formulation of the proposed coordination algorithm.

4.1 Overview of proposed method

Our method executes hierarchical control consisting of mul-
tiple control engines and a single coordination engine
(Fig. 1). A control engine has an algorithm to calculate a
solution for each control metric and calculate the evaluation
value of the solution quantitatively. The evaluation value of
a solution is defined as the objective-function value if the
constraints of a control algorithm are satisfied; otherwise, it
returns a negative value as a penalty. The objective-function
value allows only positive values. Using this negative value,
we can determine whether the constraints are satisfied. The
coordination engine explores a solution by changing a part of
the solution to improve the comprehensive evaluation value
(CEV), which is defined as a unique value determined by all
evaluation values of solutions calculated by the individual
control engines, e.g., the weighted average of each evalua-
tion value of the solution. The weight of each evaluation
value is determined from the importance of each objective
function.

We describe the procedure of our proposed method.
Each control engine first calculates initial solutions indepen-
dently, and then our coordination engine recursively explores
the solutions to improve the CEV. In the exploration proce-
dure, the coordination engine first changes a part of a solution
on the basis of the current CEV, and then the changed solu-
tion is sent to each control engine. Next, each control engine
calculates the evaluation value on the basis of the changed
solution. At this time, some control engines calculate the
part of the next solution together as necessary. For example,
a route control engine needs to calculate the next route on
the basis of the changed VNF placements. The coordination
engine calculates the next CEV on the basis of the evalua-
tion value and then returns to the beginning of the procedure.
When the exploration is terminated by repeating the above
procedure a certain number of times, we regard the highest
CEV solution among the past iterations as the final solution.
Our method can be extended because we improve each so-
lution on the basis of only the CEV, independently of the
control metric type or number of control engines.
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Coordination Engine (Proposal.)

Route
Control Engine
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(3)

Instruction Agent

CEV Calculation Unit
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Fig. 2 Overview of coordination engine based on reinforcement learning.
An example when instruction agent selects VNF#1 control agent.

4.2 Overview of coordination algorithm

RL solves the decision problem of what action an “agent”
should take by observing the current state within a certain
“environment.” An agent receives a reward from the envi-
ronment depending on the selected action and then learns a
strategy for how to maximize the received reward through a
series of selected actions. In an NFV-integrated control en-
vironment, an agent’s strategy indicates an efficient solution
exploration to improve the CEV, and the agent observes the
current solution and CEV. We base our proposed algorithm
on RL because general-purpose learning is possible by just
defining states, actions, and rewards and applying them to
general control engines without a specific algorithm.

Specifically, we use hierarchical multi-agent RL [20],
consisting of a single instruction agent andmultiple control
agents (Fig. 2). The instruction agent learns a selection of
the control agent, and the control agent learns an efficient
solution exploration for the corresponding control engine.
The purpose of hierarchical multi-agent RL is to make our
method extendable by preparing a specific control agent for
each control engine. Since all agents’ learning algorithms
are common, the learning algorithm is not affected by any
change of any control algorithm.

We introduce the input/output (I/O)-conversion unit,
which converts the I/O format of each control engine. Be-
cause the changed solution of a control engine may affect
evaluation values of other control engines, we need to share
the changed solution by converting the I/O format. For ex-
ample, the VNF placements affect the routes between the
VNFs, so this unit needs to convert the VNF placements
(i.e., an output of a VNF control engine) into traffic demands
between servers on which the VNFs are allocated (i.e., input
of a route control engine). We assume that the cost of im-
plementing the I/O conversion unit is lower than the cost of
rebuilding each algorithm formulation. An example of the
I/O-conversion is described in Section 5.3.3.

We describe the procedure of our coordination algo-
rithm based on hierarchical multi-agent RL. As shown in
Fig. 2, the instruction agent first selects a control agent on
the basis of the RL (1), and then the selected control agent

Table 1 Symbol descriptions for coordination algorithm

Symbol Definition

ia Instruction agent
G := {g} Control agent set
E := {e} Control engine set
t ∈ T Exploration step (T : Total exploration steps)
tg Number of iterations of control agent (g ∈ G)
T g Total exploration steps of control agent (g ∈ G)
s

agent
t State of each agent at step t (agent ∈ ia ∪G)
a

agent
t Action of each agent at step t (agent ∈ ia ∪G)

r
agent
t Reward of each agent at step t (agent ∈ ia ∪G)
Q

(
s

agent
t , a

agent
t

)
Policy value for state sagent

t and action a
agent
t

α, γ Hyper-parameter (Default: α = 0.2 and γ = 0.9)
Ae Solution of control engine e
Dt :=

{
di j t

}
Traffic demands from node i to node j at step t

Vt :=
{
vet

}
Evaluation values of control engine e at step t

θ := {θe } Coefficients of control engine e

starts exploring solutions and learning a strategy of explo-
ration (2)–(6). In the exploration step, the selected control
agent observes the current solution (2), then changes a part
of the solution on the basis of the RL, and sends the changed
solution (3). After the changed solution is shared through
the I/O-conversion unit (4), each control engine calculates
its evaluation value. Next, the CEV is calculated from all
evaluation values (5), and then the control agent receives the
CEV as a reward (6). Then, the instruction agent learns the
strategy of selecting a control agent on the basis of the max-
imum CEV in the exploration (7) and selects the next agent
on the basis of the strategy. After repeating the procedure,
the best solution is output as the final solution. Finally, the
procedure returns to the beginning (1).

4.3 Formulation of coordination algorithm

We describe the formulation of our coordination algorithm.
Table 1 summarizes the definitions of the variables of our
coordination algorithm. For agent learning algorithms, we
use Q-learning [19], which learns the relationship of a state,
action, and reward to maximize the policy value. Policy
value Q (st, at ) is defined as the expectation of the sum of
rewards obtained in the future when action at is selected in
state st .

4.3.1 Instruction-agent algorithm

The instruction agent learns how to select control agents.
A state is defined as the selected control agent, action as
the selection of the next control agent, and reward as the
maximumCEV obtained during this control-agent selection.

The instruction-agent algorithm is shown in Algo-
rithm 1. Lines 1–2 show the initialization of Q

(
sia, aia) ,

exploration step t, and initial state sia
0 . The term “ε greedy”

in line 4 means the action selected on the basis of the strat-
egy that a random action is selected with probability ε ;
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Algorithm 1 Instruction-agent Learning
1: initialize: Q

(
sia, aia) ← 0, for all sia and aia

2: initialize: t ← 0, sia
0 ← random choice from G

3: while t < T do
4: aia

t ← ε greedy
(
sia
t

)
5: sia

t+1 ← action
(
aia
t

)
6: r ia

t+1, t
g ← agent learning

(
sia
t+1

)
7: ∆Q ← r ia

t+1 + γmaxa′ Q
(
sia
t+1, a

′
)
−Q

(
sia
t , a

ia
t

)
8: Q

(
sia
t , a

ia
t

)
← Q

(
sia
t , a

ia
t

)
+ α∆Q

9: t ← t + tg

otherwise, an action aia
t that maximizes Q is selected (i.e.,

arg maxa′ Q
(
sia
t , a

′)) with probability 1 − ε . It indicates the
epsilon-greedy algorithm and is to avoid convergence to a lo-
cal optimum solution. The term “action” in line 5 shows the
action of the instruction agent aia

t , which means the switch
from the old control agent g̃ to the new control agent g, that
is, sia

t = g̃ and sia
t+1 = g. The term “agent learning (sia

t+1)” in
line 6 means control-agent learning (Algorithm 2). The con-
trol agent returns the maximum CEV during exploration and
the number of exploration steps. Lines 7–8 show instruction-
agent learning, which means that Q

(
sia, aia) is updated from

the relationship of state sia, action aia, and reward r ia. ∆Q
is called temporal difference error in RL, which indicates
the difference between the current reward and the expected
reward. At line 9, tg means the number of iterations in
Algorithm 2.

4.3.2 Control-agent algorithm

The control agent learns how to efficiently change the solu-
tion of the control engine. A state is defined as the solution
of the control engine, action as the changing of the con-
trol solution of each control engine, and reward as the CEV
(examples are given in Section 5.3.3).

The control-agent algorithm is shown in Algorithm 2.
The control agent g is selected by the instruction agent, i.e.,
g corresponds to the current state of instruction agent sia.
Lines 1–2 show the initialization of each variable, and Ae

means the initial solution corresponding to the control engine
e. The term “action” in line 5 means the changing part of the
solution of the selected control engine e. Then it outputs the
result to the selected control engine e. In line 6, the result is
shared among other control engines through I/O-conversion
unit. Lines 7–8 show the calculation of evaluation values
of all control engines on the basis of the changed solution.
The term “CEV calculation” in line 9 means the calculation
the CEV as the reward of control agent rg

t+1. The CEV is
basically defined as follows:

CEV =
∑
e∈E

θevet , (1)

where θe and vet are the weighting parameter and evalua-
tion value for the control engine e, respectively. The term
“end state” in line 12 means the termination condition of
control-agent learning, i.e., the state that does not satisfy

Algorithm 2 Control-agent Learning
1: initialize: Q (sg, ag ) ← 0, for all sg and ag

2: initialize: sg0 ← Ae

3: for t = 0 to T g − 1 do
4: a

g
t ← ε greedy

(
s
g
t

)
5: s

g
t+1 ← action

(
a
g
t

)
6: Dt+1 ← I/O conversion

(
s
g
t+1

)
7: for each e ∈ E do
8: ve

t+1 ← evaluation by each control engine (Dt+1)
9: r

g
t+1 ← CEV calculation (Vt+1, θ)

10: ∆Q ← r
g
t+1 + γmaxa′ Q

(
s
g
t+1, a

′
)
−Q

(
s
g
t , a

g
t

)
11: Q

(
s
g
t , a

g
t

)
← Q

(
s
g
t , a

g
t

)
+ α∆Q

12: if sg
t+1 is end state then

13: return maxτ∈{0,1, ··· , t }
{
r
g
τ

}
, t + 1

14: t ← t + 1
15: return maxτ∈{0,1, ··· ,T g−1}

{
r
g
τ

}
, T g

one or more constraints. That is, after reaching the solution
that does not satisfy at least one constraint, the control agent
stops the exploration. In lines 13 and 15, the control agent
returns the maximum CEV during exploration as a reward
for the instruction agent.

5. Use case of proposed method

We consider the use cases where the extendable NFV-
integrated control method is required, i.e., where the con-
trol metrics and network control conditions are changed and
added frequently. First, we classified the general use case
of NFV control using a combination of three elements: (1)
control metric, (2) control objective, and (3) network model.
We also prepared four options as representatives of each el-
ement. One option is selected from (1) control metric, one
option is selected from (2) control objective, and two options
are selected from (3) network model. Finally, we consider
12 use cases excluding 4 invalid combinations from the 16
(= 24) combinations.

In Sections 5.1 and 5.2, we first describe the taxonomy
of general use cases and the modeling of four options. Then
we describe the modeling and formulation of the proposed
method and its extendable implementation in Sections 5.3
and 5.4, respectively.

5.1 Taxonomy of general use case

Several studies [8], [21]–[23] classify VNF/cloud resource
control methods and their use cases. Various use cases are
composed of a combination of 3 elements.

(1) Control metric: The control metric is defined by
parameters to characterize the state of a controlled network,
e.g., VNF types, VNF model (e.g., CPU, memory, and stor-
age), VNF placements, the combination of the VNFs, the
order to go through the VNFs and routes between the VNFs,
etc. Specifically, each control metric determines the con-
straints, e.g., link bandwidth, latency, server capacity, the
maximum number of chaining VNFs, etc.
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Table 2 Summary of 12 types of use cases combining 4 options

Options 1 2 3 4 5 6 7 8 9 10 11 12

(1) with IDS X X X X X X X X

(2) with Reliability X X X X X X

(3A) with Fixed node X X X X X X

(3B) IDS isolation or sharing (X: isolation) X X X X – – – –

(2) Control objective: Control objectives can be cat-
egorized as follows: improvement of resources utilization
efficiency (e.g., link and server), network performance (e.g.,
traffic throughput and latency), quality of service/quality of
experience (QoS/QoE), an acceptance rate of service de-
mands, energy efficiency, security and reliability, etc. The
number of control objectives also depends on the use case.
The use cases in NFV often introducemultiple control objec-
tives. It has been reported that 34% of the previous studies
on VM placement used the multi-objective approach [21].

(3) Network model: The network model is a specific
representation of a controlled network and user demands
depending on each use case. The example of network model
element is as follows: network topology, traffic transport
rule (e.g., route splittable or not), node placement rule (e.g.,
fixed node placement or not), and resource isolation rule
(e.g., with or without network slicing), etc.

We describe two cases with different network models
as an example. One example case is when assuming the
service function chaining (SFC) in a TSP network. In this
case, we generally assume the communication between the
client as an origin node and the server as middle nodes or a
destination node. Then, wemodel that the client node is fixed
because its location such as a company building using an SFC
service is predetermined by the client’s location, and the
server node can migrate because that function is virtualized
as a VM or VNF. In our model, the server resources to
be allocated to individual VNFs are separated among users
for reasons such as the VNF license fee and security. The
other example case is when assuming the data transportation
in an inter-DC network. In this case, it is assumed that
the functions in origin, middle, and destination nodes can
migrate because these functions are virtualized as VMs or
VNFs. When a user requests multiple VN demands, or
when the DC operator or TSP manages all VN demands,
the server resources to be allocated to individual VNFs can
be shared among VN demands. The maximum numbers of
VNFs and concurrent sessions are practically limited due
to the constraints of license and cost. Therefore, it can be
modeled that one VNF allocated to near the origin node is
selected until the maximum number of concurrent sessions
is reached.

5.2 Modeling of use cases and options

We select 4 options from the above elements to evaluate our
proposed method’s extendability and coverage for various
use cases. Each option is (1) with IDS (i.e., a representative
example of adding a control metric), (2) with Reliability

(i.e., a representative example of adding a control objective),
(3A) with Fixed node and (3B) IDS isolation or sharing
(i.e., representative examples of changing network models).
Table 2 shows 12 use cases combining 4 options. There are
only 12 use cases because the (3B) IDS isolation or sharing
option is effective only under (1) with the IDS option.

We first describe the condition of the simplest case
(Case #12). In this case, we assume the use case of com-
puting resource optimization in a single DC as an example.
The origin and destination nodes are VMs, i.e., both nodes
can migrate. The control metrics are routes and VM place-
ments. Link capacity and server capacity are imposed as
constraints. Maximum link utilization efficiency and max-
imum server utilization efficiency are introduced as control
objectives. All routes between the origin and destination are
splittable. That is, the traffic between an origin–destination
(OD) node pair can be split into multiple routes.

Next, we describe the condition of each option. The (1)
with IDS option adds IDS placements as control metrics.
It is an option passing through an IDS between the origin
and destination for all user demands. The same as for VM
placements, server capacity is imposed as a constraint and
maximizing server utilization efficiency is introduced as a
control objective for IDS placements. The (2) with Relia-
bility option adds maximizing total reliability as a control
objective. In this study, reliability is defined by the probabil-
ity that a packet can go between two points. In other words,
it is defined by the one minus failure probability. When
the route of each OD is splitting, the reliability of each OD
is calculated by multiplying the split ratio and reliability of
each route. The formulation of total reliability is described
in Section 5.3.2. The (3A) with Fixed node option decides
whether the origin and/or destination node is a fixed node or
can migrate. An example of a fixed node is a client node.
The (3B) IDS isolation or sharing option decides whether
IDS resources are shared among VNs or not. When isolating
IDSs among VNs, the number of IDSs (Nids) that need to be
allocated is the same as the number of VNs (NVN), that is,
Nids = NVN. When sharing IDSs among VNs, the Nids is
less than the NVN, that is, Nids = M < NVN.

Some previous studies can be classified into 12 use
cases. The policy and VM consolidation method in cloud
DC [7] are similar to Cases #5–#8. The disaster avoidance
control method in a TSP network [24], [25] is similar to
Cases #9–#10. The joint VM placement and routing control
method in DC [9] is similar to Cases #11–#12. However, to
the best of our knowledge, no method has been developed
that corresponds to Cases #1–#4. In addition, no method
has been developed that can handle all cases with one
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Table 3 Symbol descriptions for control engines

Symbols Definitions

Nserver Number of servers
N, S, L Node set, server set, link set
P(N, L) = P(S, L) Physical Network graph
link (i, j) ∈ L Link from node i to node j

clink
i j Link capacity of link (i, j)

cserver
i ith server capacity
NVN Number of VNs
Ncli, Nvm, Nids Number of clients, VMs, and IDSs
C,V, I Client set, VM set, IDS set
cids
i ith IDS capacity
wvm
i , wids

j ith VM size, j th IDS size
tVN
i OD Traffic demands for ith VN
Ξcli :=

{
ξcli
i j

}
Client node placement (ith client, j th node)

Tnode :=
{
tpq

}
Traffic from node p to node q

Tvm :=
{
tvm
i j

}
Traffic from VM i to VM j

x
pq
i j Proportion of passed tpq on link (i, j)

U link
max Maximum link utilization

Ξvm :=
{
ξvm
i j

}
VM allocation (ith VM, j th server)

Ξids :=
{
ξ ids
i j

}
IDS allocation (ith IDS, j th server)

Userver
max Maximum server utilization

r link
i j Link reliability of link (i, j)
rnode
i ith node reliability
Rtotal total reliability

extendable algorithm.

5.3 Modeling of proposed method

We describe the modeling and formulation of the proposed
method on the basis of Case #1 since it is redundant to explain
the modeling of 12 use cases one by one. We consider the
use case in which we provide a secure and reliable cloud-
computing service consisting of routes between VMs via
an IDS. We describe each formulation of the algorithm and
modeling of the proposed method. In this case, the control
metrics are routes, VM placements, IDS placements, and
reliability. Each control algorithm is pre-formulated. The
symbols used in the formulation are defined in Table 3.

5.3.1 Network

We assume that each physical server is connected to each
node, that is P(N, L) = P(S, L). When each VN request is
accepted, the amounts of server and link resources consumed
depend on the request size.

We assume that there is a certain number ofVN requests
Nvn. A VN request consists of one origin (i.e., client) and
one destination (i.e., VM), OD traffic demands, andVM size.
Each VM is allocated to a physical server. The VM size
indicates the processing capacity of the VM request, such as
the requested number of CPU cores. We also assume that

each OD traffic demand is routed through an IDS, which
is also allocated to a physical server. The IDS size also
indicates the processing capacity. Note that if the client and
IDS for an OD pair are allocated in the same node, the OD
traffic demand between the client and IDS on the network is
regarded as 0. Similarly, if VM and IDS for an OD pair are
allocated in the same server, the OD traffic demand between
them is regarded as 0.

5.3.2 Control algorithms

We introduce four control engines: route, VM, IDS, and
reliability (E = {Route,VM, IDS,Reliability}). All control
engines have pre-specified control algorithms. The calcula-
tion procedure of the initial solution is as follows. After the
VM and IDS control algorithms calculate the optimal allo-
cations without taking into account the constraints of other
control algorithms, the route control algorithm calculates
the end-to-end route between VMs via an IDS. Finally, the
reliability control algorithm calculates the reliability on the
basis of all end-to-end routes.

We introduce three objective functions: minimization
of maximum link utilization for route control, minimization
of maximum server utilization for VM and IDS controls,
and maximization of total reliability for reliability control.
We impose three constraints: link capacity for route control,
server capacity for VM control, and server capacity for IDS
control.

The route control algorithm is formulated as follows:

min : Ulink
max (2)

s.t. :
∑

j:(i, j)∈L
xpq
ij −

∑
j:(j,i)∈L

xpq
ji = 0 (3)

(∀p, q ∈ N, i , p, i , q)∑
j:(i, j)∈L

xpq
ij −

∑
j:(i, j)∈L

xpq
ji = 1 (4)

(∀p, q ∈ N, i = p)∑
p,q∈N

tpq xpq
ij ≤ clink

i j Ulink
max

(∀(i, j) ∈ L, ∀p, q ∈ N) (5)
0 ≤ xpq

ij ≤ 1 (∀(i, j) ∈ L, ∀p, q ∈ N) (6)

0 ≤ Ulink
max ≤ 1 (7)

This algorithmcalculates a routing variable xpq
ij tomini-

mize the link utilizationUlink
max while satisfying the constraints

in (3)–(7), where xpq
ij shows the proportion of passing OD

traffic demands tpq on the link (i, j). Equations (3)–(4) show
the traffic flow conservation law. Equation (5) shows the con-
straint of link capacity. Equations (6)–(7) show the range of
variables.

The VM control algorithm is formulated as follows:

min : Userver
max (8)

s.t. :
∑
sk ∈S

ξvm
ik = 1 (∀vi ∈ V) (9)
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∑
vi ∈V

wvm
i ξvm

ik ≤ cserver
k Userver

max (∀sk ∈ S) (10)

ξvm
ik ∈ [0, 1] (11)

0 ≤ Userver
max ≤ 1 (12)

This algorithm calculates an VM allocation variable
ξvm
ik

to minimize the server utilizationUserver
max while satisfying

the constraints in (8)–(12), where ξvm
ik

shows theVMsolution
in which ξvm

ik
is 1 if ith VM is assigned to the k th server;

otherwise, 0. Equation (9) shows the VM conservation law.
In other words, it shows that each VM must be allocated
to any server. Equation (10) shows the constraint of server
capacity. Equations (11)–(12) show the range of variables.

The formulation of the IDS control algorithm replaces
wvm
i and ξvm

ik
with wids

j and ξ ids
jk

for that of the VM control
algorithm. Similarly, IDS allocation ξ ids

jk
indicates the IDS

solution in which ξ ids
jk

is 1 if j th IDS is assigned to the k th

server; otherwise, 0.
In this study, reliability is defined by the probability

that a packet can go between two points. Especially, node
reliability is defined by the packet reachable probability from
node ingress to node egress. In other words, it is defined by
the one minus node failure probability. The link reliability
is also similar. The reliability between ODs is defined as the
product of each reliability going through each node and each
link between ODs.

The reliability control algorithm is formulated as fol-
lows:

min : Rtotal (13)

Rtotal =
1∑NVN

k=1 tVN
k

NVN∑
k=1

tVN
k RVN

k (14)

RVN
k =

∑
p∈path(k)

rp
©«
∏
i∈Np

rnode
i

∏
(i, j)∈Lp

r link
i j

ª®¬ (15)

As shown in (14), total reliability Rtotal is defined as
the weighted average of each VN reliability RVN

k
, where the

weight is determined by the traffic demand to each VN, i.e.,∑NVN
k=1 tVN

k
. Here, RVN

k
is calculated as shown in (15). We

explain this formula. rnode
i and r link

i j indicate the reliability
of node i and the link between nodes i and j. If each VN has
multiple paths, each VN’s reliability is calculated using the
traffic splitting ratio. For each path p ∈ path(k) of the k th VN,
the traffic splitting ratio rp , the set of nodes that the path p
passes through Np , and the set of links that the path p passes
through Lp are defined. The above three parameters are
calculated by each VN allocation result, each traffic demand
T node, and the route control engine’s solution xpq

ij .
Note that we selected these control algorithms as ex-

amples, which are commonly used in previous studies. In
our proposed method, each control algorithm is saved as a
model file and can be changed by only changing the model
file.

5.3.3 Coordination algorithm

We introduce VM and IDS control agents as the control
agents (G = {VM, IDS}). The route control agent is not
introduced here because any routes between the VNFs are
not changed unless the VNF placements change. The route
control engine is used only to calculate the part of the CEV
by solving the route control algorithm in each step. Similarly,
the reliability control agent is not introduced.

The state of a control agent defines the VM or IDS
allocation, that is, sVM = Ξvm or sIDS = Ξids. The action
of the control agent defines one VM or IDS migration. The
VM or IDS to migrate is selected from the most used server,
and the destination server is selected on the basis of its agent
strategy. Note that, in this action, only one migration is
executed, and the VNF control algorithm described using
(8)–(12) is not solved. The reward of the control agent
defines the CEV if all constraints are satisfied; otherwise,
the penalty is −100. The CEV is defined as follows:

rgt = θ
link

(
1 −Ulink

max

)
+ θserver (

1 − Ũserver
max

)
+ θrRtotal

t ,

(16)

where θlink and θserver, and θr are weighting parameters in-
dicating the importance of each control-objective function.
The term Ũserver

max is the maximum server utilization after ag-
gregating VM and IDS allocations. The I/O-conversion unit
calculates VN allocation results, which are the set of the ori-
gin node (or clients placement), middle node (allocated IDS
placement), destination server (allocated VM placement),
and T node, on the basis of Ξvm, Ξids, Ξcli, and tVN

i .

5.4 Implementation difference between options

We describe the implementation differences with and with-
out each option shown in Table 2. We describe the required
additional implementation in comparison with the situation
where the implementation of proposedmethods for Case #12
is completed. We also indicate that the above implementa-
tion can easily be completed.

(1) with IDS: When the option is added, we need to
introduce an IDS agent and IDS control engine. The RL
algorithm and its modeling of state, action, and reward are
the same for the VM agent and IDS agent, so no additional
implementation of the Python code is required for adding
the IDS agent. Similarly, no additional implementation of
the code is required for adding IDS control engine because
the objective function and constraints of the IDS engine are
the same as those for the VM control engine in this use case.
Even if the formulation of IDS control engine is changed,
the formulation of that engine is modularized as a file that
describes optimization problem formulations, so the engine
can be reformulated by changing a few lines of that file.

In I/O-conversion unit calculation, the format of VN al-
location results is changed to that of adding themiddle server
node information. In the CEV calculation, the termUserver

max of
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the maximum server utilization is changed to Ũserver
max , which

is that of the value after aggregatingVMand IDS allocations.
In our implementation, the above change can be developed
with a change of about 10 lines of Python code.

(2) with Reliability: When the option adds, we need to
introduce Reliability control algorithms. Though the imple-
mentation of the engine is newly required, it is extendable
because the existing code does not change. In addition, the
formula to calculate CEV slightly needs to be changed from
(17) to (16).

rgt = θ
link

(
1 −Ulink

max

)
+ θserver (

1 −Userver
max

)
(17)

(3A) with Fixed node: When the option changes, we
need to slightly modify the I/O-conversion unit implemen-
tation. In the I/O-conversion unit calculation, origin node
placement returns from Ξcli if with the Fixed node option,
otherwise, it returns Ξvm.

(3B) IDS isolation or sharing: When the option
changes, we need to modify the I/O-conversion unit im-
plementation. When the IDS isolation condition is used,
the I/O-conversion unit returns the specific IDS for each VN
demand, that is, the ith IDS is exclusively allocated to the ith

VN. If IDS sharing condition, the I/O-conversion unit returns
the best IDS selected from IDS set I . The best IDS is defined
as the IDS that satisfies two conditions: the length of total
OD route via IDS is the shortest, and concurrent sessions are
less than the IDS capacity cids

i . In our implementation, the
above change can be developed with a change of about 10
lines of Python code.

6. Evaluation

We evaluated the effectiveness of the proposed algorithm
through simulations in terms of solution-exploration speed,
difference from the optimal solution, scalability, and extend-
ability. We use the use cases in Section 5 to evaluate the
extendable NFV-integrated control method.

We first evaluate the solution-exploration speed to as-
sess whether our method can find the solution with improved
CEV within the practical iterations because our method gen-
erally seems to need more iterations than the combined ap-
proach developed for a specific problem. In addition, we
assess whether RL can find better solution efficiently. Then,
we also investigate the difference from the optimal solution.
After that, we evaluate the scalability of our method to esti-
mate the practical range of NVN where the CEV can be im-
proved within the practical computational time. In addition,
we also discuss the extendability of our proposed method.
Since the extendability of our method is difficult to evaluate
quantitatively, we show that our method makes it possible to
solve all use cases. Since it is redundant to discuss all 12
results, we focused on the 6 use cases for which the effects
of changing each option need to be discussed (Cases #1,
#3, #4, #5, #8, #12). Then, we investigate the differences
between the proposed coordinated method and the previous
combinedmethod and also discuss how easy/difficult to build

2

1

3 6

4
7

9

8

5

Fig. 3 Internet2 topology.

and solve the problem. Finally, we discuss the applicability
of the proposed method.

6.1 Evaluation conditions

For the physical network conditions, we used the topology
of Internet2 [26], which consists of 9 nodes (Fig. 3). In
particular, we assume a local disaster near node 6 and set
rnode
6 = 0.9 and r link

67 = r link
69 = 0.5. Other r link

i j and rnode
i are

set to 1.0. For the VN demand conditions, the location of
each client node is randomly generated. Moreover, the OD
traffic demand tVN

i is randomly generated within the range of
0–1.0 Gbps so as to arrange the average as 0.5 Gbps. Each
VM size is randomly given an integer value, and each IDS
size is fixed to an integer value. The average server utilization
is set to 80%by changing each server capacity proportionally
to the NVN and slightly adjusting the VM size. For the agent
conditions, we set the total exploration steps of instruction
and control agents to T = 5000, and Tg = 20.

In above conditions, we varied NVN from 20 to 2000
and varied use-cases from 1 to 12. Some parameters increase
proportionally as shown in Table 4 as the number of VNs
are increased from 20 to 2000. Some parameters also set
depending on the selected use-cases as shown in Table 6. In
addition, we excluded the cases in each of which an initial
solution does not satisfy all constraints in all evaluations.
This is because starting from an unsatisfied initial solution
would drastically decrease the performance of the solution.
The way to find a feasible initial solution is discussed in
Section 6.2.7, which is for future study.

6.2 Evaluation results

We implemented our coordination algorithm and physical
network simulator using Python from scratch and each pre-
specified control algorithm using the GNU Linear Program-
ming Kit (GLPK) [27] to calculate initial solutions.

6.2.1 Discussion on solution-exploration speed

We compared the solution-exploration speeds of the pro-
posed algorithm based on RL (w/ RL) and an algorithm
based on changing solutions randomly (w/o RL). Note that,
in the case of w/o RL, we set ε = 1 and also skipped both
agent learning steps, i.e., lines 7–8 in Algorithm 1 and lines
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Table 4 Scale parameters for Case #1

Definitions 20 50 200 400 800 1000 1500 2000

Number of VNs NVN 20 50 200 400 800 1000 1500 2000
Number of VMs Nvm 20 50 200 400 800 1000 1500 2000
Number of IDSs Nids 20 50 200 400 800 1000 1500 2000
Number of clients Ncli 20 50 200 400 800 1000 1500 2000
ith server capacity cserver

i 12–14 30–36 120–144 240–288 480–576 600–720 900–1080 1200–1400
Link capacity of link (i, j) clink

i j 3 7.5 30 60 120 150 225 300
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Fig. 4 Solution-exploration speed for Case #1 and its NVN dependency
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Fig. 5 Components of each objective function value in the best solution for Case #1 and its NVN
dependency

10–11 in Algorithm 2. In this evaluation, we use Case #1
and set to each weighting parameter θlink = θserver = θr = 1.

We first discuss the case when NVN = 200 as a baseline.
We will discuss other figures 4(a)–4(h) in Sections 6.2.2 and

6.2.3. Figure 4(c) shows the solution-exploration speeds for
Case #1, which is the average transition of the best CEV,
which is defined by the highest CEV found until the current
exploring step. Note that each time CEV is defined by the
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total reward rgt shown in (16). We carried out 10 calculations
with a fixed initial solution. The width of each line indicates
the standard deviation (±σ). Though the initial CEV was
low due to the control conflict mentioned in Section 3, the
best CEV was improved by repeating the exploration in both
cases w/ RL and w/o RL. Results of the comparison between
w/ and w/o RL in Fig. 4(c) indicated that RL could find
a better CEV solution within 5000 exploration steps. The
reason is that the agent of RL learns the strategy for how to
find better allocations efficiently from past exploration steps.

Figure 5(c) shows the components of each objective
function value in the best solution for Case #1. Initial in
Fig. 5(c) means above values for the initial solution. w/ RL
improves the total reward about 0.3 in Fig. 4(c), which is
equivalent to improving the sum of link utilization, server
utilization, and reliability by 30%. Since we assumed θlink =
θserver = θr = 1 in this evaluation, an increase of 0.01 for the
CEV is equivalent to a 1% improvement in the sum of link
utilization, server utilization, and reliability. Of the 30% total
improvement, the maximum link utilization improvement is
about 22% and the total reliability improvement is about 8%.
Note that, since the average server utilization is set to 80%
in all evaluations, the optimal value of the maximum server
utilization is 80%. In addition, since an initial solution of
VM and IDS placements is calculated by the VM and IDS
control engines for minimizing maximum server utilization,
this value of the initial solution is near to 80%.

6.2.2 Discussion on difference to optimal solution

We discuss the difference to the optimal solution in the case
of w/ RL and Case #1. General VN allocation problems are
known to be NP-hard [28]. In addition, there are no previous
studies for calculating an optimal solution of Case #1without
approximation. On the other hand, the policy value Q(s, a)
of RL has been analytically proved to converge to the optimal
policy Q∗(s, a) in an infinite number of exploration steps by
a policy improvement theorem [29]. Therefore, when in-
creasing the total exploration steps T to infinity, the solution
and its CEV absolutely converge to the optimal solution and
optimal value. Since infinite iterations are impossible, we
regarded a sub-optimal solution/CEV as the converged solu-
tion/CEV when the number of exploration steps sufficiently
increased.

Table 5 shows the convergence speed to the sub-optimal
CEV when NNV = 200. This evaluation corresponds to the
case where the number of exploration steps was increased for
the evaluation in Fig. 4(c). Since the best CEV sufficiently
converges when the total exploration steps T are increased to
1.5 × 106, CEV = 1.58 is regarded as the sub-optimal CEV
and the solution at the time is regarded as the sub-optimal
solution. The convergence ratio is defined as the best CEV
minus initial CEV divided by sub-optimal CEVminus initial
CEV. We defined sufficient converge as the case when the
error of the convergence ratio has converged to 1% or less.
As shown in Table 5, the convergence ratio reaches 56% of
the sub-optimal solution in 5000 steps and 82% of the sub-

Table 5 CEV convergence ratio when w/ RL and NVN = 200

Steps Best CEV Convergence ratio

0 (Initial) 1.06 0.00
5.0 × 103 1.35 0.56
1.0 × 104 1.38 0.62
5.0 × 104 1.48 0.82
1.0 × 105 1.52 0.89
5.0 × 105 1.57 0.99
1.0 × 106 1.58 1.00
1.5 × 106 1.58 1.00

optimal solution in 50,000 steps. This convergence speed
seems to suffice as a general NP-hard problem solution.

6.2.3 Discussion on scalability

Figures 4 and 5 show the solution-exploration speed and
the components of each objective function value in the best
solution when we varied NVN from 20 to 2000 for Case
#1. It reveals that our method can improve the solution by
repeating the exploration in all cases of both algorithms (w/
RL andw/o RL). In addition, RL canmore efficiently explore
better solutions than w/o RL. Note that the performance of
the initial solution depends on the randomness of the initial
OD traffic and initial client node, so it cannot be compared
uniformly in each case.

In the case of NVN is 200, the improvement of the
solution is about 30% for w/ RL and about 10% for w/o RL.
On the other hand, when the NVN = 20 and NVN = 1500
or more, the improvement of the solution is reduced to 10%
or less. This shows that the improvement of the solution
basically decreases as the NVN increases except for the case
of NVN = 20. The performance decreased in the case of
NVN = 20 because a better solution was found easily even
w/o RL since the solution exploration space is sufficiently
small. The performance decreased in the case of NVN =
1500 or more because the learning of RL is not sufficient
due to the number of total exploration steps close to the NVN.
From the above discussion, we conclude that our proposed
method was effective in the range of NVN = 50 to 1000.

Figure 6 shows the computation time of the proposed
algorithm (w/ RL) for NVN 20 and 2000. The calculations
were performed on a Intel core i7 4790kCPUof a single core.
The computation time increases depending on the number of
steps proportionally. Although NVN increased 100 times, the
computation time increased only several times. This means
that, from the viewpoint of computation time, the proposed
method is scalable with respect to NVN, with up to 1000
VNs. Note that w/o RL has almost the same computation
time as w/ RL. The difference between w/ RL and w/o RL is
the overhead time of RL, which is less than 1% of the total
computation time.

Figure 6 also shows that the calculation time of the
proposed method until 5000 steps is less than 10 minutes
in the range up to 1000 VNs. We thus considered that
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the calculation time allows enough practice. In NFV envi-
ronments, each VN demand is statistically multiplexed by
multiple users sharing the VN. For that reason, our proposed
control system mainly targets static VN demand allocation,
which considers VN demands to be fixed within a particular
period (e.g., more than 1 hour). Moreover, our method can
adjust the calculation time to modify the number of total ex-
ploration steps in accordance with the required calculation
time.

The computation time of our method is determined by
the calculation time of each control engine. In this eval-
uation, the route control engine is formulated as a linear
programming (LP) problem, and its calculation time is less
than 1 second. However, if the route control engine is for-
mulated as an integer linear programming (ILP) problem,
e.g., non-split route case and path-base route control case,
the computation time of our method will increase dramati-
cally. When each exploration step contains ILP problems,
the following solution seems to be effective: set the upper
limit for calculation time of each step, approximate by lim-
iting of route candidates, and use the heuristic method for
route calculation.

6.2.4 Discussion on extendability

Since the extendability of our method is difficult to evaluate
quantitatively, we evaluated the applicability of the proposed
method under the various use cases. Although the applica-
bility is not equal to the extendability, we assume that it
indirectly provides evidence that the proposed method has
extendability.

Figure 7 shows the components of each objective func-
tion value in the best solution for each case. In this evalua-
tion, we selected 6 use cases to discuss the effects of changing
each option (Cases #1, #3, #4, #5, #8, #12) and set to each
weighting parameter θlink = θserver = θr = 1. Results reveal
that our method can improve the solution by repeating the
exploration in all cases of both algorithms (w/ RL and w/o
RL). Therefore, we can indirectly show that our proposed

method has highly extendability.
Next, we consider the effects of adding or changing each

option in details. First, we describe the result of the simplest
Case #12. Figure 7(f) shows that our method improves
the maximum link utilization. Although reliability is not
considered as an objective function, the total reliability is
also improved. It seems that since the solution with a shorter
route was preferentially selected to reduce themaximum link
utilization, the total reliability was improved coordinately.

We first consider the influence of adding the (1) with
IDS option under the IDS sharing option by comparing
Figs. 7(e) and 7(f). In Fig. 7(e), the maximum link utiliza-
tion of the initial solution is drastically increased by adding
IDS. This is because the path length increases due to the
addition of the middle server node, and the total traffic vol-
ume in a physical network increases proportionally. We also
consider the influence of adding the IDS sharing option. In
Fig. 7(e), the maximum server utilization is increased and
the total reliability is decreased. The reason for increasing
maximum server utilization is that large IDSs exist in IDS
sharing condition. This can be seen from the fact that the
maximum server utilization does not increase in Cases #1,
#3, or #5. The reason the total reliability did not improve as
the link utilization improved is that the IDS sharing makes it
difficult to find a solution that avoids the disaster area. This
difficulty to avoid the disaster area in IDS sharing condition
is why the IDS that minimizes the length of the OD route
without considering the reliability is preferentially selected.

Second, we consider the influence of adding the (2)
with Reliability option by comparing Figs. 7(c) and 7(e).
The reliability is clearly improved by maintaining the link
utilization efficiency and server utilization efficiency. The
comparison between Figs. 7(a) and 7(d) shows a similar
result.

Third, we consider the influence of changing the (3A)
with Fixed node option by comparing Figs. 7(a) and 7(b).
Figure 7(a) shows that the total reliability is decreased
slightly by introducing fixed clients. This is because the
placement of the origin node (i.e., client node) is fixed, which
makes it difficult to avoid the disaster area.

Finally, we a consider the influence of changing the (3B)
IDS isolation or sharing option by comparing Figs. 7(b) and
7(c). Figure 7(b) shows that the maximum server utilization
is decreased and the total reliability is increased by changing
the IDS isolation model. The decrease in server utilization
efficiency made it easier to improve the server utilization
efficiency by removing the large IDSs. The increase in total
reliability made it easier to find the solutions that avoid the
disaster area by IDSs isolation for each VN. The maximum
link utilization in w/o RL also is increased due to the increase
in the solution space by increasing the Nids.

6.2.5 Discussion on weight parameters

Figures 7(c) and 8 show the effectiveness of weight param-
eters for Case #4. In this evaluation, we set four different
conditions: (θlink, θserver, θr) = (1, 1, 1), (10, 0, 0), (0, 10, 0),
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Table 6 Parameters depend on each case when NVN is 200

Definitions 1 2 3 4 5 6 7 8 9 10 11 12

Number of IDSs Nids 200 10 200 10 200 10 200 10 0 0 0 0
Number of clients Ncli 200 200 0 0 200 200 0 0 200 0 200 0
ith VM size wvm

i 1–3 1–3 1–3 1–3 1–3 1–3 1–3 1–3 3–8 3–8 3–8 3–8
ith IDS size wids

i 2 40 2 40 2 40 2 40 0 0 0 0
ith IDS capacity cids

i 1 20 1 20 1 20 1 20 0 0 0 0
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(b) Case #3 (w/ IDS, w/ Reliability, IDS isolation)
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(c) Case #4 (w/ IDS, w/ Reliability, IDS sharing)
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(d) Case #5 (w/ IDS, w/ Fixed node, IDS isolation)
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(e) Case #8 (w/ IDS, IDS sharing)
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Fig. 7 Components of each objective function value in the best solution for each case.
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(a) (θ link, θserver, θr) = (10, 0, 0)
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(b) (θ link, θserver, θr) = (0, 10, 0)
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(c) (θ link, θserver, θr) = (0, 0, 10)

Fig. 8 Weighting parameter dependency of components of each objective function value in the best
solution for Case #4

(0, 0, 10). Note that our method can satisfy all constraints
even if each weighting parameter is 0 as shown in Fig. 8.
The results in Fig. 8(a) have the best link utilization effi-
ciency, the results in Fig. 8(b) have the best server utilization
efficiency, and the results in Fig. 8(c) have the best total reli-

ability. In particular, the maximum server utilization of 0.8
is a global optimum solution. From the above results, our
method can suggest a wide variety of options of solutions by
adjusting the weighting parameters θlink, θserver, θr.
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6.2.6 Discussion on difference to previous method

We discuss the differences between the proposed coordi-
nated method and previous combined approaches in terms
of how easy/difficult they are to build and their problems
are to solve. As described in Section 1, previous com-
bined approaches need specified algorithm to be built that
simultaneously solves the combined optimization problem.
We formulated and implemented the combined optimization
problem solving the VN allocation problem for Case #12,
which is the simplest use case among Cases #1–12. We also
evaluate the differences in the performance of the solution
between the proposed method based on the RL and the pre-
vious method based on the combined optimization problem.

We first describe the formulation of the combined opti-
mization problem for Case #12. The conditions and assump-
tions forCase #12 have already been described in Section 5.2.
Since the control metrics are routes and VM placements, in
this case, we need to formulate the route control algorithm
and the VM control algorithm and to newly formulate the re-
lational equations between the variables of both algorithms.
We use the route control algorithm shown in (2)–(7) and the
VM control algorithm shown in (8)–(12).

Since traffic demands between nodes T node := {tpq}
in (5) are determined by the traffic demands between VMs
T vm := {tvm

i j } and VM placements Ξvm := {ξvm
ip }, the rela-

tional equations between both algorithms can be formulated
as follows.

T node = tΞvmT vmΞvm

tpq =
∑
i∈V

∑
j∈V

ξvm
ip tvm

i j ξ
vm
jq , (18)

where tpq shows traffic demands from node p to node q,
tvm
i j shows traffic demands from ith VM to j th VM, and ξvm

ip

shows VM allocation, which returns 1 if ith VM is assigned
to the pth node; otherwise, 0. Therefore, the combined
optimization problem is formulated with the objective of
minimizing Ulink

max + Userver
max and the constraints (2)–(12) and

(18).
Next, we describe the implementation to solve the com-

bined optimization problem. This problem is categorized
into quadratically constrained mixed-integer non-linear pro-
gramming (QC-MINLP). In this paper, we use Pyomo [30],
[31], which is a Python-based open-source optimization
modeling tool, andMindtPy [32], which is theMixed-Integer
Nonlinear Decomposition Toolbox in Pyomo, to solve the
MINLP problem. Since the optimal solution of the MINLP
problem is difficult to calculate, these tools repeat the follow-
ing procedure to calculate the sub-optimal solution. These
tools first decomposite theMINLP problem into the continu-
ously relaxed Non-linear Programming (NLP) problem and
the Mixed-Integer Programming (MIP) problem and then
calculate each problem. After calculating two problems,
they consider the NLP solution as the upper bound and the
MIP solution as the lower limit. They repeat the decomposi-
tion and calculation procedures until the difference between

Table 7 Performance of solution when Case #12 and NVN = 20

Methods Performance (CEV)

Propose 0.86 ± 0.043
Previous 0.63 ± 0.12

the upper and lower bounds is sufficiently small. In this pa-
per, we use IPOPT [33] and MUMPS [34], [35] for solving
the NLP problem and GLPK for solving the MIP problem.

As described above, the difficulty of the previous ap-
proach is that the following time-consuming tasks are re-
quired depending on the individual use cases: constructing a
new formulation such as (18), selecting and combining tools
to solve the combined problem such as [30]–[35], preparing
the development environment, and implementing the com-
bined problem. In Case #12, the number of constructing
new formulation is only one because it is the simplest use
case among Cases #1–12 and has only two control metrics.
However, when control metrics increases, the number of
new formulations needing to be constructed increases by the
number of control metric combinations. On the other hand,
in the proposed method, the above function can be replaced
by the I/O conversion unit, which is programmable and does
not need to express mathematical expressions. In addition,
it enables solutions to be calculated for various use cases.

We indicate the comparative evaluation of the perfor-
mance when NVN = 20. These tools solving the MINLP
problem are non-commercial and are very limited in terms
of the size that can be solved. Since these tools take a long
time to calculate the sub-optimal solution, this paper lim-
its the calculation time to a maximum of 10 minutes. The
proposed method uses the best CEV solutions found up to
5000 steps. As shown in Fig. 6, the calculation time of the
proposed method is 10 minutes or less. Other evaluation
conditions are the same as described in Section 6.1.

Table 7 shows the average and standard deviation (±σ)
of the performance of the solution. We carried out 10 calcu-
lations with random initial conditions. We first set the same
initial conditions for both methods. We then excluded the
cases with an invalid initial solution for the proposed method
and when no feasible solution is found after 10 minutes cal-
culation for the previous method. Results shows that our
proposed method achieves better CEV compared to the pre-
vious method. Although the previous method outperforms
when commercial tools are used, our proposed method al-
most matches up the previous method in terms of CEV, and
is much easier to implement new control metrics.

6.2.7 Discussion on applicability

The proposed method can be applied to the VN allocation
problem that considers the combination of link resource con-
straints (e.g., route selection) and server resource constraints
(e.g., VM placement) even if the control metrics, control ob-
jective, and network model are changed as shown in Cases
#1–12. Though there are some minor constraints for the
initial solution and the calculation order of each engine’s
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evaluation, all the constraints are considered to be minor
compared with the merits of the proposed method.

We first describe the condition of the initial state. As
the required condition, we need to find a feasible initial
solution to obtain the advantage of speeding up the solution
exploration by the proposed method based on RL. Because
invalid solutions are concentrated near the invalid solution,
an agent of RL always obtains a negative reward and cannot
learn the strategy for how to find better solutions from past
exploration steps.

All evaluations in this paper assume that a feasible ini-
tial solution has already been found. When not finding a
feasible solution, we try the following two ways. One is
to use the proposed method against an invalid initial solu-
tion. Our proposed method can explore the feasible solution
through random exploration. Fortunately, once a feasible
solution is found, our method always converges to the bet-
ter solution by RL. The other way is to use the sequential
VN allocation, in which each VN demand is judged as to
whether the physical network can allocate it or not when it is
received. In this way, we allocate the N th VM demand to the
remaining resources after the N − 1 VNs resource optimiza-
tion using our proposed method. When N th VN demand
cannot be allocated to the remaining resources, this request
is rejected. The evaluation of the effectiveness of the two
ways is for further study.

We next describe the condition of the calculation or-
der of each engine’s evaluation values. When calculating
the CEV, the evaluation values between interdependent con-
trol metrics should be calculated simultaneously (e.g., the
VM placement and IDS placement), and evaluation values
between dependent control metrics should be calculated se-
quentially (e.g., the route between VMs is determined by
the VM placements). For example, in (16), the evaluation
value of VM and IDS placements (i.e., Ũserver

max ) is calculated
by aggregating the results of VM and IDS placements. The
evaluation value of route (i.e., Ulink

max) is calculated after the
VM and IDS placements are determined. Similarly, the eval-
uation value of reliability (i.e., Rtotal

t ) is calculated after the
routes are determined.

7. Conclusion

We presented an extendable network functions virtualization
(NFV)-integrated control method by coordinating multiple
control algorithms. We also developed an efficient coor-
dination algorithm on the basis of reinforcement learning
(RL), which makes it possible to find better solutions with
fewer explorations by learning a strategy that can improve
resource-utilization efficiency with each exploration step.
Simulations revealed that the proposed algorithm can im-
prove solution exploration for 12 representative types of the
virtual network allocation use cases modeled from previ-
ous studies. This qualitatively revealed that the proposed
method has extendability. We also found that it can improve
resource-utilization efficiency by 22% and total reliability
by 8% in less than 5000 steps in the case of several hundred

virtual machines (VMs) and a hundred intrusion detection
systems (IDSs).

For future work, we plan to evaluate the applicability
of the proposed method in more complicated use cases with
realistic traffic patterns and virtual network functions (VNFs)
demands. We also plan to enhance the solution-exploration-
speed and scalability of our coordination algorithm by using
deep RL [36] and parallelization of agent learning [37].
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