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Abstract—This paper studies the power-efficient joint radio
and computational resource allocation for two near-far mobile
devices in a wireless powered mobile edge computing system.
To overcome the double-near-far effect for the farther device,
cooperative communications in the form of relaying via the
nearer device is considered for offloading. The AP’s total transmit
power minimization problem is formulated under the constraints
of the computation tasks, which is equivalent to a min-max
problem and can be optimally solved by a two-phase method.
Numerical results not only shows the significant performance
improvement of the proposed scheme, but also demonstrates its
effectiveness in handling computation-intensive latency-critical
tasks and resisting the double-near-far effect.

I. INTRODUCTION

With the rapid developments of IoT and 5G communication
technologies, a wide range of emerging mobile applications
and mass data processing from mobile social networks [1],
[2], have driven the increasing computing demands for mobile
devices. In recent years, mobile edge computing (MEC) has
emerged as a promising concept, which promotes to use cloud-
computing facilities at the edge of mobile networks, and is
motivated by ultralow latency and high bandwidth [3]. The
cross-discipline nature of MEC lays the important role of joint
radio-and-computational resource management in achieving
energy-efficient or delay-optimal MEC [4]–[8]. Nonetheless,
insufficient power supply is a major limitation for mobile
devices to make full use of powerful resources at the edges.
Wireless power transfer (WPT) particularly in the form of
wireless powered communication networks (WPCNs) [9] has
recently been considered as an important paradigm to provide
sustainability for mobile communications. Many works have
seen the possible synergy integrating MEC with WPT [4], [8].
However, WPCNs are known to suffer from the “double-near-
far” effect, which occurs because a farther device harvests less
energy and is also required to communicate in longer distances
[9]. In fact, user cooperation has been extensively investigated
in wireless communications to enhance data rate [9]–[11].
Most recently, user cooperation was also considered in MEC
[12] to make the most use of the AP’s computational resources.

In this paper, we study the wireless powered MEC system
to complete the computation-intensive latency-critical (CILC)
tasks of two near-far users exploiting cooperative communica-
tion. Our objective is to minimize the total transmission power
of the AP with joint-optimal power and time allocation [13].
We first formulate AP’s transmit power minimization (APTP-

M) problem, and then transform it into an equivalent min-max
optimization problem, which is optimally solved by a proposed
two-phase method. Simulation results shows that the proposed
scheme is very capable of handling CILC tasks and resisting
the double-near-far effect in WPCNs.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a wireless powered MEC system that consists of
a single-antenna AP (with an integrated MEC server), and
two single-antenna mobile devices, Di, i ∈ {1, 2}, both have
a CILC task, characterized by ⟨Ii, Ci, Ti⟩, where Ii denotes
the input data size (in bits), Ci is the amount of required
computing resource for 1-bit of input data (i.e., the number of
CPU cycles required), and Ti is the maximum tolerable delay.
Assume that the AP has perfect knowledge of the channels and
task-related parameters, and it is designed to make resource
allocation optimally in a block-based structure where each
block has a duration of T seconds. In this paper, we assume
that Ti for two users is one block length, i.e., T1 = T2 = T .

A. User Cooperation Model for Computation Offloading

It is assumed that D2 is nearer to the AP than D1, and
we denote the distances between AP and D1, AP and D2,
D1 and D2 as d1, d2, and d12, respectively, with d2 ≤ d1.
We also assume that d12 ≤ d1 for better cooperation. During
the first period t0 in a block, AP broadcasts energy in the
downlink with power P0, and thus the energy harvested by Di

is Ei = νigiP0t0 where gi is the downlink channel power gain
from the AP to Di and 0 < νi ≤ 1 is the corresponding energy
conversion efficiency. After the WPT period, D1 transmits its
input data with power p1 during the subsequent period t1, and
both the AP and D2 decode their received signals from D1. To
overcome the doubly near-far effect, the nearer user D2 will
then first relay the farther user D1’s information with power
p21 over period t21 and then transmits its own input data to
the AP with power p22 over period t22, all using its harvested
energy. We denote the time and power allocation vectors
as t = [t0, t1, t21, t22] and p = [p1, p21, p22], respectively.
According to the results of [9], [11], the offloaded data size
of D1 for computation at the AP can be expressed as

L1(t,p) = min {L1,1(t,p) + L1,2(t,p), L1,12(t,p)} , (1)

where L1,1(t,p), L1,2(t,p) and L1,12(t,p) denote D1’s of-
floaded data size from D1 to the AP, from D2 to the AP, and



from D1 to D2, respectively, which are given by

L1,1(t,p) = t1r1,1(p) = t1B log2 (1 + p1h1/N0) , (2)
L1,2(t,p) = t21r1,2(p) = t21B log2 (1 + p21h2/N0) , (3)
L1,12(t,p) = t1r1,12(p) = t1B log2 (1 + p1h12/N0) , (4)

where r1,1(p), r1,2(p), and r1,12(p) are the corresponding
transmission rates, and h1, h2 and h12 are the channel power
gains from D1, D2 to the AP, and from D1 to D2, respective-
ly.1 Also, B is the channel bandwidth, and N0 is the receiver
noise power at the AP and D2. Similarly, the offloaded data
size of D2 for computing at the AP is described as

L2(t,p) = t22r2(p) = t22B log2 (1 + p22h2/N0) . (5)

According to the task model, the constraint Li(t,p) ≤ Ii, i ∈
{1, 2} should be satisfied. In this paper, we mainly consider the
WPT time and the offloading time as the total latency of the
WPT-MEC system, and thus we obtain a latency constraint
given by t0 + t1 + t21 + t22 ≤ T . Besides, the energy
consumption of D1 and D2 for computation offloading equals
to the energy consumed for wireless transmissions, given by

Eoff,1(t,p) = p1t1, Eoff,2(t,p) = p21t21 + p22t22. (6)

B. Local Computing Model
Given a pair of (t,p), the offloaded data sizes {Li(t,p)}

will be known, and hence the remaining input data of each
user, i.e., Ii − Li(t,p), should be computed locally at Di,
i ∈ {1, 2}. For local computing, we assume that the CPU
frequency is fixed as fi for Di. In order to satisfy the latency
constraint, i.e., (Ii − Li(t,p))Ci/fi ≤ T , the offloaded
data for Di should have a minimum size of Li(t,p) ≥
M+

i = max {Ii − fiT/Ci, 0}. The energy consumption per
CPU cycle is denoted as Qi = κif

2
i , where κi is the effective

capacitance coefficient, and thus the energy consumption of
Di for local computing can be expressed as

Eloc,i(t,p) = (Ii − Li(t,p))CiQi, i ∈ {1, 2} . (7)

C. Problem Formulation
Based on the model, the energy saving for Di, i ∈ {1, 2} is

Es,i(P0, t,p) = νigiP0t0 − Eoff,i (t,p)− Eloc,i (t,p) . (8)

Furthermore, the APTPM problem for minimizing AP’s trans-
mit power can be formulated as problem (P1) below

min
P0>0,t,p

P0 (9a)

s.t. Es,i (P0, t,p) ≥ 0, i ∈ {1, 2}, (9b)
M+

i ≤ Li(t,p) ≤ Ii, i ∈ {1, 2}, (9c)
T − (t0 + t1 + t21 + t22) ≥ 0, (9d)
t0 ≥ 0, t1 ≥ 0, t21 ≥ 0, t22 ≥ 0, (9e)
p1 ≥ 0, p21 ≥ 0, p22 ≥ 0. (9f)

Note that problem (P1) is nonconvex because of the non-
convex expressions of Li(t,p), and the product of P0t0 in
Es,i (P0, t,p) , i ∈ {1, 2}. In the sequel, we will focus on
removing these two obstacles to make problem (P1) solvable.

1In order to investigate the effect of user cooperation in resisting the double-
near-far problem, we mainly consider the case of h1 < h12.

III. EFFORTS TO MAKE PROBLEM (P1) SOLVABLE

A. Transforming L1(t,p) and L2(t,p) into Convex

By introducing the variables q1 = p1t1
ν1g1P0

, q21 = p21t21
ν2g2P0

and
denoting q = [q1, q21], L1,1(t,p), L1,2(t,p) and L1,12(t,p)
in (2)–(4) can then be re-expressed as functions of t and q as

L1,1(t,q) = t1B log2 (1 + β1P0q1/t1) , (10)
L1,2(t,q) = t21B log2 (1 + β2P0q21/t21) , (11)
L1,12(t,q) = t1B log2 (1 + β12P0q1/t1) , (12)

where β1 = ν1g1h1

N0
, β2 = ν2g2h2

N0
, and β12 = ν1g1h12

N0
. Note

that the above three functions equal to 0 when t1 = 0, t21 = 0
and t1 = 0, respectively. Using the property of perspective
function [14], it is easily verified that L1,1(t,q), L1,2(t,q)
and L1,12(t,q) are all joint concave functions of t and q.
Next, we introduce a new variable

L1 = min {L1,1(t,q) + L1,2(t,q), L1,12(t,q)} (13)

to replace L1(t,p) in (P1) with two additional convex con-
straints, L1,1(t,q) + L1,2(t,q) ≥ L1 and L1,12(t,q) ≥ L1.
Besides, we redefine the offloaded data size of D2 as an
independent variable L2, and then by defining a function
g(x) = N0(2

x
B − 1), x ≥ 0, the offloading power p22 can

be described as p22 = 1
h2
g
(

L2

t22

)
according to (5). Hence, the

energy savings for D1 and D2 can be rewritten as

Es,1 (P0, t,q, L1) = ν1g1P0(t0 − q1)− (I1 − L1)G1, (14)
Es,2 (P0, t,q, L2) = ν2g2P0(t0 − q21)

− t22
h2

g

(
L2

t22

)
− (I2 − L2)G2, (15)

where Gi = CiQi, i ∈ {1, 2}. As g(x) is a convex function,
its perspective function t22g(

L2

t22
) is a joint convex function of

t22 and L2 considering both the cases of t22 > 0 and t22 =
0 [14]. Hence, problem (P1) can be equivalent transformed
into another APTPM problem (P2),

min
P0>0,t,q,L1,L2

P0 (16a)

s.t. Es,i (P0, t,q, Li) ≥ 0, i ∈ {1, 2}, (16b)
L1,1(t,q) + L1,2(t,q) ≥ L1, (16c)
L1,12(t,q) ≥ L1, (16d)
M+

i ≤ Li ≤ Ii, i ∈ {1, 2}, (16e)
T − (t0 + t1 + t21 + t22) ≥ 0, (16f)
t0 ≥ 0, t1 ≥ 0, t21 ≥ 0, t22 ≥ 0, (16g)
q1 ≥ 0, q21 ≥ 0. (16h)

In problem (P2), only constraints in (16b) remain non-convex
since P0 is coupled with t0, q1 and q21. Next, we will separate
this coupling to facilitate the problem solving.

B. Separation for the Coupled Parameters

In order to further solve the APTPM problem (P2), we first
introduce an equivalent min-max optimization problem (P3):

min
P0>0

max
t,q,L1,L2

∑2
i=1 Es,i(P0, t,q, Li)

s.t. (16b)–(16h),
(17)



which is still nonconvex in the above form, but can be
optimally solved by a two-phase method. In the first phase,
we solve the inner sub-problem with a given P0 where the
sum-energy-saving (SES) is maximized under the constraints
in (P3), referred to as the SESM problem (P4):

max
t,q,L1,L2

Es,1(t,q, L1) + Es,2(t,q, L2)

s.t. (16b)–(16h),
(18)

where is a convex optimization problem, through which the
optimal t∗, q∗ (or p∗), L∗

1 and L∗
2 corresponding to the given

P0 can be obtained. It is easy to understand that if we assume
the given P0 is the optimal minimum, then the obtained
(t∗,p∗, L∗

1, L
∗
2) is actually the optimal solution to problem

(P2). If we find the minimum given P ⋆
0 that maximizes the

SES, then the obtained (P ⋆
0 , t

⋆,p⋆, L⋆
1, L

⋆
2), i.e., the optimal

solution of (P3), is actually the joint-optimal solution of (P2).
In the second phase of the method, we will find the minimum
P0 by a bi-section search method. In the following section,
we will demonstrate the problem-solving process of problem
(P3) with the proposed two-phase method.

IV. THE TWO-PHASE METHOD FOR COOPERATIVE MEC

A. Problem-Solving with Lagrange Method

To gain more insights of the solution to problem (P4), we
next solve it optimally using the Lagrange method [14]. The
partial Lagrange function of (P4) is defined as

L(t,q, L1, L2, η,λ)

, (1 + λ1)Es,1 (t,q, L1) + (1 + λ2)Es,2 (t,q, L2)

+ λ3 (L1,1(t,q) + L1,2(t,q)− L1)

+ λ4 (L1,12(t,q)− L1)

+ η (T − (t0 + t1 + t21 + t22)) ,

(19)

where λ = [λ1, . . . , λ4] ≽ 0 (≽ denotes the componentwise
inequality) and η ≥ 0 consist of the Lagrange multipliers
associated with the constraints (16b)-(16d) and (16f) in prob-
lem (P4), respectively. In order to facilitate the analysis in the
sequel, we define another two functions

f(x) = ln(1 + x) +
1

1 + x
− 1, h(x) = g(x)− xg′(x). (20)

Hence, the following lemma is established, which can be easily
proved using the property of Lambert function.

Lemma 1. f(x) (g(x)) is a monotonic increasing (de-
creasing) function of x ≥ 0 with f(0) = 0 (g(0) =
0). Given C > 0 (G < 0), there exists a unique
positive solution for equation f(x) = C (g(x) = G),
given by x∗ = −

(
1 + (W0(−e(−(C+1))))−1

)
(x∗ =

B
ln 2

[
W0

(
G/N0+1

−e

)
+ 1

]
), where W0(z) is the principal

branch of the lambert W function [15], and e is the base
of the natural logarithm.

We first assume that (P4) is feasible and let λ∗, η∗ denote
the optimal Lagrange multipliers under a given P0. Then ap-
plying the Karush-Kuhn-Tucker (KKT) conditions [14] leads

to the following necessary and sufficient conditions:

∂L
∂t∗0

= (1 + λ∗
1)ν1g1P0 + (1 + λ∗

2)ν2g2P0 − η∗ = 0, (21)

∂L
∂t∗1

=
Bλ∗

3

ln 2
f

(
β1P0

q∗1
t∗1

)
+

Bλ∗
4

ln 2
f

(
β12P0

q∗1
t∗1

)
= η∗, (22)

∂L
∂t∗21

=
Bλ∗

3

ln 2
f

(
β2P0

q∗21
t∗21

)
− η∗ = 0, (23)

∂L
∂t∗22

= −(1 + λ∗
2)

1

h2
h

(
L∗

2

t∗22

)
− η∗ = 0, (24)

∂L
∂q∗1

=− (1 + λ∗
1)ν1g1P0 +

B

ln 2
F (t∗1, q

∗
1 , λ

∗
3, λ

∗
4) = 0, (25)

∂L
∂q∗21

=
B

ln 2

 λ∗
3β2P0

1 + β2P0
q∗21
t∗21

− (1 + λ∗
2)ν2g2P0 = 0, (26)

∂L
∂L∗

1

= (1 + λ∗
1)G1 − λ∗

3 − λ∗
4


< 0, L∗

1 = M+
1 ,

= 0, L∗
1 ∈ (M+

1 , I1),

> 0, L∗
1 = I1,

(27)

∂L
∂L∗

2

=(1 + λ∗
2)H(

L∗
2

t∗22
)


< 0, L∗

2 = M+
2 ,

= 0, L∗
2 ∈ (M+

2 , I2),

> 0, L∗
2 = I2,

(28)

λ∗
1Es,1 (t

∗,q∗, L∗
1) = 0, λ∗

2Es,2 (t
∗,q∗, L∗

2) = 0 (29)

λ∗
3 (L1,1(t

∗,q∗) + L1,2(t
∗,q∗)− L∗

1) = 0, (30)

λ∗
4 (L1,12(t

∗,q∗)− L∗
1) = 0, (31)

η∗ (T − (t∗0 + t∗1 + t∗21 + t∗22)) = 0. (32)

where F (t∗1, q
∗
1 , λ

∗
3, λ

∗
4) =

λ∗
3β1P0

1+β1P0
q∗1
t∗1

+
λ∗
4β12P0

1+β12P0
q∗1
t∗1

, H(
L∗

2

t∗22
) =

G2 − 1
h2
g′(

L∗
2

t∗22
). Note that t∗0 + t∗1 + t∗21 + t∗22 = T must hold;

otherwise, we can always allocate the remaining time to t∗0
to further increase the energy saving of both two users, and
thus η∗ > 0 holds for sure. Furthermore, the following lemma
describes an important result concerning t∗, q∗ and L∗

1.

Lemma 2. The optimal time and power allocation (t∗,q∗)
ensures the following property of D1’s offloaded data size, L∗

1.

L∗
1 = L1,1(t

∗,q∗) + L1,2(t
∗,q∗) ≤ L1,12(t

∗,q∗). (33)

Proof. We know that
∂(t22g(

L2
t22

))

∂t22
= h

(
L2

t22

)
< 0 for t22 > 0,

which indicates that t22g(
L2

t22
) is a monotonically decreas-

ing function of t22. It is easy to prove that the inequality
L1,1(t

∗,q∗) < L1,12(t
∗,q∗) always holds for the consid-

ered case of h1 < h12. If L1,1(t
∗,q∗) + L1,2(t

∗,q∗) >
L1,12(t

∗,q∗) holds, we can always allocate part of t∗21 to
t∗22 while maintaining the same L∗

1, L∗
2, q∗, t∗0, t∗1 and the

sum of t∗21, t∗22, which will decrease L1,2(t
∗,q∗) until the

equality holds. This operation will result in an increased
Es,2 (t

∗,q∗, L∗
2) by decreasing t∗22g(

L∗
2

t∗22
) without reducing

Es,1(t
∗,q∗, L∗

1), and thus will increase the objective function
of problem (P4). Hence, expression (33) always holds with the
optimal solution of problem (P4).



Based on the result of Lemma 2, we can derive that λ∗
3 > 0

and λ∗
4 = 0. Furthermore, for t∗ ≻ 0 and q∗ ≻ 0, it can be

derived from (22), (23) and Lemma 1 that

β1
q∗1
t∗1

= β2
q∗21
t∗21

= − 1

P0

(
1 +

(
W0

(
−e

−
(

η∗ ln 2
λ∗
3B

+1

)))−1)
.

(34)
Moreover, through the KKT conditions (25) and (26), we can
respectively derive that

β1
q∗1
t∗1

=
λ∗
3Bβ1

(1 + λ∗
1)ν1g1P0 ln 2

− 1

P0
, (35)

β2
q∗21
t∗21

=
λ∗
3Bβ2

(1 + λ∗
2)ν2g2P0 ln 2

− 1

P0
. (36)

Based on (34)-(36), we obtain that (1 + λ∗
1)ν1g1P0 =

β1

β2
(1+λ∗

2)ν2g2P0. Combining the condition (21), the optimal
Lagrange multipliers have the following property:

(1 + λ∗
i )νigiP0 =

βiη
∗

β1 + β2
, i ∈ {1, 2} . (37)

Hence, by substituting (37) into (35) and (36), we obtain

β1
q∗1
t∗1

= β2
q∗21
t∗21

=
Bλ∗

3(β1 + β2)

η∗ ln 2
− 1

P0
. (38)

Based on these results, the optimal resource allocation of (P4)
for a given P0 is characterized in the following subsections.

B. Optimal Offloading Decisions with Power Allocation

First, we define an offloading indicator for Di as µi ,
BhiCiQi/(N0 ln 2), i ∈ {1, 2}. Note that µi depends on the
variables quantifying uplink channel (hi), local computing
(CiQi), and it is a monotonically increasing function of hi, Ci

and Qi. The following theorem shows the relationship between
the optimal solution with µi.

Theorem 1. (Optimal Cooperative Computation Offloading
Decisions with Power Allocation).

1) If M+
1 > 0 or µ1 ≥ (β1 +β2)P0/z

∗, the optimal L∗
1, p∗1

and p∗21 (all in semi-closed from) can be expressed as

L∗
1


= M+

1 , µ1 < (β1 + β2)P0/z
∗,

∈ (M+
1 , I1), µ1 = (β1 + β2)P0/z

∗,

= I1, µ1 > (β1 + β2)P0/z
∗,

(39)

p∗1 =
N0

h1
((β1 + β2)P0/z

∗ − 1) > 0, (40)

p∗21 =
N0

h2
((β1 + β2)P0/z

∗ − 1) > 0, (41)

in which z∗ is the unique solution of the equation given by

e

(
1

(β1+β2)P0
−1

)
z − e

(β1+β2)P0
z = 0 on the specific range of

z ∈ (0, (β1 + β2)P0). If M+
1 = 0 and µ1 < (β1 + β2)P0/z

∗,
it is optimal to set L∗

1 = 0, p∗1 = 0, and p∗21 = 0.
2) If M+

2 > 0 or ρ(µ2) ≥ (β1+β2)P0, the optimal L∗
2 and

p∗22 (all in closed form) are given by

L∗
2


= M+

2 , ρ(µ2) < (β1 + β2)P0,

∈ (M+
2 , I2), ρ(µ2) = (β1 + β2)P0,

= I2, ρ(µ2) > (β1 + β2)P0,

(42)

p∗22 =
1

h2
g

(
B

ln 2

[
W0

(
(β1 + β2)P0 − 1

e

)
+ 1

])
, (43)

where ρ(µ2) , µ2 lnµ2 − µ2 + 1. If M+
2 = 0 and ρ(µ2) <

(β1 + β2)P0, it is optimal to set L∗
2 = 0 and p∗22 = 0.

Proof. See Appendix A.

Theorem 1 shows that Li, i ∈ {1, 2} have a threshold-
based structure. Since the exact cases of µ1 = (β1+β2)P0/z

∗

in (39) and ρ(µ2) = (β1 + β2)P0 in (42) rarely occur in
practice, the optimal policy makes binary offloading decisions
for both cooperative users. Besides, Li grows with increasing
µi, which is consistent with the intuition that more resources
should be scheduled to computation offloading when users
have good channels (i.e., large hi) or consume high local
computing energy (i.e., large Ci and Qi). Moreover, the same
item in the thresholds of the offloading decisions for two users,
i.e., (β1 + β2) = (ν1g1h1 + ν2g2h2)/N0 reflects the energy
harvesting potential of two users (i.e., ν1g1 and ν2g2) and the
quality of uplink offloading channels (i.e., h1 and h2), which
demonstrates the effect of user cooperation that either user’s
offloading decision is affected by the other user’s energy-
harvesting ability and offloading-channel quality. Based on the
results in Theorem 1, it is easy to obtain the following lemma.

Lemma 3. For L∗
1 > 0, the optimal transmit rates of D1

and D2 for offloading D1’s input data are same, i.e.,

r1,1(p
∗) = r1,2(p

∗) = B log2 ((β1 + β2)P0/z
∗) . (44)

C. Optimal Power-Efficient Time Allocation

The corresponding optimal time allocation, i.e., t∗ =
(t∗0, t

∗
1, t

∗
21, t

∗
22), is summarised in Theorem 2.

Theorem 2. (Optimal Time Allocation for WPT and Coop-
erative Computation Offloading).

1) The optimal time allocation for offloading D2’s input
data is given by

t∗22 =
L∗

2 ln 2

B

[
W0

(
(β1 + β2)P0 − 1

e

)
+ 1

]−1

. (45)

2) The optimal WPT duration time can be derived as

t∗0 = T − t∗22 − L∗
1/r1,1(p

∗). (46)

3) The optimal time allocation for offloading D1’s input data,
i.e., (t∗1, t

∗
21) can be expressed as2

(t∗1, t
∗
21) = (L∗

1/r1,12(p
∗), L∗

1/r1,1(p
∗)− t∗1) , (47)

where (t∗1, t
∗
21) = (0, 0) when L∗

1 = 0.

Proof. See Appendix B.

D. Optimal Resource Allocation for obtaining P ⋆
0

In this section, we will discuss the second phase of solving
problem (P2). Note that with a larger P0, the feasible region of
problem (P4) will be lager as well, and thus more energy will
be saved, which means that the maximum SES obtained by
(P4) is an increasing function of P0. Hence, the minimum P ⋆

0

of the original APTPM problem (P1) can be obtained through

2In this paper, we mainly consider the usual encountered case of h1 < h2.
Actually, if the case of h1 > h2 does happen, we can simply exchange the
roles of the two devices to apply the proposed scheme.
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Fig. 1. Average minimum transmit power of AP versus I and T .

a bisection search of P0. Note that t∗22 in (45) monotonically
decreases with P0, thus a lower bound of P0, denoted as PL

0 ,
can be obtained by solving the equation t∗22(P0) = T with
L∗
2 = I2. Based on this PL

0 , we can further obtain a proper
upper bound of P0, denoted as PU

0 , which should make (P4)
feasible and lead to positive energy savings for both of the
users, and the optimal P ⋆

0 must be in the range of (PL
0 , PU

0 ).
With the contradiction method, the following lemma showing
a property of P ⋆

0 can be easily obtained.

Lemma 4. When the minimum feasible P ⋆
0 is used in

problem (P4), at least one of the two users should use up
all its harvested energy, i.e., E∗

s,1(P
⋆
0 ) = 0 or E∗

s,2(P
⋆
0 ) = 0.

V. SIMULATION RESULTS

In this section, the performance of the proposed scheme
(UC-JOPT) is investigated by simulations. Also, we include
the results of two baselines: UC-ET and IUC, which represent
the schemes with equal time allocation for offloading D1’s
input data, i.e., t21 = t1 = L∗

1/r1,12(p
∗), and with inactive

user cooperation by letting t21 = 0 and t1 = L
∗
1/r1,1(p

∗),
respectively. The other variables of these two baselines are
obtained from Theorem 1 and Theorem 2. Comparisons with
these two baselines can further show the capability of the pro-
posed UC-JOPT scheme in handling CILC tasks and resisting
the double-near-far effect in WPCNs.

The simulation parameters are set as follows unless specified
otherwise. We set B = 10MHz, T = 0.2s, N0 = 10−9W,
νi = 0.8 and κi = 10−28, respectively. It is assumed that the
channel reciprocity holds for the downlink and uplink, and
thus g1 = h1, g2 = h2. The channel power gain is modeled
as hj = 10−3d−α

j ϕj , j ∈ {1, 2, 12}, where ϕj represents the
short-term Rayleigh fading and α is the path-loss exponent.
We assume that d1 = 10m, d2 = 6m, d12 = 6m and α = 2.
For each user Di, i ∈ {1, 2}, fi is uniformly selected from
the set of {0.1, 0.2, . . . , 1.0}GHz. Besides, Ii and Ci follow
the uniform distribution with Ii ∈ [100, 500] KB and Ci ∈
[1000, 2000] cycles/bit, respectively. The simulated figures in
this section are based on 1000 realizations.

Fig. 1 depict the average minimum transmit power (AMTP)
versus the same input data size I = I1 = I2 and the block
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length T in (a) and (b), respectively. The AMTP of all the
schemes increase with I but decrease with T , as expected. We
can see that the UC-JOPT scheme obviously outperforms the
baselines, indicating the significance of the optimization and
user cooperation in UC-JOPT. Also, it is noted that the gaps
of AMTP between different schemes become more significant
for a larger I or a shorter T , demonstrating superiority of the
proposed UC-JOPT scheme in handling the CILC tasks.

Fig. 2 shows the AMTP with respect to ξ for α = 2, 2.5
where d2 = ξd1, d12 = (1 − ξ)d1, and ϕ1 = ϕ2. We can
see that the proposed UC-JOPT scheme is superior to the
benchmarks, and the improvements are even more pronounced
with a larger α, indicating that UC-JOPT is highly effective in
resisting the attenuation caused by path loss. It is also noticed
that the curves of UC-JOPT and UC-ET, first decrease then
increase with ξ, achieving the minimum AMTP at a saddle
point of ξ. This is because for the cooperative computation
offloading schemes, the performance depends not only on h2

but also on h12, and there exists a tradeoff between the two
values. It is interesting to note that the performance of UC-
JOPT converges to IUC as ξ gradually tends to 1 since both
D1 and D2 suffer from severe signal attenuation. However,
the performance of UC-ET is even worse than IUC when ξ
becomes larger approaching to 1, which shows the importance
and effect of optimizing the offloading time fraction.

VI. CONCLUSIONS

In this paper, we investigated the use of cooperative commu-
nications in computation offloading for a WPT-MEC system.
Joint power and time allocation for cooperative computation
offloading has been considered with the aim to minimize the
transmit power of the AP for completing the computation tasks
of the two near-far users. A two-phase method was proposed to
find the optimal solution. Simulation results revealed that the
proposed scheme greatly outperforms the baselines in handling
CILC tasks and resisting double-near-far effect in WPCNs.
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APPENDIX A

1) The following lemma is useful to prove the first result,
which can be easily proved using the property of derivative.

Lemma 5. For function q(z) = e(m−1)z−emz = 0 (m > 0
is a constant), there exists a unique root on z ∈ (0, 1

m ), which
can be easily obtained by a bisection search method.

We will first consider the cases of M+
1 > 0 or µ1 ≥ (β1 +

β2)P0/z
∗. From (34) and (38), we can get the equation given

below
W0

(
−e

−( η∗ ln 2
λ∗
3B

+1)
)

=
−η∗ ln 2

λ∗
3B(β1 + β2)P0

. (48)

Denoting z∗ = η∗ ln 2
λ∗
3B

> 0 and using the definition of the
Lambert function, the above equation can be rewritten as

e

(
1

(β1+β2)P0
−1

)
z∗ − e

(β1 + β2)P0
z∗ = 0. (49)

Note that β1
q∗1
t∗1

=
λ∗
3B(β1+β2)
η∗ ln 2 − 1

P0
= (β1+β2)

z∗ − 1
P0

> 0,
which means that equation (49) should have a unique root z∗

on (0, (β1 + β2)P0). According to Lemma 5, solving (49) is
equivalent to find the unique root of q(z) = 0 on z ∈ (0, (β1+
β2)P0) with m = 1/(β1 + β2)P0, and this unique root can
be obtained by a bi-section search on z∗ ∈ (0, (β1 + β2)P0).
Therefore, λ∗

3 can be expressed as λ∗
3 = η∗ ln 2

Bz∗ . Substituting
λ∗
3 and (1 + λ∗

1) (in (37)), and β1 into (27) leads to

∂L
∂L∗

1

=
ln 2

B

(
µ1

(β1 + β2)P0
− 1

z∗

)
η∗, (50)

which establishes the result of L∗
1 in (39). Similarly, substitut-

ing λ∗
3 = η∗ ln 2

Bz∗ into (38), we have(
q∗1
t∗1

,
q∗21
t∗21

)
=

(
1

β1
V (z∗),

1

β2
V (z∗)

)
≻ 0, (51)

where V (z∗) = β1+β2

z∗ − 1
P0

. Based on these, we can further
obtain p∗1 and p∗21 through the variable revivification, i.e., p∗1 =

ν1g1P0
q∗1
t∗1

and p∗21 = ν2g2P0
q∗21
t∗21

, leading to the results in (40)
and (41). If M+

1 = 0, µ1 < (β1+β2)P0/z
∗, it can be derived

that L∗
1 = 0 according to (27), and thus p∗1 = 0, p∗21 = 0.

2) Next, we will prove the second result of Theorem 1.
Similarly, we also first consider the cases of M+

2 > 0 or
ρ(µ2) ≥ (β1 + β2)P0. According to Lemma 3, the optimal
transmission rate for offloading D2’s input data, i.e., L∗

2

t∗22
can

be obtained through (24) as

r∗2 =
B

ln 2

[
W0

(
(β1 + β2)P0 − 1

e

)
+ 1

]
> 0, (52)

where the property of λ∗
2 in (37) and the definition of β2 are

used. It is known that g′(x) = N0 ln 2
B 2

x
B is a monotonically

increasing function of x. Through (28), we can derive that
∂L
∂L∗

2
(<,=, >)0 hold if and only if L∗

2

t∗22
(>,=, <) B

ln 2 lnµ2,
respectively. Hence, the result of L∗

2 in (42) can be obtained
by comparing the expression of L∗

2

t∗22
in (52) and B

ln 2 lnµ2.
Hence, the optimal transmit power for offloading D2’s data
is p∗22 = 1

h2
g
(

L∗
2

t∗22

)
, giving the result in (43). For the case of

M+
2 = 0, ρ(µ2) < (β1+β2)P0, it can be derived that L∗

2 = 0
according to (28), and thus p∗22 = 0.

APPENDIX B

Based on the results of Theorem 1, we can easily derive
t∗22 through t∗22 =

L∗
2

r∗2
with the expression of r∗2 in (52). For

the case of L∗
1 = 0, we understand that t∗1 = 0 and t∗21 = 0,

and thus t∗0 = T − t∗22. For the case of L∗
1 > 0, combining

the results of Lemma 2, Lemma 3, and the active time-sharing
constraint in (16f), establishes the following equation

t∗1 + t∗21 = L∗
1/r1,1(p

∗) = T − t∗22 − t∗0, (53)

which leads to (46). As for the derivation of (t∗1, t
∗
21) when

L∗
1 > 0, we resort to the results of Lemma 2 and Theorem 1,

and further derive the following lemma, which can be proved
by contradiction and here we omit the proof to save space.

Lemma 6. The optimal time allocation (t∗1, t
∗
21) for coop-

eratively offloading D1’s input data satisfies

L∗
1 = L1,1(t

∗
1) + L1,2(t

∗
21) = L1,12(t

∗
1). (54)

The above lemma is equivalent to that L∗
1 = (t∗1 +

t∗21)r1,1(p
∗) = t∗1r1,12(p

∗), from which we can deduce the
optimal time division parameters (t∗1, t

∗
21) as in (47).

REFERENCES

[1] N. Vastardis, and K. Yang, “Mobile social networks: Architectures,
social properties, and key research challenges,” IEEE Commun. Surv.
Tutor., vol. 15, no. 3, pp. 1355-1371, Third Quarter 2013.

[2] K. Yang, Q. Yu, S. Leng, B. Fan, and F. Wu, “Data and energy integrated
communication networks for wireless big data,” IEEE Access, vol. 4, pp.
713-723, Feb. 2016.

[3] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “Mobile edge
computing: Survey and research outlook,” IEEE Commun. Surv. Tutor.,
vol. PP, no. 99, pp. 1-1, Aug. 2017.

[4] C. You, K. Huang and H. Chae, “Energy efficient mobile cloud comput-
ing powered by wireless energy transfer,” IEEE J. Sel. Areas Commun.,
vol. 34, no. 5, pp. 1757-1771, May 2016.

[5] Y. Mao, J. Zhang and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J.
Sel. Areas Commun., vol. 34, no. 12, pp. 3590-3605, Dec. 2016.

[6] R. Kaewpuang, D. Niyato, P. Wang, and E. Hossain, “A framework for
cooperative resource management in mobile cloud computing,” IEEE J.
Sel. Areas Commun., vol. 31, no. 12, pp. 2685-2700, Dec. 2013.

[7] C. You, K. Huang, H. Chae, and B. H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans. Wire-
less Commun., vol. 16, no. 3, pp. 1397-1411, Mar. 2017.

[8] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and computing
optimization in wireless powered mobile-edge computing systems,”
IEEE Trans. Wireless Commun., vol. PP, no. 99, pp. 1-1, 2018.

[9] H. Ju and R. Zhang,“User cooperation in wireless powered commu-
nication networks,” proc. IEEE Global Communications Conference
(GLOBECOM), Austin, TX, 2014, pp. 1430-1435.

[10] J. N. Laneman, D. Tse, and G. W. Wornell, “Cooperative diversity in
wireless networks: Efficient protocols and outage behavior,” IEEE Trans.
Inform. Theory, vol. 50, no. 11, pp. 3062-3080, Nov. 2004.

[11] Y. Liang and V. V. Veeravalli, “Gaussian orthogonal relay channels:
Optimal resource allocation and capacity,” IEEE Trans. Inform. Theory,
vol. 51, no. 9, pp. 3284-3289, Sep. 2005.

[12] X. Cao, F. Wang, J. Xu, R. Zhang, and S. Cui, “Joint computation
and communication cooperation for mobile edge computing,” [Online]
Available: https://arxiv.org/pdf/1704.06777.pdf

[13] X. Hu, K. K. Wong, and K. Yang “Wireless powered cooperation-
assisted mobile edge computing,” IEEE Trans. Wireless Commun., vol.
PP, no. 99, pp. 1-1, 2018.

[14] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[15] R. Corless, G. Gonnet, D. Hare, D. Jeffrey, and D. Knuth, “On the
Lambert W function,” Adv. Comput. Math., vol. 5, pp. 329-359, 1996.


