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Abstract—This work puts forth an analytical approach
to evaluate the recovery failure probability of power-
based Non-Orthogonal Multiple Access (NOMA) on the
uplink of a 5G cell, the recovery failure being defined
as the unfortunate event where the receiver is unable
to decode even one out of the n simultaneously received
signals. In the examined scenario, Successive Interference
Cancellation (SIC) is considered and an arbitrary number
of superimposed signals is present. For the Rayleigh
fading case, the recovery failure probability is provided
in closed-form, clearly outlining its dependency on the
signal-to-noise ratio of the users that are simultaneously
transmitting, as well as on their distance from the receiver.
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I. INTRODUCTION

In recent years NOMA has stirred much interest,
because of its promise of enhancing the capacity of
5G cellular systems. NOMA allows different simul-
taneous users to share the available system resources
(frequency, time) through a variety of different
techniques, well illustrated in [1] and [2]: as a matter
of fact, NOMA can operate in the power-domain,
can adopt spreading sequences, can rely on coding
matrices and/or interleaving. This work focuses on
power-based NOMA on the uplink of a 5G cell,
when a SIC receiver is employed. In [3], emphasis
was on uplink power-based NOMA too, the goal
being to evaluate the achievable sum data rate and
the corresponding outage, which was provided in
closed-form for the case of two users. The latter
condition is commonly encountered in literature, as

it guarantees a tractable analysis. Unlike [3] and pre-
vious works, this study sets no limit to the number
of superimposed signals. Its main original contri-
bution consists in the introduction of an analytical
framework to evaluate the recovery failure proba-
bility, which is defined as the probability that the
recovery of the signals simultaneously arriving at
the receiver fails. In other words, not even one out of
the n received signals can be successfully decoded;
this condition happens when the constraints on the
received powers that the SIC receiver mandates are
not observed. For the case of Rayleigh fading, the
theoretical analysis provides the recovery failure
probability in closed-form, immediately revealing
its dependency on several factors, among which fre-
quency, different signal-to-noise ratio assignments
and distance of the users from the receiver. The
numerical results explore the setting where either
two or three superimposed signals are present, and
show that several configurations exist, where the
recovery failure probability is confined to low values
and the benefit of NOMA can indeed be effectively
exploited.

The remainder of this manuscript is organized as
follows: Section II defines the scenario of inves-
tigation and develops the theoretical analysis; the
case of Rayleigh fading is illustrated in Section III;
Section IV provides some reference results, while
the conclusions are drawn in Section V.

II. SCENARIO AND PERFORMANCE ANALYSIS

Within the current work, uplink communications
in a 5G cell are examined; power-based NOMA is
employed and the reference scenario features n User



Equipments (UEs) that transmit to the enhanced
node B (enodeB), on the same radio spectrum. Let
hi denote the envelope of the channel between the
i-th UE, UEi, i = 1, 2, . . . , n, and the enodeB; as
in [4], let

Γi =
h2
i

N0B
(1)

indicate the i-th normalized channel gain, N0 be-
ing the noise power spectral density and B the
transmission bandwidth. Further, let pΓi(γi) be the
probability density function (pdf) of the generic Γi,
0 ≤ γi ≤ +∞. The assumption is that, ∀i and j,
Γi and Γj be independent random variables with
different mean values, that is to say, different UEs
experience independent channel conditions during
their transmissions to the enodeB.

Unlike LTE, 5G uplink power-based NOMA
mandates for different transmit power levels for dif-
ferent UEs, in order to guarantee distinct received
powers at the enodeB and to facilitate the task of the
interference cancellation receiver. Moreover, unlike
downlink power-based NOMA [5], which assigns
users with stronger channel conditions lower power
levels, for uplink NOMA the more favorable the
channel gain that the UE experiences, the higher
the transmit power level that the UE has to work
with. In other words, before NOMA UEs transmit,
the enodeB ranks them according to their channel
gains, strongest first; then, the UE with the largest
channel gain is assigned the highest transmit power,
the UE with the second largest gain the second
highest power, until the least favored UE, which
operates with the lowest transmit power level.

No matter what power assignment law is adopted,
the instantaneous values of the Γis need to be
ordered, so as to obtain Γ(1), Γ(2), . . ., Γ(n), with

Γ(1) > Γ(2) > . . . > Γ(n) ; (2)

next, transmit powers are assigned to UEs respect-
ing the constraint

P(1) > P(2) > . . . > P(n) , (3)

P(i) representing the transmit power of UE(i), the
UE with the i-th largest channel gain Γ(i).

Note that in the ordered set Γ(1), Γ(2), . . ., Γ(n) the
new random variables Γ(i)s are no longer indepen-
dent and that, for the notation employed, Γ(1) is the
largest order statistic, whereas Γ(n) is the smallest.

The enodeB receives the superimposed messages
from the UEs and through successive interference
cancellation it attempts to decode them: if totally
successful, it recovers all n signals, the strongest
first, then the second strongest, until the weakest.

We begin observing that the strongest signal
received by the enodeB from UE(1) can be detected
if the difference between the power received from
UE(1) and the sum of the powers received from all
other UEs is greater than or equal to a threshold
value Pthres, that represents the minimum difference
required to extract the first signal. In analytical
terms, the condition of successful recovery for such
signal is given by

P(1)Γ(1) −
n∑
i=2

P(i)Γ(i) ≥ Pthres . (4)

If (4) is satisfied, then the first decoding event
occurs, the SIC receiver recovers one signal and
next proceeds and attempts to decode the second
strongest signal, received from UE(2). The first
signal is subtracted out, so that the recovery of
the second strongest received signal requires the
condition

P(2)Γ(2) −
n∑
i=3

P(i)Γ(i) ≥ Pthres (5)

to hold. If (5) is verified, then the receiver decodes
two signals and can tackle the decoding of the third
strongest signal; on the contrary, if last condition is
not fulfilled, the SIC receiver halts. In general, the
process stops when either the last, weakest signal is
successfully decoded, or when k signals only, k <
n−1, are recovered, this event corresponding to the
occurrence of the condition:

P(k+1)Γ(k+1) −
n∑

i=k+2

P(i)Γ(i) < Pthres . (6)

The final consequence of this iterated reasoning
is that inequality (4) represents the necessary and
sufficient condition for the decoding of the strongest
signal, but also the necessary condition for the
decoding of 2, 3, . . ., n signals out of n.

Next, let us define Pfailn , the recovery failure
probability of power-based uplink NOMA in the
presence of n simultaneous transmissions, as the
probability that not even one, out of the n super-
imposed signals, can be correctly recovered by the



SIC receiver. From the previous reasoning it follows
that

Pfailn =

= 1− Pr{the strongest signal is recovered} =

= Pr{P(1)Γ(1) −
∑n
i=2 P(i)Γ(i) < Pthres} . (7)

Evaluating (7) requires the consideration of n
dependent random variables, the generic of which
is

X(i) = P(i)Γ(i) ; (8)

recalling (2) and (3), it is immediate to conclude
that condition X(1) > X(2) > . . . > X(n) holds.

To understand how the Pfailn evaluation can be
pursued, it is instructive to consider n = 2 and
to indicate by fjoint2(x(1), x(2)) the joint pdf of the
random variables X(1) and X(2), so that the recovery
failure probability in (7) becomes

Pfail2 = Pr{P(1)Γ(1) − P(2)Γ(2) < Pthres} =

= Pr{X(1) −X(2) < Pthres} =

= 1− Pr{X(2) < X(1) − Pthres} =

= 1−
∫∞
x(1)=Pthres

∫ x(1)−Pthres
x(2)=0 fjoint2(x(1), x(2)) ·
·dx(2)dx(1) . (9)

For a generic n, last expression generalizes to

Pfailn = 1−∫∞
x(1)=Pthres

∫ x(1)−Pthres
x(2)=0

∫ x(1)−x(2)−Pthres
x(3)=0 . . .∫ x(1)−x(2)−x(3)−...−x(n−1)−Pthres

x(n)=0

fjointn(x(1), x(2), . . . , x(n)) ·
·dx(n)dx(n−1) . . . dx(1) , (10)

where fjointn(x(1), x(2), . . . , x(n)) indicates the joint
pdf of the ordered set X(1), X(2), . . ., X(n).

The next problem at hand is to determine such
pdf. In this respect, let fi(·) be the pdf of the –
unordered – random variable Xi, defined as

Xi = P(i) · Γi , i = 1, 2, . . . , n , (11)

whose pdf is immediately determined, once pΓi(γi)
is known, as P(i) is a constant, and define Fn as the
following n× n matrix

Fn =


f1(x(1)) f2(x(1)) . . . fn(x(1))
f1(x(2)) f2(x(2)) . . . fn(x(2))
...

... . . . ...
f1(x(n)) f2(x(n)) . . . fn(x(n))

 .
(12)

For the purpose of what follows, recall that the

permanent of a square matrix A, written as
+

| A
+

| ,
is defined like the determinant, except that all signs
are positive. Again, to make things clearer, consider
the case n = 2 and observe that in this case the
permanent of F2 is given by:

+

| F2

+

|=
+

|
[
f1(x(1)) f2(x(1))
f1(x(2)) f2(x(2))

]
+

|=

= f1(x(1)f2(x(2)) + f2(x(1))f1(x(2)) . (13)

For an arbitrary n, it can be demonstrated that the
joint pdf fjointn(x(1), x(2), . . . , x(n)) of the ordered
statistics X(1), X(2), . . ., X(n) is

fjointn(x(1), x(2), . . . , x(n)) =
+

| Fn
+

| , (14)

Fn being given by (12). Last result is substantiated
by the reasoning in [6] and [7], where the arguments
of [8] are extended to prove the formulation in (14)
with the use of permanents.

At first sight, fjointn(x(1), x(2), . . . , x(n)) gives the
impression that evaluating the integral in (10) might
be quite cumbersome when n is arbitrary. However,
the joint pdf obeys a highly peculiar structure and
an alike – and more convenient – rewriting of it is
provided in the following terms: let SN indicate all
n! permutations of the set N = {1, 2, . . . , n} and
by Si = {i1, i2, . . . , in} the generic of such permu-
tations. It follows that fjointn(x(1), x(2), . . . , x(n)) is
equivalently written as

fjointn(x(1), x(2), . . . , x(n)) =

=
∑

Si∈SN
f1(x(i1))f2(x(i2)) · . . . · fn(x(in)) . (15)

Last expression highlights that the joint pdf exhibits
the presence of n! terms, wherein the permutations
of the arguments of the f1(·), f2(·), . . ., fn(·) pdfs
appear. Replacing (15) in (10) gives Pfailn as

Pfailn = 1−∫∞
x(1)=Pthres

∫ x(1)−Pthres
x(2)=0

∫ x(1)−x(2)−Pthres
x(3)=0 . . .∫ x(1)−x(2)−x(3)−...−x(n−1)−Pthres

x(n)=0∑
Si∈SN f1(x(i1))f2(x(i2)) · . . . · fn(x(in)) ·

·dx(n)dx(n−1) . . . dx(1) , (16)



and indicating by ISi the result of the integral

ISi =
∫∞
x(1)=Pthres

∫ x(1)−Pthres
x(2)=0

∫ x(1)−x(2)−Pthres
x(3)=0 . . .∫ x(1)−x(2)−x(3)−...−x(n−1)−Pthres

x(n)=0

pi1i2...in(x(1), x(2), . . . , x(n)) ·
·dx(n)dx(n−1) . . . dx(1) , (17)

where

pi1i2...in(x(1), x(2), . . . , x(n)) =

f1(x(i1))f2(x(i2)) · . . . · fn(x(in)) , (18)

then Pfailn is rewritten as

Pfailn = 1−
∑

Si∈SN
ISi . (19)

Luckily, when the random variables X1, X2, . . .,
Xn obey the same statistical description, although
with different mean values, for a permutation Sj
different than Si, the ISj result is readily obtained
from ISi through the analogous permutation of the
fi(·)’s arguments x(ik), k = 1, 2, . . . , n, in (18), ∀j.
That is to say, given the n-th fold integral in (17)
has been solved once, e.g., IS1 has been determined,
S1 = {1, 2, . . . , n}, then all the remaining ISi terms
are known. This significantly reduces Pfailn compu-
tational complexity in n, no matter what statistical
description is examined for Γi, i = 1, 2, . . . , n.

As an illustrative example, the case of Rayleigh
fading is examined in next Section.

III. RAYLEIGH FADING CASE

When the envelope of the received signal is
subject to Rayleigh fading, Γi and in turn Xi are
exponentially distributed with means Γi and X i,
respectively. Beginning with the case n = 2, from
(19) Pfail2 specializes to

Pfail2 = 1− (IS1 + IS2) , (20)

where S1 = {1, 2} and

IS1 =

∞∫
x(1)=Pthres

x(1)−Pthres∫
x(2)=0

p12(x(1), x(2))dx(2)dx(1)

(21)
with

p12(x(1), x(2)) = f1(x(1))f2(x(2)) =

=
1

X1

exp

(
−
x(1)

X1

)
· 1

X2

exp

(
−
x(2)

X2

)
; (22)

analogously, S2 = {2, 1} and

IS2 =

∞∫
x(1)=Pthres

x1−Pthres∫
x(2)=0

p21(x(1), x(2))dx(2)dx(1)

(23)
with

p21(x(1), x(2)) = f1(x(2))f2(x(1)) =

=
1

X1

exp

(
−
x(2)

X1

)
· 1

X2

exp

(
−
x(1)

X2

)
. (24)

Solving the integral in (21) gives

IS1 =
X1

X1 +X2

exp

(
−Pthres

X1

)
, (25)

wherefore IS2 immediately follows as

IS2 =
X2

X2 +X1

exp

(
−Pthres

X2

)
, (26)

and finally

Pfail2 = 1 + (27)

−
(

X1

X1+X2
exp

(
−Pthres
X1

)
+ X2

X1+X2
exp

(
−Pthres
X2

))
.

Similarly, when n = 3, there will be 3! dis-
tinct integral contributions of the type in (17) in
the recovery failure probability expression, that are
determined once p123(x(1), x(2), x(3)) is introduced,

p123(x(1), x(2), x(3)) =
1
X1
exp

(
−x(1)

X1

)
· 1
X2
exp

(
−x(2)

X2

)
·

· 1
X3
exp

(
−x(3)

X3

)
. (28)

Now, S1 = {1, 2, 3} and

IS1 =
∫∞
x(1)=Pthres

∫ x(1)−Pthres
x(2)=0

∫ x(1)−x(2)−Pthres
x(3)=0

p123(x(1), x(2), x(3)) ·
·dx(3)dx(2)dx(1) , (29)

that after a few passages is determined as

IS1 =
X1

2
exp(−Pthres

X1
)

(X1 +X2)(X1 +X3)
. (30)

Moreover, it can be verified that the set S2 =
{1, 3, 2} gives the same result as S1, that is to say,
IS1 = IS2 . If we now introduce S3 = {2, 1, 3} and
S4 = {2, 3, 1}, suitably permuting X1,X2 and X3 in
(30) IS3 = IS4 is also determined; the same applies



to S5 = {3, 2, 1} and S6 = {3, 1, 2}, for which
IS5 = IS6 . Pfail3 is then provided as

Pfail3 = 1−
∑

Si∈SN
ISi =

1− 2

 X
2

1exp
(
−Pthres

X1

)
(X1 +X2)(X1 +X3)

+

+
X

2
2exp

(
−Pthres

X2

)
(X2 +X1)(X2 +X3)

+

+
X3

2
exp

(
−Pthres

X3

)
(X3 +X2)(X3 +X1)

 . (31)

Iterating the procedure, by induction it is proved
that Pfailn , the recovery failure probability in the
presence of n superimposed signals, is given in
closed form by:

Pfailn = 1− n!

n
·

n∑
k=1

X
n−1
k e

−Pthresh
Xk

n∏
i=1

i 6=k

(Xk +X i)
=

= 1− (n− 1)!
n∑
k=1

e
−Pthres

Xk

n∏
i=1

i 6=k

(1 + Xi

Xk
)
. (32)

Last expression allows to determine the recovery
failure probability in the presence of an arbitrary
number of signals in a very effective and quick
manner. To this regard, from (11) and (1) it is
observed that

X i = P(i)Γi =
P(i)

N0B
· h2

i = SNR(i) · h2
i (33)

where SNR(i) is the signal-to-noise ratio of UE(i)

and h2
i is the mean of the channel gain h2

i . Hence,
when the SNR(i) and the h2

i values are provided, the
recovery failure probability of uplink power-based
NOMA is known. We next assume that the path loss
is

h2
i = kp ·D−αi , (34)

where Di is the distance between the i-th UE and
the enodeB, α represents the decay factor and kp is
kp = ( c

4πfc
)2, c being the speed of light and fc the

operating frequency; moreover, isotropic antennas

are considered. In this circumstance, (32) specializes
to

Pfailn = 1−(n−1)!
n∑
k=1

exp
(
− Pthres
SNR(k)kpD

−α
k

)
n∏
i=1

i 6=k

(
1 +

SNR(i)

SNR(k)
·
(
Di
Dk

)−α) .
(35)

Given Pthres is fixed, as well as the operating
frequency fc, the set of distances D1, D2, . . .,
Dn and the SNR values SNR(1), SNR(2), . . .,
SNR(n), from (35) the probability of not being
able to take advantage of successive interference
cancellation is determined right away. Next Section
relies on (35) to offer some meaningful insights
on the performance of uplink power-based NOMA
employed in conjunction with SIC.

IV. NUMERICAL RESULTS
Fig.1 reports Pfail2 , the recovery failure proba-

bility in the presence of two superimposed signals,
as a function of D1, the distance of UE1 from the
enodeB given in meters, when the second UE, UE2,
is at the cell edge and the cell radius is R = 100 m;
SNR(1) takes on different values, namely, = 15, 12
and 10 dB, whereas SNR(2) = 10 dB, that is to say,
a difference of 5, 2 and 0 dB between the transmitted
powers of the two UEs is considered. This is in
line with the choices performed in [3], where the
transmitted powers of two simultaneous users differ
for either 5 or 3 dB. The propagation factor is α = 4
and two values of the carrier frequency are consid-
ered: fc = 2 GHz (solid lines) and 28 GHz (dashed
lines). Pthres, the minimum difference in received
powers is equal to −75 dBm [9]. The frequency
effect on the recovery failure probability is evident,
highlighting that power-based NOMA is by far
more attractive at lower frequencies. Nevertheless,
interesting recovery failure probability values can
be attained when the distance of UE1 from the
enodeB is small and the gap between SNR(1) and
SNR(2) increases. Fig.2 extends the reasoning to
the case of three superimposed signals and shows
the behavior of the recovery failure probability
Pfail3 as a function of D1 for three distinct choices
of the (SNR(1), SNR(2), SNR(3)) triplet, namely:
(10, 10, 10) (solid lines), (12, 10, 10) (dashed lines)
and (15, 10, 8) (dotted lines), when the carrier fre-
quency is fc = 28 GHz. Different locations of UE2
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Fig. 1. Pfail2 as a function of D1, fc = 2 and fc = 28 GHz

and UE3 are examined: D2 = 0.2R paired with
D3 = 0.5R (red lines), D2 = 0.2R with D3 = 0.7R
(blue lines), and D2 = 0.2R with D3 = 0.9R (green
lines). The curves indicate that the influence of D3

on Pfail3 is modest: in the examined setting, it is
UE2 that plays the lion’s share, being close to the
enodeB, as D2 = 0.2R reveals. All curves exhibit
a similar shape; however, they become wider for
more pronounced differences in the SNRs, whose
final effect is to increase the range of D1 values for
which the recovery failure probability stays below a
predefined threshold (e.g., 10−1). So, the advantage
of markedly separating the UEs in terms of SNR,
assigning the users with the most favorable channel
a higher SNR value, is manifest and numerically
quantified. Moreover, note that in the majority of
the cases Pfail3 values fall below 2 · 10−1.

V. CONCLUSIONS

This paper has identified a novel, analytical
method to determine the probability of not being
able to take advantage of power-based NOMA on
the uplink of a 5G cell, when successive interference
cancellation is employed and an arbitrary number of
superimposed signals is considered. As a represen-
tative example, Rayleigh fading has been examined
and the corresponding recovery failure probability
provided in closed-form. The dependency of the
recovery failure probability on carrier frequency,
signal-to-noise ratio of the UEs that are simultane-
ously transmitting, as well as on their distance from

20 25 30 35 40 45 50
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Fig. 2. Pfail3 as a function of D1, fc = 28 GHz

the enodeB has been clearly identified, revealing
that even at very high frequencies there exist several
operating regions where power-based NOMA com-
bined with SIC exhibits notably low recovery failure
probability values, in the presence of two and also
three simultaneous users.
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