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Abstract—As the core issue of blockchain, the mining requires
solving a proof-of-work puzzle, which is resource expensive to im-
plement in mobile devices due to high computing power needed.
Thus, the development of blockchain in mobile applications is
restricted. In this paper, we consider the edge computing as the
network enabler for mobile blockchain. In particular, we study
optimal pricing-based edge computing resource management to
support mobile blockchain applications where the mining process
can be offloaded to an Edge computing Service Provider (ESP).
We adopt a two-stage Stackelberg game to jointly maximize
the profit of the ESP and the individual utilities of different
miners. In Stage I, the ESP sets the price of edge computing
services. In Stage II, the miners decide on the service demand to
purchase based on the observed prices. We apply the backward
induction to analyze the sub-game perfect equilibrium in each
stage for uniform and discriminatory pricing schemes. Further,
the existence and uniqueness of Stackelberg game are validated
for both pricing schemes. At last, the performance evaluation
shows that the ESP intends to set the maximum possible value as
the optimal price for profit maximization under uniform pricing.
In addition, the discriminatory pricing helps the ESP encourage
higher total service demand from miners and achieve greater
profit correspondingly.

Index Terms—edge computing, resource management, mobile
blockchain, mining, game theory, Variational Inequality.

I. INTRODUCTION

In traditional online payments with digital transactions, the
consensus is reached through a trusted central authority. Such
introduced intermediary increases the cost because the nominal
fees need to be deducted and paid. In 2008, a purely peer-to-
peer electronic payment concept called Bitcoin was proposed
that avoids this incurred cost caused by online payments [1].
As one popular digital cryptocurrency, Bitcoin can record
all digital transactions in an append-only distributed public
ledger called blockchain, which is maintained by a group of
participants, i.e., miners. Since the success of Bitcoin [2],
the blockchain technologies have generated remarkable public
interests through a distributed network without intermediary.
The key issue of the blockchain is a computational process
called mining, where the transaction records are appended
into the main chain through the solution of the proof-of-work
puzzle. This proof-of-work puzzle consists of considering a
set of transactions that are present in the network, solving a
mathematical problem which depends on this set and propa-
gating the result to the blockchain network for this solution to
reach consensus. Once all these steps are finished successfully,
the set of transactions proposed by the miner forms a block
that is appended to the current blockchain. The first miner

which successfully mines the solution of the puzzle and reach
the consensus is considered to be the winner to which a
certain reward is offered. This process can be referred as
the speed game among the miners with different computing
capacities [3], [4].

However, blockchain has not been adopted widely in mobile
applications [5]. This is because blockchain mining needs to
solve a proof-of-work puzzle, which is resource expensive to
implement in mobile devices due to high computing power
needed. Therefore, this motivates us to take a step further to re-
consider the mining strategies as well as resource management
in mobile environment, thereby opening new opportunities
for the development of blockchain in mobile applications. In
this paper, we consider the optimal pricing-based resource
management in mobile blockchain, where an Edge computing
Service Provider (ESP) is introduced to support proof-of-work
puzzle offloading [6]. In particular, we analyze two pricing
schemes, i.e., uniform pricing in which a uniform unit price is
applied to all the miners and discriminatory pricing in which
different unit prices are assigned to different miners. To the
best of our knowledge, this is the first work to investigate
the mobile blockchain with resource management using game
theory. The main contributions of this work are summarized
as follows.

• We formulate a pricing and service demand problem to
analyze the interplay between the ESP and miners. In
particular, we adopt the two-stage Stackelberg game to
model their interplay by jointly maximizing the profit of
the ESP and the individual utilities of different miners
for mobile blockchain applications.

• Through backward induction, we first derive a unique
Nash equilibrium point among the miners in the second
stage, and then investigate the profit maximization of the
ESP in the first stage. The existence and uniqueness of
the Stackelberg equilibrium are validated analytically for
both pricing schemes.

• We conduct simulations to evaluate the performance
of the proposed pricing-based resource management in
mobile blockchain. The results show that the ESP intends
to set the maximum possible value as the optimal price for
profit maximization under uniform pricing. In addition,
the discriminatory pricing helps the ESP encourage more
service demand from the miners and achieve greater
profit.
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Figure 1. System model.

The rest of the paper is organized as follows. Section II
describes the system model and formulate the two-stage Stack-
elberg game. Section III analyzes the optimal service demand
of miners as well as the profit maximization of the ESP
using backward induction for both uniform and discriminatory
pricing schemes. The performance evaluations is presented in
Section IV, and Section V concludes the paper.

II. SYSTEM MODEL AND GAME FORMULATION

In this section, we first present the system model of the
mobile blockchain under our consideration. Then, we for-
mulate the Stackelberg game setting for the pricing-based
edge computing resource management for mobile blockchain
applications.

A. Mobile Blockchain Mining with Edge Computing

Figure. 1 illustrates the system model of the mobile
blockchain under our consideration. We consider a mobile
blockchain application as presented in [7], in which there is
a group of miners, i.e., the mobile users, N = {1, . . . , N}.
Each mobile user runs mobile blockchain applications for
recording the transactions performed in the group. There is
an ESP deploying the edge computing units for the miners.
The aforementioned proof-of-work puzzle can be offloaded to
a nearby edge computing unit.

The ESP, i.e., the seller, sells the edge computing ser-
vices, and the miners, i.e., the buyers, access this service
from the nearby edge computing unit. Each miner i ∈ N
decides on its service demand, denoted by xi. Additionally,
we consider xi ∈ [x, x], in which x is the minimum service
demand, e.g., for blockchain data synchronization, and x is
the maximum service demand governed by the ESP. Then,
let x ∆

= (x1, . . . , xN ) and x−i represent the service demand
profile of all the miners and all other miners except miner i,
respectively. As such, miner i ∈ N with the service demand
xi has a relative computing power αi with respect to the total
computing power of the network, which is defined as follows:

αi(xi,x−i) =
xi∑
j∈N xj

, αi > 0, (1)

such that
∑
j∈N αj = 1.

In the mobile blockchain, miners compete against each other
in order to solve the proof-of-work puzzle and receive the

mining reward accordingly. The occurrence of solving the
puzzle can be modeled as a random variable following a
Poisson process with the mean value λ [8]. Once the miner
successfully solves the puzzle, the miner needs to propagate
its solution to the whole mobile blockchain network and
its solution needs to reach consensus. The first miner to
successfully mine a block that reaches consensus earns the
mining reward. The reward is composed of a fixed reward
denoted by R, and a variable reward which is defined as
r × ti, where r represents a given variable reward factor and
ti represents the number of transactions included in the block
mined by miner i [8], [9]. Additionally, the process of solving
the puzzle incurs an associated cost, i.e., the payment from
miner i to the ESP, pi. The objective of the miners is to
maximize their individual expected utility, and for miner i,
it is given as follows:

ui = (R+ rti)Pi (αi(xi,x−i), ti)− pixi, (2)

where P (αi(xi,x−i), ti) is the probability that miner i suc-
cessfully mines the block and its solution reaches consensus.

The process of successfully mining a block is composed
of two phases, i.e., the mining phase and the propagation
phase. In the mining phase, the probability that miner i mines
the block is proportional to its relative computing power αi.
Furthermore, there are diminishing chances of wining if one
miner chooses to propagate a block that propagates slowly to
other miners in the propagation phase. In other words, even
though one miner may mine the first valid block successfully,
if its mined block is large, then this block will be likely
to be discarded because of long latency, which is called
orphaning [8]. Therefore, the probability of successful mining
by miner i is discounted by the chances that the mined block
is orphaned, Porphan(ti), which is represented by

Pi(αi(xi,x−i), ti) = αi(1− Porphan(ti)). (3)

Due to the fact that block mining times follow the Poisson
distribution aforementioned, the orphaning probability can be
approximated as [10]:

Porphan(ti) = 1− e−λτ(ti), (4)

where τ(ti) is the block propagation time, which is a function
of the block size. In other words, the propagation time needed
for a block to reach consensus is dependent on its size ti, i.e.,
the number of transactions in it [11]. Same as [8], we assume
this time function is linear, i.e., τ(ti) = z × ti with z > 0
denotes a given delay factor1. Thus, the probability that miner
i successfully mines a block and its solution reaches consensus
is expressed as follows:

Pi(αi(xi,x−i), ti) = αie
−λzti , (5)

where αi(xi,x−i) is shown in (1).

B. Two-Stage Stackelberg Game Formulation
The interaction between the ESP and miners is modeled as

a two-stage Stackelberg game, as illustrated in Fig. 2.
1Note that this linear approximation is acceptable according to the numer-

ical results from [8], [12].
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Figure 2. Two-stage Stackelberg game model of the interactions among the
ESP and miners in the mobile blockchain.

1) Miners’ mining strategies in Stage II: Given the prices
of the ESP and other miners’ strategies, miner i decides on its
computing service demand to maximize the expected utility
which is given as:

ui(xi,x−i, pi) = (R+ rti)
xi∑
j∈N xj

e−λzti − pixi, (6)

where pi is the price per unit for service demand of miner i.
2) ESP’s pricing strategies in Stage I: The profit of the

ESP is the revenue obtained from charging the miners for
computing service minus the service cost. The service cost
depends on the service demand xi, the time that the miner
takes to mine a block, and the cost of electricity, c. Therefore,
the ESP determines the prices within the strategy space {p =
[pi]i∈N : 0 ≤ pi ≤ p} for maximizing its profit which is
defined as:

Π(p,x) =
∑

i∈N
pixi −

∑
i∈N

cTxi. (7)

Note that the same or different prices can be applied to the
miners, which can be referred as the uniform and discrimina-
tory pricing schemes, respectively. In the following, we inves-
tigate these two pricing schemes for resource management in
mobile blockchain.

III. EQUILIBRIUM ANALYSIS FOR EDGE COMPUTING
RESOURCE MANAGEMENT

In this section, the uniform pricing and discriminatory
pricing schemes are proposed for resource management in
mobile blockchain. Then, under both pricing schemes, we
analyze the optimal service demand of miners as well as the
profit maximization of the ESP.

A. Uniform Pricing Scheme

We first consider the uniform pricing scheme, in which the
ESP charges all the miners the same price per unit for their
edge computing service demand, i.e., pi = p,∀i. Given the
payoff functions defined in Section II, we apply backward
induction to investigate the Stackelberg game.

1) Stage II: Miners’ Demand Game: Given the price p
decided by the ESP, in Stage II, the miners compete with each
other to maximize their own utility by choosing their individ-
ual service demand, which forms the noncooperative Miners’
Demand Game (MDG) Gu = {N , {xi}i∈N , {ui}i∈N }, where
N is the set of miners, {xi}i∈N is the strategy set, and ui is
the payoff function of miner i.

Theorem 1. The Nash equilibrium in MDG Gu =
{N , {xi}i∈N , {ui}i∈N } exists.

Proof. Firstly, the strategy space for each miner, [x, x] is a
non-empty, convex, compact subset of the Euclidean space.
Further, we know ui is apparently continuous in [x, x]. Then,
we derive the first order and second order derivatives of (6)
with respect to xi, which can be written as follows:

∂ui
∂xi

= (R+ rti)e
−λzti ∂αi

∂xi
− p, (9)

∂2ui
∂xi2

= (R+ rti)e
−λzti ∂

2αi
∂xi2

< 0, (10)

where ∂αi
∂xi

=
∑
i6=j xj

(
∑
i∈N xj)

2 > 0, ∂
2αi
∂xi2

= −2
∑
i6=j xj

(
∑
i∈N xj)

3 < 0.

Therefore, we have proved that ui is strictly concave with
respect to xi. Accordingly, the Nash equilibrium of noncoop-
erative MDG Gu exists [13]. The proof is completed.

Theorem 2. The uniqueness of the Nash equilibrium in
the noncooperative MDG is guaranteed provided that the
following condition

2(N − 1)e−λzti

R+ rti
<
∑

i∈N

e−λzti

R+ rti
(11)

is ensured.

Proof. Please refer to the appendix for details.

Theorem 3. The unique Nash equilibrium for miner i in the
MDG is given by

xi
∗ =

N − 1∑
j∈N

pe−λztj

R+rtj

−

 N − 1∑
j∈N

pe−λztj

R+rtj

2

pe−λzti

R+ rti
,∀i,

(12)
given the condition in (11) holds.

Proof. Please refer to the appendix for details.

Therefore, we can apply the best-response dynamics to
obtain the Nash equilibrium of the N-player noncooperative
game in Stage II [13].

2) Stage I: ESP’s Profit Maximization: Based on the Nash
equilibrium of the computing service demand in the MDG Gu
in Stage II, the ESP, i.e., the leader can optimize its pricing
strategy in Stage I to maximize its profit defined in (7). We
substitute (12) into (7), and the profit maximization of the ESP
is simplified as follows:

maximize
p>0

Π(p) = (p− cT )
N − 1∑

j∈N
pe
−λztj

R+rtj

subject to 0 ≤ p ≤ p.

(13)

Theorem 4. Under uniform pricing, the ESP achieves profit
maximization, under the unique optimal price.



xi
∗

= Fi(x) =



x,

√
(R+rti)

∑
i6=j xj

pe−λzti
−
∑
i6=j xj < x√

(R+rti)
∑
i6=j xj

pe−λzti
−
∑
i6=j xj , x ≤

√
(R+rti)

∑
i6=j xj

pe−λzti
−
∑
i6=j xj ≤ x

x,

√
(R+rti)

∑
i6=j xj

pe−λzti
−
∑
i6=j xj > x

. (8)

Proof. From (13), we have Π(p) = p−cT
p

N−1∑
j∈N

e
−λztj
R+rtj

. The

first and second derivatives of profit Π(p) with respect to price
p are given as follows:

dΠ(p)

dp
=
cT

p2

N − 1∑
j∈N

e−λztj

R+rtj

, (14)

d2Π(p)

dp2
= −2cT

p2

N − 1∑
j∈N

e−λztj

R+rtj

< 0. (15)

Due to the negativity of (15), the strict concavity of the
objective function is ensured. Thus, the ESP is able to achieve
the maximum profit with the unique optimal price. The proof
is completed.

Under uniform pricing, we have proved that the Nash
equilibrium in Stage II is unique and the optimal price in
Stage I is also unique. Thus, we can conclude that the
Stackelberg equilibrium is unique and accordingly the best-
response dynamics algorithm can achieve this unique Stackel-
berg equilibrium [13].

B. Discriminatory Pricing Scheme

We next study the discriminatory pricing scheme, where the
ESP is able to set different prices per unit for service demand
from different miners.

1) Stage II: Miners’ Demand Game: Under the discrimi-
natory pricing scheme, the strategy space of the ESP becomes
{p = [pi]i∈N : 0 ≤ pi ≤ p}. Recall that we prove
the existence and uniqueness of MDG Gu, given the fixed
price from the ESP. Thus, under discriminatory pricing, the
existence and uniqueness of the MDG can be still guaranteed.
With minor change from Theorem 3, we have the following
theorem accordingly.

Theorem 5. Under uniform pricing, the unique Nash equilib-
rium demand of miner i can be obtained as follows:

xi
∗ =

N − 1∑
j∈N

pje
−λztj

R+rtj

−

 N − 1∑
j∈N

pje
−λztj

R+rtj

2

pie
−λzti

R+ rti
,∀i,

(16)
provided that the following condition

2(N − 1)pie
−λzti

R+ rti
<
∑

j∈N

pje
−λztj

R+ rtj
(17)

holds.

Proof. The steps of proof are similar to those in the case of
uniform pricing as shown in Section III-A1, and thus we omit
them for brevity.

2) Stage I: ESP’s Profit Maximization: Similar to that in
Section III-A2, we analyze the profit maximization with the
Nash equilibrium of the computing service demand in Stage
II. After substituting (16) into (7), we have the following
optimization,

maximize
p>0

Π(p) =
∑

i∈N

pi − cT
N − 1∑

j∈N
pje
−λztj

R+rtj


subject to 0 ≤ pi ≤ p, ∀i.

(18)

Theorem 6. Π(p) is concave on each pi, when∑
i6=j (ai + aj)

(
1−

N
pj
aj∑

j∈N
pj
aj

)
≤ 0, and decreasing

on each pi when
∑
i 6=j (ai + aj)

(
1−

N
pj
aj∑

j∈N
pj
aj

)
> 0,

provided that the following condition

pi
ai
≥
∑
j∈N

pj
aj

(N − 1)
2 (22)

is ensured, where ai = (R+ rti)e
−λzti .

Sketch of Proof. We firstly decompose the objective function
in (18) into two components, namely,

∑
i cTx

∗
i and

∑
i pix

∗
i .

Then, we analyze the properties of each component. We define

f(p) = −cTx∗i = −cT N − 1∑
j∈N

pje
−λztj

R+rtj

. (23)

Let aj = (R+rtj)e
−λztj , and we have f(p) = −cT (N−1)∑

j∈N
pj
aj

. We

next obtain the first and the second partial derivatives of (23)
with respect to pi as follows:

∂f(p)

∂pi
=

(N − 1)cT

ai

(∑
j∈N

pj
aj

)2 ,
∂2f(p)

∂pi2
=
−2(N − 1)cT

ai2
(∑

j∈N
pj
aj

)3 .

(24)
Further, we have ∂f(p)

∂pipj
= −2(N−1)cT

aiaj
(∑

j∈N
pj
aj

)3 . Accordingly, we

can prove that the Hessian matrix of f(p) is semi-negative
definite. The detailed proof is given in [14] for the space limit.

Then, we analyze the properties of
∑
i pix

∗
i . We first define

g(p) =
∑

i∈N
pixi

∗ =

∑
j 6=i aixixj(∑
j 6=i xj

)2 . (25)

By substituting (16) into (25), we can obtain the final ex-
pression for g(p), which can be rewritten as in (19). Then,
we derive the first order and the second partial derivatives
of (19) with respect to pi as shown in (20) and (21).



g(p) =
∑

j 6=h

(
ah

(
1−

ph

ah

N − 1∑
h∈N

ph
ah

)(
1−

pj

aj

N − 1∑
h∈N

ph
ah

))
. (19)

∂g(p)

∂pi
=
∑

j 6=i

(ai + aj)

−N−1
ai

∑
h6=i

ph
ah(∑

h∈N
ph
ah

)2

(
1−

N − 1∑
h∈N

ph
ah

pj

aj

)
+

N−1
ai

pj
aj(∑

h∈N
ph
ah

)2

(
1−

N − 1∑
h∈N

ph
ah

pi

ai

)
. (20)

∂2g(p)

∂pi2
=
∑

j 6=i

(ai + aj)

 2N−1

ai
2

∑
h6=i

ph
ah(∑

h∈N
ph
ah

)3

(
1− 2

N − 1∑
h∈N

ph
ah

pj

aj

)
−

2N−1

ai
2

pj
aj(∑

h∈N
ph
ah

)3

(
1−

N − 1∑
h∈N

ph
ah

pi

ai

)
. (21)

Since we have xi = N−1∑
h∈N

ph
ah

− pi
ai

(
N−1∑
h∈N

ph
ah

)2

=

N−1∑
h∈N

ph
ah

(
1− N−1∑

h∈N
ph
ah

pi
ai

)
> 0 and 1− N−1∑

h∈N
ph
ah

pi
ai
> 0.

Next we define δij =
∑
i 6=j (ai + aj)

(
1−

N
pj
aj∑

j∈N
pj
aj

)
for the

ease of presentation. When δij ≤ 0, we can easily prove that
∂2g(p)
∂pi2

< 0, i.e., g(p) is concave on each pi. Next, we mainly
prove that Π(p) is a monotonically decreasing function with
respect to pi, when δij > 0. The detailed proof is given in [14]
for the space limit.

Theorem 7. Under discriminatory pricing, the ESP achieves
the profit maximization by finding the unique optimal prices.

Sketch of Proof. From Theorem 6, we conclude that when
Π(p) is concave on pi, pi needs to be smaller than a certain
threshold, and Π(p) is decreasing on pi when pi is larger
than this threshold. Therefore, it can be concluded that the
optimal value of profit of the ESP, i.e., Π∗(p) is achieved in the
concave parts when δij ≤ 0. Apparaently, the maximization
of profit Π(p) is achieved either in the boundary of domain
area or in the local maximization point. Since we know that
the optimal value of profit, i.e., Π∗(p) is achieved in the
interior area, and thus p∗ exists. In the following, we prove that
there exists at most one optimal solution by using Variational
Inequality theory [15].

Let the set K =
{
p = [p1, . . . , pN ]>

∣∣δij ≤ 0,∀i ∈ N
}

.
Then, we formulate an equivalent problem to (18) as follows:

minimize
p>0

−Π(p)

subject to p ∈ K.
(26)

Let F (p) = ∇ (−Π(p)) = −[∇piΠ]
>
i∈N . Accordingly, the

optimization problem in (26) corresponds to finding a point
set p∗ ∈ K, such that (p− p∗)F (p∗) ≥ 0,∀p ∈ K, which is
the Variational Inequality (VI) problem: VI(K, F ). Next, we
mainly prove that F is strictly monotone on K and continuous,
and thus it can be concluded that VI(K, F ) has at most
one solution according to [15]. Thus, the equivalent problem
admits at most one solution, from which the uniqueness of
the optimal solution, i.e., the Stackelberg equilibrium, follows.
The detailed proof is given in [14] for the space limit.

Therefore, we can apply the low-complexity gradient based
algorithm to achieve the maximized profit Π(p) of the ESP.
Similar to that in Section III-A, we adopt the best response
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Figure 3. Normalized average optimal price versus the number of miners.

dynamics algorithm to obtain the unique Stackelberg equilib-
rium, under which the ESP achieves the profit maximization
according to Theorem 7.

IV. PERFORMANCE EVALUATION

In this section, we conduct the numerical simulations to
evaluate the performance of our proposed optimal pricing-
based resource management in mobile blockchain. We con-
sider a group of N mobile users, i.e., miners in mobile
blockchain mining for the reward and further assume that
the size of a block to be mined by miner i follows the
normal distribution N (µt, σ

2). The default parameters are set
as follows: x = 10−2, x = 100, N = 100, p = 100, µt = 200,
σ2 = 5, R = 104, r = 20, z = 5× 10−3 and c = 10−3.

We first evaluate the comparison of proposed uniform
pricing and discriminatory pricing schemes. Figure. 3 depicts
the comparison of the normalized average optimal price under
two proposed pricing schemes. It is found that the optimal
price under uniform pricing is the same as the maximum price,
which is in line with (14). Specifically, the expression in (14)
is always positive, and thus the profit of the ESP increases
with the increase of price. In other words, the maximum
price is the optimal value for profit maximization of the
ESP under uniform pricing. Further, we find that the average
optimal price of discriminatory pricing is slightly lower than
that of uniform pricing. The intuitive reason is that, the ESP
can set different unit prices of service for different miners
under discriminatory pricing scheme. Therefore, the ESP can
significantly encourage the higher total service demand from
miners and achieve greater profit, which is also in line with
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Figure 5. Normalized total service demand of miners and the profit of the ESP
versus the variable reward factor.

the following results. As shown in Figs. 4 and 5, the total
service demand from miners and the profit of the ESP under
the uniform pricing scheme is slightly lower than that under
the discriminatory pricing scheme in all cases. From Fig. 4,
we find that as σ2 decreases, the results under uniform pricing
scheme approach to those under discriminatory pricing more.
This is because the heterogeneity of miners in blockchain is
reduced as σ2 decreases. We may consider one symmetric
case, where the miners are homogeneous with the same size
of blocks to mine, i.e., σ2 = 0. In this case, the discriminatory
pricing scheme yields the same results as those of the uniform
pricing scheme.

We next evaluate the impacts of the number of miners. From
Fig. 4, we find that the total service demand of miners and the
profit of the ESP increase with the increase of the total number
of miners in mobile blockchain. This is because adding more
miners will intensify the competition among the miners, which
potentially motivates them to have higher service demand.
Further, the coming miners have their service demand, and
thus the total service demand from miners is increased. In
turn, the ESP extracts more surplus from miners and thus has
greater profit. In addition, it is found that the rate of service
demand increment decreases as the total number of miners
increases. This is because the incentive of miners to increase
their service demand is weakened because the probability of
their successful mining is reduced when the total number of
miners is increasing. It is also found that with the increase
of µt, the total service demand of miners and the profit of
the ESP increase. This is because as µt increases, i.e., the
average size of one block becomes larger, the variable reward
for each miner also increases. The potential incentive of miners

to increase their service demand is improved, and thus the
total service demand of miners increases. Accordingly, the
ESP achieves greater profit.

At last, we examine the impacts brought by the variable
reward and fixed reward, which are shown in Fig. 5. We find
that both the total service demand of miners and the profit of
the ESP increase with the increase of variable reward factor.
This is because the increased variable reward enhances the
motivation of miners for higher service demand, and the total
service demand is improved accordingly. Correspondingly, the
ESP achieves greater profit. Further, by comparing curves with
different values of fixed reward, it is also found that as the
fixed reward increases, the total service demand of miners
and the profit of the ESP also increase. Similarly, this is
because the increased fixed reward generates greater incentive
of miners, which in turn improves the total service demand of
miners and the profit of the ESP.

V. CONCLUSION

In this paper, we have addressed the optimal pricing-based
edge computing resource management, in order to support
offloading for mobile blockchain mining. In particular, we
have formulated the Stackelberg game model to jointly study
the profit maximization of edge computing service provider
and the utility maximization of miners. In the model, we
have derived the unique Nash equilibrium point of the game
among the miners through backward induction. Further, we
have analyzed the resource management including the uniform
and discriminatory pricing schemes for the edge computing
service provider. We have proved the existence and uniqueness
of the Stackelberg equilibrium analytically for both pricing
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schemes. Additionally, we have conducted the simulations
to evaluate the network performance, which may guide the
edge computing service provider to achieve optimal resource
management.

APPENDIX

Proof of Theorem 2:

Proof. Based on the first order derivative condition in (9),
we obtain the best response function of miner i, as shown
in (8). The uniqueness of the Nash equilibrium can be proved
provided that the best response function of miner i, i.e., as
given in (8), is the standard function [13].

Firstly, for the positivity, under the condition in (11),
we have (from Lemma 1 given in [14])
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condition.
Secondly, we show the monotonicity of (8). Let

x′ > x, we can further simplify the expression of
Fi(x′) − Fi(x), which is shown in (27). In particular,
we have
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Given Lemma 1 given in [14], we can prove that√
R+rti
pe−λzti

− 2
√∑

i 6=j xj > 0,∀xj . Thus, the best response
function of miner i in (8) is always positive.

At last, we need to prove that λF (x) > F (λx), for
λ > 1 for the scalability, and the steps of proof is shown
in (28). So far, we have proved that the best response
function in (8) satisfies three properties of standard func-
tion described in [13]. Therefore, the Nash equilibrium of
MDG Gu = {N , {xi}i∈N , {ui}i∈N } is unique. The proof is
completed.

Proof of Theorem 3:

Sketch of proof. According to (9), for each miner i, we have
the mathematical expression
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we calculate the summation of this expression for all the
miners as
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derivative condition, we have
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With simple transformations, we obtain the Nash equilibrium
for miner i as shown in (12). The detailed proof is given in [14]
for the space limit.
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