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Abstract—In this article, we develop a decentralized resource
allocation mechanism for vehicle-to-vehicle (V2V) communication
systems based on deep reinforcement learning. Each V2V link is
considered as an agent, making its own decisions to find optimal
sub-band and power level for transmission. Since the proposed
method is decentralized, the global information is not required for
each agent to make its decisions, hence the transmission overhead
is small. From the simulation results, each agent can learn how
to satisfy the V2V constraints while minimizing the interference
to vehicle-to-infrastructure (V2I) communications.

Index Terms—Deep Reinforcement Learning, V2V Communi-
cation, Resource Allocation

I. INTRODUCTION

Vehicle-to-vehicle (V2V) communications have become an

important technology for improving transportation services

and reducing road casualties. Due to vital applications in the

traffic safety, the requirements for the V2V communication

links are often very stringent, i.e., the millisecond of end-

to-end latency and nearly 100% of reliability [1], which has

raised a lot of attention both in academic and industry. The

Third Generation Partnership (3GPP) supports V2V services

based on device-to-device (D2D) communications [2] since

D2D shows superior performance to satisfy the quality-of-

service (QoS) requirement of V2V applications.

In D2D systems, effective resource management needs to

properly coordinate mutual interference between the cellular

and the D2D users. A three-step approach has been proposed

in [3] to control transmission power and allocate spectrum

to maximize system throughput with constraints on minimum

signal-to-interference-plus-noise ratio (SINR) for both the

cellular and the D2D links. In V2V systems, new challenges

have been brought by the high mobility vehicles, which causes

wireless channels to change rapidly over time. Therefore,

the traditional methods on resource management for D2D

communications with full channel state information (CSI)

assumption can no longer be applied since it would be hard

to track channel variations on such a short timescale.

There have been many interesting works on resource allo-

cation for D2D based V2V communications. Most of them
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are centralized, where the central controller collects informa-

tion and makes decisions for the vehicles. With the global

information of the networks, resource allocation can be formu-

lated as optimization problems, where the QoS requirements

of V2V serve as constraints. However, these problems are

usually NP-hard and therefore difficult to solve even with

the global information of the networks. As a result, various

simplified approaches have been proposed to decompose the

problems into multiple steps so that local optimal or sub-

optimal solutions can be found. In [4], the reliability and

latency requirements of vehicular communications have been

converted into optimization constraints, which are computable

with only large-scale fading information and a heuristic ap-

proach has been developed to solve the resource management

optimization problem. In [5], a resource allocation scheme

has been designed based on slowly varying large-scale fading

information only, where the sum V2I ergodic capacity is

maximized with V2V reliability guaranteed.

Nevertheless, centralized control schemes will incur a large

transmission overhead to get the global network information,

growing linearly with mobile speed and quadratically with the

number of vehicles. Thus they are not applicable to large

networks. Recently, some decentralized resource allocation

mechanisms for V2V communication systems have been de-

veloped. In [8], a distributed approach has been proposed to

allocate sub-band to the V2V link by the position information.

The V2V links are first clustered based on the positions of the

vehicles and load similarities. The resource blocks (RBs) are

assigned to each group, and then in each group the assignments

are refined through iterative swap within each group rather

than in the whole network. The low-complexity algorithm in

[6] optimizes outage probabilities for V2V communications

based on bipartite matching.

In the previous works, the latency constraint for V2V links

has not been considered too much since it is hard to be

modeled directly into the optimization problems. In order to

address the problems that the traditional methods lack the

ability to handle, in this article, we apply the multi-agent

deep reinforcement learning scheme for resource allocation in

V2V communication systems. Reinforcement learning solves

problems where each V2V link, as an agent, learns to make

optimal decisions on spectrum and power for transmission
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based on the interacting with the environment. By optimizing

strategies from the experience, the reward, which is a function

of the capacity of the V2V link and the corresponding latency,

is maximized in the long run.

Recently, deep learning has made great success in computer

vision [9], speech recognition [10], and wireless commu-

nications [11]. With the help of deep learning techniques,

reinforcement learning has shown impressive improvement

in applications, such as playing videos games [7] and Go

games [12]. Deep reinforcement learning has also been applied

in resource allocation. A deep reinforcement learning based

approach has been proposed in [13] to address the problem

of job scheduling with multiple resource demands, where the

objective is to minimize the average job slowdown and the

reward function is based on the reciprocal duration of the job.

In our system, deep reinforcement learning is used to

find the mapping between the partial observations of each

vehicle and the resource allocation solution. Each V2V link

is considered as an agent and the channels and transmission

power are selected based on the observations of instantaneous

channel conditions and exchanged information shared from

the neighbors at each time slot. In general, the agents will

automatically balance between minimizing the interference of

V2V links to the V2I networks and transmission power of V2V

links to meet the requirements for the V2V link constraints,

such as the latency constraints.

The main contribution of this article is using multi-agent

deep reinforcement learning to develop a decentralized re-

source allocation mechanism for V2V communications, where

the constraints on latency can be directly addressed. Based on

our the simulation results, deep reinforcement learning can

learn to share the channel with other V2V links and generate

the least interference to the V2I channels.

II. SYSTEM MODEL

In this section, we will introduce the model of vehicle

communications networks. As shown in Fig. 1, the V2X

networks consists of M = {1, 2, ...,M} cellular users (CUEs)

demanding V2I links, which are orthogonally allocated spec-

trum and with high capacity communication links, and K =
{1, 2, ...,K} pairs of D2D users (DUEs), which need V2V

links to share information for traffic safety. In order to improve

the spectrum utilization efficiency, orthogonally allocated up-

link spectrum for V2I link is reused by the V2V links since

uplink resources are less intensively used and interference at

the base station (BS) is more controllable.

The interference to the V2I links consists of two parts: the

background noise and the signal from the V2V links sharing

the same sub-band. The SINR for the mth CUE will be

γm =
Pchm

σ2 + Pd

∑

k∈K
ρm,kh̃k

, (1)

where Pc and Pd are the transmission powers of CUE and

DUE, respectively, σ2 is the noise power, hm is the power

gain of the channel corresponding to the mth CUE, h̃k is

the interference power gain of the kth DUE, and ρm,k is the

Fig. 1. V2V and V2I links

spectrum allocation indicator with ρm,k = 1 if the kth DUE

reuses the spectrum of the mth CUE and ρm,k = 0 otherwise.

Hence the capacity of the mth CUE can be expressed as

Cm = W · log(1 + γm), (2)

where W is the bandwidth.

Due to the essential role of V2V communications in vehicle

security protection, there are stringent latency and reliability

requirements for V2V links while the data rate is not of

great importance. Traditionally, these constraints are handled

by converting into the outage probabilities [4], [5]. In our

method, the latency and reliability constraints are modeled in

the reward function directly, where a lower reward is given

when the constraints are violated.

In contrast to V2V safety communications, the latency

requirement is less strict for the traditional cellular traffic.

Therefore, traditional resource allocation focuses on maximiz-

ing the throughput under certain fairness considerations. The

maximization of the V2I sum rate will be reflected in the

reward function in our method.

Since we are developing a decentralized control approach

for the network, the BS is assumed to have no information on

the V2V links. As a result, the resource allocation procedures

of the V2I network should be independent of the V2V links.

Given the V2I links, the main goal of the proposed au-

tonomous scheme for joint channel and power level allocation

is to ensure the latency constraints for each V2V link.



Fig. 2. Deep reinforcement learning for V2V communications

III. DEEP REINFORCEMENT LEARNING FOR RESOURCE

ALLOCATION

In this section, the framework on deep reinforcement

learning for resource allocation in V2V communications is

introduced, including how to represent the key parts in the

reinforcement learning framework and how to train the deep

Q-networks.

A. Reinforcement Learning

The structure of reinforcement learning for V2V communi-

cations is shown in Fig. 2, where an agent, corresponding to a

V2V link, interacts with the environment. In this scenario, the

environment is considered to be everything outside the V2V

link. It should be noted that the behaviors of other V2V links

cannot be controlled in the decentralized settings. As a result,

their actions, such as selected spectrum, transmission power,

etc., are treated as a part of the environment.

At each time t, the V2V link, as the agent, observes a

state, st, from the state space, S, and accordingly takes an

action, at, from the action space, A, selecting sub-band and

transmission power based on the policy, π. The decision policy,

π, is determined by a Q-function, Q(st, at, θ), where θ is the

parameter of the Q-function and can be obtained by deep

learning. Following the action, the state of the environment

transitions to a new state st+1 and the agent receives a reward,

rt, determined by the capacity of the V2V link and the

corresponding latency. In our system, the state observed by

each V2V link for characterizing the environment consists

of several parts: the instant channel information of the V2V

corresponding link, gt, the previous interference to the link,

It−1, the channel information of the V2I link, e.g., from the

V2V transmitter to the BS, ht, the selected of sub-channel of

neighbors in the previous time slot, St−1, the remaining load

of the DUE to transmit, Lt , and the remaining time to meet

the latency constraints Rt. Hence the state can be expressed

as st = [gt, It−1, ht, St−1, Lt, Rt]. The instant channel in-

formation and the interference received reveal the quality

of each sub-band. The distribution of neighbors’ selection

relates the interference to the other DUE users. The remaining

amount of message to transmit and the remaining time contain

information for selecting suitable power level.

At each time, the agent takes an action at ∈ A, which

includes selecting a sub-channel and a power level for trans-

mission, according to the current state, st ∈ S, based on the

decision policy π. The transmission power is discretized into

3 levels, which leads to a 3 × NRB as the dimension of the

action space if there are NRB resource blocks.

The reward function relates to two parts: the V2I capacity

and the latency constraints. In our settings, the reward remains

positive if the constraints are satisfied; it will be a penalty, a

negative reward, rN < 0 if the V2V constraints are violated.

If the constraints are satisfied at current time slot t, then the

V2V pair received a positive reward, proportion to the sum

of the V2I capacity. Therefore, the reward function can be

expressed as,

rt =

{

∑

Cm, if latency constraints are satisfied,

rN , otherwise.
(3)

The state transition and reward are stochastic and follow the

Markov decision process (MDP), where the state transition

probabilities and rewards depend only on the state of the

environment and the action taken by the agent. The transition

from st to st+1 with reward rt when action at is taken

can be characterized by the conditional transition probability

p(st+1, rt|st, at). Note that the agent can only control its own

actions and has no a priori knowledge of transition probability

matrix P = (p(st+1, rt|st, at)), which is determined by the

environment. In our case, the transition on the channels,

the interference, and the remaining messages to transmit are

generated by the simulator of the wireless environment. The

goal of learning is to maximize the gain defined as the

expected cumulative discounted rewards,

Gt = E[

∞
∑

n=0

βnrt+n], (4)

where β is the discount factor.

B. Q-Learning

The agent takes actions based on a policy, π, which is a

mapping from the state space, S, to the action space, A, and

can be expressed as π : st ∈ S → at ∈ A. As indicated before,

the action, at ∈ A, corresponds to how to select power and

spectrum given a state st described above in our problem.

We use Q-learning to get an optimal policy for resource

allocation in V2V communications to maximize the long-term

expected accumulated discounted rewards [14]. The Q-value

for a given state-action pair (st, at), Q(st, at), of policy π is

defined as the expected accumulated discounted rewards when

taking an action at ∈ A and following policy π thereafter.

Once Q-values, Q(st, at), are given, a policy, π, can be easily

constructed,

at = arg max
at∈A

Q(st, at). (5)

That is, the action is taken with the maximum long-term

accumulated rewards.

The optimal policy with Q-values Q∗ can be found without

any knowledge of the system dynamics based on the following

update equation,

Qnew(st, at) =Qold(st, at) + α[rt+1+

βmax
s∈S

Qold(s, at)−Qold(st, at)],
(6)



Fig. 3. Structure of Deep Q-networks

It has been shown that in the MDP case, the Q-values will

converge with probability 1 to the optimal Q∗ if each action

is executed in each state an infinite number of times on an

infinite run and the learning rate α decays appropriately.

C. Deep Q Networks

Q-learning works well if the state and action spaces of the

problem are small and a look-up table can be used to accom-

plish the update rule. However, this becomes impossible when

the state-action space becomes very large. In this situation,

many states may be rarely visited, thus the corresponding Q-

values are seldom updated, leading to a much longer time

to converge. Deep Q-network combines Q-learning with deep

learning. The Q-function is approximated by a deep neural

network as shown in Fig. 3. The basic idea behind deep Q-

network is the use of a deep neural network (DNN) function

approximator with weights {θ} as a Q-network [14]. Once

{θ} is given, Q-values, Q(st, at) will be determined. Deep

neural networks will address sophisticate mappings between

the channels information and the desired output based on a

large amount of training data, which will be used to determine

Q-values.

The Q-network updates its weights, θ, at each iteration to

minimize the following loss function derived from the same

Q-network with old weights on a data set D,

Loss(θ) =
∑

(st,at)∈D

(y −Q(st, at, θ))
2, (7)

where

y = rt +max
a∈A

Qold(st, a, θ), (8)

where rt is the corresponding reward.

D. Training and Testing Algorithms

As most machine learning algorithms, ours consists of two

stages in our system, the training stage and the testing stage.

The training and test data are generated from an environment

simulator and the agents. Each sample includes st, st+1, at,

and rt. Our simulator consists of DUEs and CUEs and their

channels, where the vehicles are randomly dropped and the

channels for CUEs and DUEs are generated based on the

positions of the vehicles. With the selected spectrum and

power of V2V links, the simulator can provide the st+1 and

rt to the agents. In the training stage, we follow the deep Q-

learning with experience replay [14], where the generated data

are saved in a storage called memory. As shown in Algorithm

1, the mini-batch data used for updating the Q-network is

sampled from the memory in each iteration. In this way, the

temporal correlation of data can be suppressed. The policy

used in each V2V link for selecting spectrum and power is

random at the beginning and is gradually improved with the

updated Q-networks. As shown in Algorithm 2, in the test

stage, the actions in V2V links are chosen with the maximum

Q-value given by the trained Q-networks, based on which the

evaluation is obtained.

Algorithm 1 Training Stage Procedure

1: procedure TRAINING

2: Input: Q-network structure, environment simulator.

3: Output: Q-network

4: Start:

Random initialize the policy π

Initialize the model

Start environment simulator, generate vehicles, V2V

links, V2I links.

5: Loop:

Random sample V2V links in the system.

Generate a set of data using policy π from the

environment simulator.

Save the data item {state, reward, action, post-state}

into memory.

Sample a mini-batch of data from the memory.

Train the deep Q-network using the mini-batch data.

Update the policy: chose the action with maximum

Q-value.

6: End Loop

7: Return: Return the deep Q-network

Algorithm 2 Test Stage Procedure

1: procedure TESTING

2: Input: Q-network, environment simulator.

3: Output: Evaluation results

4: Start: Load the Q-network model

Start environment simulator, generate vehicles, V2V

links, V2I links.

5: Loop:

Random sample V2V links in the system.

Select the action by choosing the action with the

largest Q-value.

Update the environment simulator based on the ac-

tions selected.

Update the evaluation results, i.e., the average of V2I

capacity and the probability of successful DUEs.

6: End Loop

7: Return: Evaluation results



TABLE I
SIMULATION PARAMETERS

Parameter Value

Carrier frequency 2 GHz

Bandwidth 10 MHz

BS antenna height 25m

BS antenna gain 8dBi

Vehicle speed 36 km/h

Number of lanes 3 in each direction (12 in total)

Latency constraints for V2V links 100 ms

V2V transmit power 23 dBm

Noise power σ
2 -114 dBm

Penalty of latency constraint P -20

IV. SIMULATIONS

In this section, we present simulation results to demonstrate

the performance of the proposed method. We consider a single

cell outdoor system with the carrier frequency of 2 GHz. We

follow the simulation setup for the Manhattan case detailed

in 3GPP TR 36.885 [2], where there are 9 blocks in all and

with both line-of-sight (LOS) and non-line-of-sight (NLOS)

channels. The vehicles are dropped in the lane randomly

according to the spatial Poisson process and each plans to

communicate with the nearby 3 vehicles. Our deep Q-network

is a five-layer fully connected neural network with three hidden

layers. The numbers of neurons in the three hidden layers are

500, 250 and 120, respectively. The activation function of Relu

is used, which is defined as

fr(x) = max(0, x). (9)

We also utilize ǫ-greedy policy to balance the exploration

and exploitation [14] and adaptive moment estimation method

(Adam) for training [15]. The detail parameters can be found

in Table 1.

The proposed method is compared with other two methods.

The first is a random resource allocation method. At each

time, the agent randomly chooses a sub-band for transmission.

The other method is developed in [8], where vehicles are

first grouped by the similarities and then the sub-bands are

allocated and adjusted iteratively in each group.

A. V2I Capacity

Fig. 4 shows the average V2I rate versus the number of

V2V links. From the figure, the proposed method has a much

better performance to mitigate the interference of V2V links to

the V2I communications. Since the method in [8] maximizes

the SINR in V2V links, rather than optimizing the V2I links

directly, leading to only a slightly better performance than the

random method, much worse than the proposed method.

B. V2V Latency

Fig. 5 shows the probability that V2V links satisfy the la-

tency constraint versus the number of V2V links, K . From the

figure, the proposed method has a larger probability for DUEs

to satisfy the latency constraint since it can dynamically adjust

the power and sub-band for transmission so that the links likely

violating the latency constraint have more resources.
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V. CONCLUSION

In this article, we develop a decentralized resource alloca-

tion mechanism for the V2V communication systems based

on deep reinforcement learning. Each V2V link is regarded

as an agent, making its own decisions to find optimal sub-

band and power level for transmission. Since the proposed

method is decentralized, the global information is not required

for each agent to make its decisions, the transmission overhead

is small. From the simulation results, each agent can learn how

to satisfy the V2V constraint while minimizing the interference

to V2I communications.
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