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Abstract—The existence of wide-sense-stationarity (WSS) in
narrowband wireless body-to-body networks is investigated for
“everyday” scenarios using many hours of contiguous experimen-
tal data. We employ different parametric and non-parametric
hypothesis tests for evaluating mean and variance stationarity,
along with distribution consistency, of several body-to-body
channels found from different on-body sensor locations. We
also estimate the variation of power spectrum to evaluate the
time independence of the auto-covariance function. Our results
show that, with 95% confidence, the assumption of WSS is
met for at most 90% of the cases with window lengths of 5
seconds for the channels between the hubs of different BANs.
Additionally, in the best-case scenario, the hub-to-hub channel
remains reasonably stationary (with more than 80% probability
of satisfying the null hypothesis) for longer window lengths of
more than 10 seconds. The short time power spectral variation for
body-to-body channels is also shown to be negligible. Moreover,
we show that body-to-body channels can be considered wide-
sense-stationary over significantly longer periods than on-body
channels.

I. INTRODUCTION

Wireless body-to-body networks (BBNs) can enable coex-
istence of wireless body area networks (BANs) by exploiting
body-to-body (B2B) communications using wearable on-body
hub/sensor devices. While BANs are specifically designed to
collect data from various sensors placed on/inside or around
the human body, BBNs send data through closely located
BANs to reach the intended destination/server in case of un-
available or out-of-range network infrastructure (in emergency
indoor/outdoor situations) [1]. BBNs are envisioned to be self-
organizing, smart and mobile networks that can create their
own centralized/decentralized network connection without any
external coordination. This requires systematic prediction and
modeling of the channel behavior. Statistical characterization
of a channel requires time segments that possess wide-sense-
stationarity (WSS) or second-order stationarity where the first
and second moment (i.e., mean, variance and auto-covariance)
of the channel are independent of time [2]. Also in [3],
Bello suggested that, his proposed wide-sense-stationary un-
correlated scattering (WSSUS) assumption can only be held
for limited intervals of time and frequency as the real-world
radio channels often demonstrate ‘quasi-stationary’ behavior.
Therefore, it is important to estimate the channel parameters
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to identify the wide-sense stationary regions to see if these
model parameters can be applied over a suitable time-frame.

To test the WSS of wireless channels, a parametric approach
is proposed in [4] to detect non-stationarity based on the time-
variant autoregressive (TVAR) model. A parametric unit-root
test is proposed in [5] to parameterize a predetermined struc-
ture. Willink tested the WSS of multiple-input multiple-output
(MIMO) wireless channels in [6] by investigating the first and
second moment with parametric one-way ANOVA and non-
parametric time-dependent evolutionary spectrum analysis,
respectively. Other non-parametric approaches to identify the
stationarity intervals include run-test described in [7], compar-
ison of the delay power spectral density (PSD) estimated at
different time instances [8] and evaluation of the variation of
time-localized PSD estimate [9].

However, BAN/BBN channels are practically different to the
typical wireless/radio channels because of the slowly-varying
human-body dynamics and shadowing caused by postural body
movements [10]. Hence, in [2] the authors used different
parametric and non-parametric approaches for testing WSS of
on-body channels and showed that on-body channels have non-
stationary characteristics. The novelty here is the investigation
of whether the WSS assumption can be applied for body-to-
body (B2B) channels and to find the typical duration for WSS
regions of B2B channels. We use parametric one-way ANOVA
for investigating mean stationarity and non-parametric Brown–
Forsythe (B–F) test and Kolmogorov–Smirnov (K–S) test to
investigate variance stationarity and distribution consistency of
the channels, respectively. We also use variation in the PSD es-
timate for testing the time independence of the auto-covariance
of the channels. Our findings based on the application of the
aforementioned tests on the experimental setup are as follows:
• For body-to-body channels, the hub-to-hub (Left-Hip to

Left-Hip) links show better probability of satisfying the
wide-sense-stationarity (WSS) assumption than the hub-
to-sensor (i.e., Left-Hip to Right-upper-Arm, Left-Hip to
Left-Wrist) links.

• According to the tests, there is approximately up to 90%
probability (over the total period) that the hub-to-hub
links will satisfy the null hypothesis for window lengths
of 5 s with 95% confidence level (also up to 85% for
window lengths of 10 s with 99% confidence level).

• In the best-case scenario, the hub-to-hub channel can
satisfy the null hypothesis assumption with a window
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length of 50 s for more than 85% time over the whole
period (with 95% confidence level).

• Negligible variation in power spectral density is found for
different window lengths (e.g., 5 s, 10 s) amongst many
different B2B channels.

• Body-to-body links are more stationary with respect to
on-body links, as on-body links show non-stationary
behavior with 50% chance of rejecting the null hypothesis
over the whole period for an estimated minimum required
window length of 3 s.

• Even in the best-case scenario, on-body links show lower
probability of being stationary (tending to non-stationary
behavior) than B2B links. Hence, from this analysis, in
conjunction with on-body results in [2], B2B communica-
tions shows significantly more stationarity than on-body
communications.

• For B2B channels, the probability of satisfying WSS can
depend on the sensor locations, as hub-to-hub and hub-
to-sensor links show varying probability of satisfying the
null hypothesis.

• The probability of being stationary for all B2B channels
decreases with increasing the window length.

II. EXPERIMENTAL SCENARIO

We use an open-access dataset which consists of contiguous
extensive intra-BAN (on-body) and inter-BAN (body-to-body)
channel gain data of around 45 minutes, captured from 10
closely located mobile subjects (adult male and female)1 with
50 ms sampling time. The experimented subjects were walking
together to a crowded hotel bar, remaining there for a while
and then walking back to the office. Each subject wore 1
transmitter (Tx hub) on the left-hip and 2 receivers (sensors/
relays) on the left-wrist and right-upper-arm, respectively (Fig.
1). The radios were transmitting at 0 dBm power with −100
dBm receive sensitivity. A description of these wearable radios
can be found in [11] and the “open-access” dataset can
be downloaded from [12]. Each Tx transmits in a round-
robin fashion, at 2.36 GHz, with 5 ms separation between
transmission and also acts as Rx capturing RSSI (Receive
Signal Strength Indicator) values.

We investigate the WSS of three different body-to-body
(B2B) links i.e., left hip to left hip (LH–LH), left hip to right
upper arm (LH–RA) and left hip to left wrist (LH–LW) and
average the results from 10 BANs. An illustration of the B2B
links found from different on-body sensor locations is shown
in Fig. 1 with two BANs. We also investigated single B2B
links with good and bad conditions from 10 BANs (shown in
Table I) to investigate best-case and worst-case stationarity of
different B2B links.

III. TESTS OF SIGNIFICANCE FOR WSS

We use the “frequentist” approach along with null hypoth-
esis significance testing (NHST) [13] to investigate the wide-
sense-stationarity (WSS) of the B2B channels, with different

1Hence many hours of contiguous link data

On-body Hub

On-body Sensor

LH–LH

LH–RA

LH–LW

Fig. 1. Different Body-to-Body links between two BANs wearing on-body
hub at the left hip (LH) and two on-body sensors at the right upper arm (RA)
and left wrist (LW), respectively.

TABLE I
BEST AND WORST CASE LINKS OVER 10 SUBJECTS

LH–LH LH–RA LH–LW

Best-case BAN7 – BAN5 BAN5 – BAN7 BAN7 – BAN8

Worst-case BAN2 – BAN9 BAN2 – BAN1 BAN2 – BAN10

test statistics (i.e., difference between mean, variance and
distribution properties). We also examine the variation in
power spectrum which gives the auto-covariance characteristic
of the channels. Wide-sense-stationarity requires that the first
and second moments (i.e., mean, variance, auto-covariance)
of a time varying stochastic process X(t) do not vary with
respect to time t. In this paper, WSS is tested over a wide
range of window lengths (L) from 100 ms to 100 s, such
as, L = [100, 200, 300, ..., 100000] ms. Here, we follow the
process from [2], where the whole channel is divided into
m consecutive non-overlapping intervals of length ` (where
` = L/2) to perform (m − 1) independent pairwise com-
parisons across two consecutive intervals. Hence, for each
window length L, i.e., (L = 2`), there will be (m − 1)
pairwise independent null hypothesis tests. We estimate the
average probability of stationarity for a window length of
L over (m − 1) tests with NHST for test statistic TL at a
significance level of α, where we consider:

H0 : L retains WSS (null hypothesis)
H1 : L does not retain WSS (alternative hypothesis)

Then,

pL = P
{
TL ≥ TLobs

∣∣H0

}
(1)

where pL is the probability of observing a more extreme test
statistic (TL) than the one observed (TLobs

), given that the
null hypothesis is true (observing a significant difference due
to random sampling error while there was none or negligible
difference).

if pL ≥ α, H0 is not rejected

if pL < α, H0 is rejected in favor of H1



where α is the significance level/threshold for measuring
the significance of the test outcome (based on pL), which
can be interpreted as the probability of incorrectly rejecting
a true null hypothesis. We examine a range of statistical
significance with α ε {0.01, 0.05, 0.1}, which corresponds to a
confidence level (c`) of c` ε {0.99, 0.95, 0.90}, as c` = (1−α).
For example, α = 0.05 implies that, while there is 5%
probability of incorrectly rejecting the null hypothesis, there is
95% probability that the confidence interval contains the null
hypothesis value (e.g., 0 for difference, 1 for ratio) [14].

The average probability of stationarity (γL) for a window
length L over the entire channel can be calculated as follows:

γL =

∑m−1
i=1

{
pL

i ≥ α
}

m− 1
(2)

which also implies the average probability of satisfying the
null hypothesis for window length L over the whole period
(from m − 1 pairwise comparisons). When calculating the
average pL

i for ith pairwise comparison (ith window) over
multiple similar links from different subjects, we choose
the median (typical) value (p̃Li) to obtain a more robust
estimation, as the median is not effected by outliers.

A brief description of the statistical hypothesis tests con-
ducted here along with the grounds for choosing those tests
are given in the following subsections.

A. ANOVA Test

The ANOVA (Analysis of Variance) test is used for analyz-
ing the variation (as the name implies) or difference between
the means of two or more sets of observations. We use the
parametric one-way ANOVA test statistic (TLanova ) which is
the ratio of the mean square variance between the intervals to
the mean square variance within each interval [15].

TLanova
=
S̄between
S̄within

(3)

where

S̄between =

∑mt

i=1 ni(X̄i − X̄)2

mt − 1
(4)

and

S̄within =

∑mt

i=1

∑ni

j=1(X̄ij − X̄i)
2

N −mt
(5)

where mt is the number of intervals over which the hypothesis
is being tested (here, mt = 2), Xij is the jth element of the
ith interval, ni is the number of observations in ith interval
and N is the total number of observations across mt intervals.
X̄ is the mean over mt intervals

(
X̄ = 1

N

∑N
i=1Xi

)
. This test

relies on the assumption of the normality and homogeneity
of the variances of the underlying distribution. In general,
the B2B channels are not normally distributed (they typically
possess a skewed distribution). Fortunately, ANOVA is fairly
robust to moderate deviations from normality [16], [17], spe-
cially with a large number of observations. Additionally, it is
not very sensitive against the homoscedasticity (homogeneity
of the variances) assumption with balanced data (when the
sets/intervals are the same size and have similar distribution)

[18]. Alternatively, a nonparametric version of the ANOVA
(Kruskal-Wallis (K–W) test [19]) can be used, which does
not depend on the normality assumption. By comparing the
results of the K–W test and ANOVA test, negligible difference
was observed. Hence, the classical one-way ANOVA analysis
results are provided here.

B. Brown–Forsythe Test

To investigate the homogeneity of the variances over the
window lengths, hence further testing the homoscedasticity
assumption made for ANOVA, we use the non-parametric
Brown–Forsythe (B–F) test [20], which calculates the F
statistic resulting from an one-way ANOVA on the absolute
deviations from the median.

TLBF
=

∑mt
i=1 ni(d̄i−d̄)2

mt−1∑mt
i=1

∑ni
j=1(d̄ij−d̄i)2
N−mt

(6)

where d =
∣∣Xij−X̃i

∣∣ and X̃i is the median of the ith interval.
This is a modified version of the Levene’s test [21] (estimation
of the deviation from the mean) which does not rely on the
normality assumption, and therefore provides good robustness
against many types of non-normal data while retaining good
statistical power [22], [23]. Also, non-parametric tests are
more useful when investigating physical phenomena , e.g.,
radio propagation, as unlike parametric tests they make no
assumptions regarding the probability distributions of the
sampled process [6].

C. Kolmogorov–Smirnov Test

We use the nonparametric two-sided Kolmogorov-Smirnov
(K-S) two-sample test [24] to examine whether the samples
of two consecutive intervals come from the same distribution.
This test is sensitive to any difference in median, dispersion
and skewness between two distributions, as it estimates the
maximum absolute difference between the two empirical dis-
tributions as follows,

TLKS
= sup(x)

∣∣Fy(x)− Fz(x)
∣∣, x = x1, ..., xn+l (7)

where TLKS
is the K-S test statistic and y = X(t1), ..., X(tn)

and z = X(t1+l), ..., X(tn+l) are two consecutive intervals of
X(t), where tn is the element at time instance t.

IV. TEST RESULTS

We estimate the average probability of stationarity over the
whole period for different window lengths L, which implies
the percentage of the pairwise comparisons over the total
period for which a window length L is satisfying the null
hypothesis (WSS assumption). If the percentage is higher, then
we consider the channel can possess WSS. The test outcome
of L is averaged over multiple links (e.g., 90 links) with
similar source and destination nodes chosen from different
subjects (e.g., 10 BANs) to get an approximation of the
WSS property of the B2B links with varying distributions.
We also examine several single B2B links with best-case
and worst-case scenarios (listed in Table I) to get an as-
sumption of random B2B channel stationarity in different
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Fig. 2. ANOVA hypothesis test for average probability of stationarity across
different body-to-body links, i.e., L. hip to L. hip (LH-LH), L. Hip to R.
upper Arm (LH-RA), L. Hip to L. Wrist (LH-LW) over 10 subjects.

conditions. We have applied a varying range of interval length
(` = [50, 100, 150, ..., 50000] ms) with a sampling frequency
of 20 Hz, hence providing a good variation of the number
of samples/observations (`n = [1, 2, 3, ..., 1000]) within each
interval, which contains the minimum number of samples (e.g.,
30, 50) required for an interval according to [2], [25] to
minimize the probability of Type-I and Type-II errors. Thus,
to precisely investigate the WSS property of the channels, we
consider window lengths of greater than or equal to 3 seconds
which contains intervals (≥ 1.5 s) with greater than or equal
to 30 samples.

A. Mean Stationarity

The average probability of stationarity for the ANOVA
hypothesis test over 10 BANs with different body-to-body
links is shown in Fig. 2, where the hub-to-hub links have
better stationarity than hub-to-sensor links between different
BANs. For example, with a 99% confidence level, the LH–LH
link has more than 90% and 60% chance of satisfying the null
hypothesis over the whole period with window lengths of 5
s and 10 s, respectively. However, with 95% confidence level
(5% chance of error), LH–LH links show 70% probability of
being stationary for 5 s window length which goes down to
30% for window length of 10 s. Among the hub-to-sensor
links, the LH–RA link shows better stationarity than the LH–
LW link.

B. Variance Stationarity

The average probability of stationarity for the B–F hy-
pothesis test averaged over 10 BANs for different body-to-
body links and for best/worst case links are shown in Figs.
3 and 4, respectively. It can be seen from Fig. 3 that, the
best stationarity condition persists for hub-to-hub links and
the curves for hub-to-sensor links (i.e., LH–RA, LH–LW)
are shifted to the right of those of the ANOVA test (Fig.
2), indicating better stationarity characteristics. For example,
there is 80% probability for the LH–LH links to satisfy the
WSS assumption for a window length greater than 10 seconds
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Fig. 3. B–F hypothesis test for average probability of stationarity across
different body-to-body links, i.e., L. hip to L. hip (LH-LH), L. Hip to R.
upper Arm (LH-RA), L. Hip to L. Wrist (LH-LW) over 10 subjects.
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Fig. 4. B–F hypothesis test for average probability of stationarity with c` =
0.95 across different body-to-body links, i.e., L. hip to L. hip (LH-LH), L.
Hip to R. upper Arm (LH-RA), L. Hip to L. Wrist (LH-LW). Subscript ‘b’
and ‘w’ imply the best and worst case, respectively.

with 99% confidence level and up to 8 seconds with 95%
confidence level. Also, the LH–RA and LH–LW links show
80% probability of being stationary for greater than 8 s and
greater than 5 seconds window lengths, respectively, with 99%
confidence. In Fig. 4, the best-case LH–LH and LH–RA links
show similar results to the ANOVA tests. Although, the worst-
case curves show slightly improved results, the probability
of stationarity slowly decreases to less than 50% for window
lengths greater than 3 seconds.

C. Distribution Consistency

The average probability of stationarity for different window
lengths from K-S test over 10 BANs with different body-to-
body links is shown in Fig. 5. The same process is applied
for two types of on-body links, i.e., Left-Hip to Right-upper-
Arm and Left-Hip to Left-Wrist over 10 BANs to compare
with B2B links. From Fig. 5, it can be seen that, for window
lengths ≥ 3 s and c` = 0.95, there is less than 50% chance
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Fig. 5. K-S hypothesis test for average probability of stationarity across
different body-to-body links, i.e., L. hip to L. hip (LH-LH), L. Hip to R.
upper Arm (LH-RA), L. Hip to L. Wrist (LH-LW) and on-body links, i.e.,
LH-RAon−body , LH-LWon−body over 10 subjects.

TABLE II
THE PROBABILITY OF STATIONARITY FOR HUB-TO-HUB LINKS (LH–LH)

OVER 10 BANS, WITH 95% CONFIDENCE LEVEL

Window
length Hypothesis Test Probability of Stationarity

Average Best-case Worst-case

5 s
ANOVA Test 0.7 0.97 0.3

B–F Test 0.9 0.97 0.4
K–S Test 0.9 0.99 0.3

10 s
ANOVA Test 0.3 0.95 0.3

B–F Test 0.6 0.95 0.3
K–S Test 0.6 0.98 0.2

of satisfying the null hypothesis over the total period for
the on-body links, which can be considered as non-stationary
behavior. On the other hand, the hub-to-hub (Left-Hip to Left-
Hip) links between different BANs provides the best outcome
with 90% and 60% probability of stationarity for window
lengths of 5 s and 10 s, respectively, with c` = 0.95. The
probability of stationarity decreases when considering the B2B
links between the hubs and sensors (e.g., LH–RA, LH–LW) of
different BANs, yet there is 70% chance of being stationary for
LH–LW and LH–RA with windows of more than 3 s and 5 s
duration, respectively, with c` = 0.99. The average probability
of stationarity for the K-S test with single body-to-body links
and on-body links for the best and worst conditions with 95%
confidence level is shown in Fig. 6. As can be seen from this
figure, the best-case hub-to-hub (LH–LH) and hub-to-sensor
(LH–RA) links show excellent probability of stationarity for
a large window length of 100 s, whereas the probability of
stationarity slowly decreases for the LH–LW link. However,
in worst-case scenarios the B2B links depict non-stationary
behavior for window lengths longer than 3 s, whilst in best-
case scenario, the on-body links show lower probability of
satisfying the null hypothesis than B2B links.

The results from different hypothesis tests with hub-to-hub
links is summarized in Table II.

Proposition 1 The WSS assumption for the body-to-body
channels from Left-Hip to Left-Hip (LH–LH) can be held for
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Fig. 6. K-S hypothesis test for average probability of stationarity with c` =
0.95 across different body-to-body links, i.e., L. hip to L. hip (LH-LH), L.
Hip to R. upper Arm (LH-RA), L. Hip to L. Wrist (LH-LW) and on-body
links, i.e., LH-RA-on-body, LH-LW-on-body. ‘b’ and ‘w’ imply the best and
worst case, respectively.

window lengths of at least 5 s.

Proof: From the outcome of different hypothesis tests indi-
cated in Table II, the WSS assumption can not be rejected for
the body-to-body channels from Left-Hip to Left-Hip (LH–
LH) for window lengths of at least 5 seconds (sampling
frequency 20 Hz) as there is up to 90% chance (on average)
that these links satisfy the null hypothesis within that duration.
Also, in the best-case scenario, this duration can increase, e.g.,
10 s (with 95% probability of being stationary).

Remark 1 From the hypothesis test results, it appears that,
the WSS assumption for body-to-body channels can depend
on the on-body sensor locations. For example, the hub-to-hub
(Left-Hip to Left-Hip) links show better probability of being
stationary than hub-to-sensor (e.g., Left-Hip to Right-upper-
Arm, Left-Hip to Left-Wrist) links.

D. Power Spectral Variation

We investigate the variation in short-time power spectral co-
efficients [9] of the B2B channels in windowed data segments
over time, where we estimate the variance of multi-taper power
spectral density (PSD) of specific data segments (e.g., 5s, 10s)
over the whole channel.

Ŝk
ξ
(f) =

∣∣∣∣∣
L∑
t=1

gk(t)Xξ(t)e
−i2πft/L

∣∣∣∣∣
2

ξ = [1, 2, ...,M ]

(8)
where Ŝk

ξ
(f) is the kth eigenspectrum found from the ab-

solute square of the Short Time Fourier Transform (STFT)
of window length L and gk(t) is the kth rectangular win-
dow/taper from the discrete prolate spheroidal (Slepian) se-
quences of length L. M is the number of windows over the
whole channel (M = Nc/L where Nc is the length of the
whole channel).

Ŝξ(f) =
1

K

K−1∑
k=0

Ŝk
ξ
(f) (9)



where K is the total number of the discrete prolate spheroidal
sequences and Ŝξ(f) is the multi-taper PSD estimation, which
is the average of the K modified periodograms.

Ŝ(f) =
1

M

M∑
ξ=1

Ŝξ(f) (10)

where Ŝ(f) is the average of PSD for M windows over the
whole channel and the variance of PSD with window length
L over the whole channel is

ϑL =
1

M

M∑
ξ=1

(
Ŝξ(f)− Ŝ(f)

)2

(11)

The power spectral variation (VL) with window length L over
the whole channel is measured as follows,

VL =
1

LM

L∑
t=1

M∑
ξ=1

(
Ŝξ(f)− Ŝ(f)

)2

(12)

The amount of VL would be 0 when the channel is stationary
over the window length L [9]. We found negligible amount of
VL for L = 5 s, 10 s with several B2B links, which implies
that the channels can possess WSS characteristics.

Remark 2 The short-time spectral coefficients of body-to-
body channels show negligible variation over time by applying
time-frequency analysis over windowed data segments. The
channels hold the WSS assumption for segments with at least
5 s duration with sampling rate of 20 Hz (and can be larger,
e.g., 10 s with the same sampling rate).

V. CONCLUSION

In this paper, we investigated the wide-sense-stationarity
(WSS) of body-to-body (B2B) links with the null hypothesis
significance test (NHST) for different test statistics (difference
between mean, variance and empirical distribution) with para-
metric and non-parametric approaches (i.e., ANOVA, Brown–
Forsythe, Kolmogorov–Smirnov test). We have also examined
the difference in auto-covariance in the frequency domain by
estimating the variation in power spectrums. We have shown
that the hub-to-hub links between different BANs can satisfy
the WSS assumption with 95% confidence level for a window
length of at least 5 seconds in up to 90% of cases over the
total period. This WSS region can be longer than that (e.g.,
up to 50 s) in a best-case scenario for hub-to-hub links. It
was also shown that the probability of satisfying the WSS
assumption can depend on sensor locations as hub-to-hub links
show better probability of satisfying the null hypothesis than
hub-to-sensor links, which will be further investigated with
data collected from different environments and sampling rates
in future work. Overall the experimental results here indicate
that the WSS assumption is held for body-to-body channels for
segments of at least 5 seconds duration (with 100 samples).
This is useful for modeling, forecasting and system design
(e.g., channel state prediction, predictive decision making) in
practical body-to-body networks, in contrast to BANs (with
on-body channels) where such time for WSS does not hold.
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