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Abstract—License-assisted access LTE (LAA-LTE) has been
proposed to deal with the intense contradiction between tremen-
dous mobile traffic demands and crowded licensed spectrums. In
this paper, we investigate the coexistence mechanism for LAA-
LTE based heterogenous networks (HetNets). A joint resource
allocation and network access problem is considered to maxi-
mize the normalized throughput of the unlicensed band while
guaranteeing the quality-of-service requirements of incumbent
WiFi users. A two-level learning-based framework is proposed
to solve the problem by decomposing it into two subproblems. In
the master level, a Q-learning based method is developed for the
LAA-LTE system to determine the proper transmission time. In
the slave one, a game-theory based learning method is adopted by
each user to autonomously perform network access. Simulation
results demonstrate the effectiveness of the proposed solution.

I. INTRODUCTION

The exponential growth of mobile devices and the popu-

larity of various mobile applications, like streaming videos,

result in at least 7-fold mobile traffic increase by 2021 [1]. To

accommodate such terrific mobile traffic via wireless access,

the rarity of spectrum resource has become a main bottleneck

for further improvement in the system capacity [2]. Therefore,

how to broaden the available spectrum has been considered

as a major challenge in the future wireless systems by both

academia and industry.

Introducing LTE systems to use the unlicensed bands

currently occupied by WiFi system is one of the efficient

ways to cope with the challenge of spectrum scarcity. The

corresponding standard called licensed-assisted access (LAA)

has been developed by 3rd Generation Partnership Project

(3GPP) since 2014 [3]. In LAA-LTE systems, LTE users are

allowed to occupy the unlicensed bands for data transmission.

However, since the distributed coordination function (DCF)

and contention-based MAC protocols, e.g. CSMA, are em-

ployed, the performance of the WiFi system can be severely

degraded if aggressive spectrum sharing strategies are adopted

by LTE users [4]. Therefore, efficient and fair coexistence

mechanisms to maximize the usage of unlicensed bands while

maintaining the quality-of-service (QoS) requirements of WiFi

users should be designed for LAA-LTE systems.

Thanks to its WiFi-friendly nature and the regulatory re-

quirement of certain countries, listen-before-talk (LBT) is

widely used for the coexistence between the WiFi and

LAA-LTE systems [4]. There has been some preliminary

work regarding the LBT-based LAA-LTE systems. In [5], a

contention-window optimization method has been proposed to

maximize the throughput of the LAA-LTE system, while in

[2], joint routing selection and resource allocation algorithms

have been developed for both real-time and non-real-time

applications in LAA-LTE heterogeneous networks (HetNets).

In [6], a novel LBT-based MAC protocol has been designed

to maximize the normalized throughput of unlicensed bands

without sacrificing the performance of incumbent WiFi users.

Note that all aforementioned work only considers the perfor-

mance analysis and parameter optimization, and does not take

network access into consideration. In [7], joint resource allo-

cation and network access has been investigated to minimize

the collision probability of the WiFi system. However, this

work requires a central controller to schedule the activities of

each user, therefore may neither be scalable especially when

the number of users is large, nor be adaptable to the variation

of the network settings.

Motivated by the above work, in this paper, we develop

a learning-based two-level mechanism for the coexistence in

LAA-LTE based HetNets, which operates in a distributed

manner and jointly solves the resource allocation and network

access problem with the objective to maximize of the normal-

ized throughput of the unlicensed bands. In the master level,

a Q-learning based method is developed for the LAA-LTE

base station (BS) to determine the optimal transmission time

in the unlicensed bands. In the slave one, a game-theory-based

learning method is adopted by each user to autonomously

choose the proper network to access. Simulation results show

that the proposed method is not only effective and efficient,

but also adaptable to the variational network settings.

The rest of the paper is organized as follows. In Section

II, the system model is described, which is followed by the

throughput analysis and problem formulation in Section III. To

efficiently solve the problem, we propose a two-level learning-

based framework in Section IV. Then we present simulation

results in Section V. Finally, conclusions are drawn in Section

VI.

II. SYSTEM MODEL

A. LAA-LTE based HetNets

In this paper, we consider a LAA-LTE based HetNet as

shown in Fig.1, where the LTE network operates in the

licensed bands, and the LAA-LTE and WiFi networks share the

same unlicensed band by transmitting in different fractions of

time. In the system, there are N1 incumbent users (IUs) and

N2 smart users (SUs). Specially, the IUs are all associated
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Fig. 1. The system model for a LAA-LTE based HetNet.

to the WiFi network while the SUs are equipped with multi-

radio access technologies (RATs) to access any of the three

networks. The data traffic of the IUs and SUs is assumed to

follow Poisson process and different users may have various

packet arrival rates due to distinct traffic demands. For ana-

lytical simplicity, we consider a basic scenario including one

WiFi access point (AP) and one LAA-LTE BS in the WiFi and

LAA-LTE networks, respectively. In addition, as we only focus

on the performance of the unlicensed band, we also assume

the LTE network has sufficient resource and can provide

reliable supports to SUs especially when the unlicensed band

is crowded. In the remaining parts of the paper, we define

I and λ1 = {λ1,1, ..., λ1,N1
} as the user set and the packet

arrival rate set of IUs, respectively, where λ1,i is the average

packet arrival rate of IU i per packet transmission time T .

Similarly, the user set and packet arrival rate set of the SUs

can be defined as S and λ2 = {λ2,1, ..., λ2,N2
}, respectively.

B. Protocol Description

To prevent the LAA-LTE network from interrupting the

ongoing transmission in the WiFi network, the frame-based

LBT protocol mentioned in [6] is adopted in this paper.

The LAA-LTE network with LBT mechanism transmits for

a certain period of time once the channel is sensed to be

idle. On the other hand, the WiFi network adopts 1-persistent

CSMA protocol and therefore can only transmit when the

LAA-LTE transmission phase ends. The frame structure of

the protocol is illustrated in Fig. 2 , where the total frame

duration, sensing time, LAA-LTE transmission time, and WiFi

transmission time are denoted as Tf , Ts, TL, and TW , respec-

tively. As Ts is relatively small than TL, we can ignore Ts

and then have Tf = TL + TW . In addition, for expressional

simplicity, the frame duration, LAA-LTE transmission time,

and WiFi transmission time can be normalized over per packet

transmission time T , which results in θ = Tf/T , β = TL/T ,

and γ = TW /T .

III. THROUGHPUT ANALYSIS AND PROBLEM

FORMULATION

In this section, we first analyze the normalized throughput,

i.e. the successful transmission time ratio, of the unlicensed

band, and then formulate a joint resource allocation and

LTE WiFi WiFi WiFi WiFi WiFi

fT
time

WT

sT LT T

Fig. 2. The MAC protocol of LAA-LTE.

network access problem to maximize the overall normalized

throughput. In the remaining of the paper, the term of through-

put stands for the normalized throughput.

A. Throughput Analysis

Let S1, S2 and S3 be the sets of SUs staying in the WiFi,

LAA-LTE, and LTE networks, respectively, where S1 ∪ S2 ∪
S3 = S and S1∩S2∩S3 = ∅. The throughput of the unlicensed

band, consisting of the throughput of WiFi network and LAA-

LTE network, can be expressed as follows:

1) WiFi Network: Because of the DCF, there exists packet

collisions in the WiFi network. Therefore, the throughput

of the WiFi network should be the ratio of the successful

transmission time to the whole frame duration. By extending

the results in [6] and [8], the throughput can be expressed as

RW (S1, β) =
U(S1, β)

B(S1, β) + 1/G1

, (3)

where G1=
∑

i∈I λ1,i+
∑

j∈S1
λ2,j is the total average data

traffic of the WiFi network, and B(S1, β) and U(S1, β) are

respectively given by (1) and (2) at the top of next page, with

σ denoting the length of a mini-slot that the time is discretized

with. B(S1, β), U(S1, β) and 1/G1 are actually the expected

busy, non-collision and idle channel duration, respectively.

2) LAA-LTE Network: Thanks to the centralized coordina-

tion for data transmission, there are no packet collisions in the

LAA-LTE network. Therefore, the throughput is exactly the

ratio of the transmission time to the whole frame duration.

Let G2 =
∑

j∈S2
λ2,j be the total average data traffic of

S2. When the LAA-LTE network is saturated, i.e. β ≤ θG2,

the transmission time of the LAA-LTE network is β and the

corresponding throughput is β/θ. On the other hand, when

the LAA-LTE network is unsaturated, i.e. β > θG2, the

transmission time is θG2 and the throughput is G2. Therefore,

we have

RLAA(S2, β) = min(β/θ,G2). (4)

Based on (3) and (4), the total throughput of the unlicensed

band can be written by

Rt(S1,S2, β) = RW (S1, β) +RLAA(S2, β). (5)

B. Problem Formulation

To achieve the fair coexistence, we enforce following two

constraints for the throughput of IUs and SUs.

First, if SUs are allowed to access the LAA-LTE or LTE

network, the throughput of IUs under this scenario should not

be worse than that can be achieved when all SUs access the

WiFi network. That is
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G3RW (S1, β)

G1

≥
G3R0(S)

G4

, (6)

where G3 =
∑

i∈I λ1,i is the total average data traffic of IUs,

G4=
∑

i∈I λ1,i+
∑

j∈S λ2,j is the total average data traffic of

the pure WiFi network with S1 = S and β = 0, and R0 is the

throughput of the pure WiFi network, which is given by

R0 =
G4(1 +G4)e

−G4

G4 + e−G4

. (7)

Second, intuitively, if SUs want to access the LAA-LTE

network, the obtained throughput of them should be higher

than that can be achieved in the pure WiFi network, i.e.

RLAA(S2, β) ≥
G2R0

G4

. (8)

With the constraints given by (6) and (8), the throughput

maximization problem can be formulated as follows.

Problem 1:

max
{β,S1,S2,S3}

Rt(S1,S2, β)

s.t. (6), (8),

S1 ∪ S2 ∪ S3 = S, (9)

S1 ∩ S2 ∩ S3 = ∅. (10)

Since Rt(S1,S2, β) is a unimodal function of β for any

given S1 and S2 [6], the above problem can be optimally

solved in two steps. First, the optimal β∗ is determined for all

the possible combinations of {S1,S2,S3} by using the method

mentioned in [6]. Then, the {S∗
1 ,S

∗
2 ,S

∗
3} rendering the highest

Rt is chosen as the optimal network access strategy. However,

this optimal solution has the computational complexity of

O(3N2), which is prohibitively high especially when N2 is

large. What’s more, the algorithm is centralized and needs to

be rerun once the network setting changes, e.g. a new SU

arrives. To deal with these issues, a distributed learning-based

mechanism is proposed in the next section, which not only

has approximate performance of the optimal solution, but also

comes with much lower computational complexity and more

adaptability.

IV. A LEARNING-BASED MECHANISM

In this section, we develop a learning-based mechanism to

solve Problem 1. We first introduce the framework of the

proposed mechanism, which decouples the problem into dis-

tributed network access (DNA) and resource allocation (RA)

subproblems, and then propose learning-based algorithms to

solve the subproblems.

A. Two-Level Intelligent Resource Allocation and Distributed

Network Access Framework

The framework of the proposed two-level learning-based

mechanism is illustrated in Fig. 3. In the master level, the

resource allocation function (RAF) is employed in the LAA-

LTE BS to allocate appropriate time resource for the LAA-

LTE network. In the slave level, the distributed network access

module (DNAM) is implemented in each SU to autonomously

choose network to access. Both the RAF and DNAM oper-

ate based on close-loop learning methods, thus can enhance

themselves from the knowledge of experienced utilities.

As shown in Fig. 3(a), there exists cooperation among

different entities. The LAA-LTE BS needs to first gather the

choice of each SU and the information of WiFi network to

compute the instantaneous utility, and then broadcast the utility

to SUs. The utility serves as the learning experience for the

RAF and DNAM to refine their actions. Since the limited

amount of broadcast information is required, the proposed

algorithm causes low signaling overhead. Fig. 3(b) describes

the whole procedure of the proposed algorithms, where RA

and DNA are successively executed until the end of the

session, i.e. no SUs exist.
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Fig. 3. The two-level learning-based framework.



B. Distributed Network Access

For a fixed β, the DNAM intends to allow each SU

to perform network access distributively and autonomously.

Therefore, the behavior of SUs can be analyzed from the

perspective of game theory.

Let aj denote the action of SU j, where aj = 1, aj = 2,

and aj = 3 represent the choices for the WiFi, LAA-LTE, and

LTE networks, respectively. Then the utility function of SU j
can be stated as

uj(aj ,a−j)

=

{

0, if (6) or (8) is not satisfied.

Rt(S1,S2, β), o.w.
(11)

where a−j = {a1, ..., aj−1, aj+1, ..., aN2
} is the joint choices

of SUs excluding SU j. Notice that the utility functions of

different SUs are identical, i.e., u(a) = uj(aj ,a−j), ∀j ∈
S, where a = {a1, ..., aN2

}. Therefore, the behavior of SUs

driven by u(a) can be modeled as a common interest game G=
[S,A, u(a)]. According to [9], as a special case of potential

games, the common interest game G exists at least one pure

Nash equilibrium (NE) a∗ =
{

a∗1, ..., a
∗
N2

}

satisfying

u(a∗j ,a
∗
−j) ≥ u(a′j ,a

∗
−j), ∀a′j 6= a∗j , a

′ ∈ Aj , j ∈ S, (12)

and a∗ is also a maximizer for the utility function in (11).

There are some methods, like fictitious play and best re-

sponse dynamics, to effectively achieve NEs. However, they

need each user to have the knowledge of the actions of other

users, which may cause heavy signaling overhead. To avoid

the signaling among SUs, a stochastic learning (SL) method

is adopted in the DNAM and its whole procedure is listed in

Algorithm 1.

Algorithm 1 The SL Method in The DNAM

1: Initialize: pj(0) = {1/3, 1/3, 1/3}, n = 0.

2: repeat

3: Choose an action aj(n) according to pj(n).
4: Act with aj(n) and obtain u(n).
5: Update pj(n+ 1) by (13),

pj,k(n+ 1)

=

{

pj,k(n)− κjuj(n)pj,k(n), if k = aj(n)
pj,k(n) + κjuj(n)(1 − pj,k(n)), o.w.

(13)

6: n = n+ 1.

7: until (14) or (15) is satisfied
{

|max
k

pj,k(n)− 1| ≤ ε (14)

n ≥ nmax and ‖pj(n)− pj(0)‖2 ≤ ε (15)

As shown in Algorithm 1, the algorithm starts with an

equal mixed strategy pj(0) = {pj,1(0), pj,2(0), pj,3(0)} =
{1/3, 1/3, 1/3}. pj,k(n) denotes the probability of SU j
taking action k at n-th iteration. At n-th iteration, an action

aj(n) is determined according to pj(n) and the instantaneous

utility u(n) = u(a(n)) = uj(a(n)) is obtained from the

broadcasted information of the LAA-LTE BS by (11), where

a(n) = {a1(n), a2(n), ..., aN2
(n)}. After that, the mixed

action profile at next iteration pj(n + 1) is updated with the

given value of u(n) and step size κj with (13), according to

[10]. Finally, the loop ends until one of the stop conditions in

(14) and (15) is met.

Note that RW (S1, β) is a decreasing function of β and it

satisfies RW (S1, θ) = 0. Therefore, there must exist βmax

such that (6) is violated for any combination of {S1,S2,S3}
when β > βmax. For those β satisfying β > βmax, the

utility function in (11) always returns zero, which makes

pj(n) = pj(0) until the maximum number of iterations nmax

is reached. In this case, (15) is activated and a new β is

required from the master level for the future operation. For

those feasible β satisfying β ≤ βmax, (6) can be satisfied by

some combinations of {S1,S2,S3}. In this case, the algorithm

is guaranteed to converge to a pure NE according to [10] and

(14) is thus met.

Because of the nonconvexity and noncontinuity of utility

function (11), most of the pure NEs are not the global optimal

points. However, the simulation results still show that the SL

algorithm has approximate performance of global maximizers.

C. Resource Allocation

Because of the non-uniqueness and local optimality of NEs,

the DNAMs may obtain different utilities for a given β.

To achieve better long-term performance as well as being

adaptable to the variational network settings, we introduce a Q-

learning based method to make decisions based on experience

and historical rewards.

Standard Q-learning is usually used for Markov decision

process (MDP) [11], which requires a direct relationship be-

tween the actions, i.e. the discretized LAA-LTE transmission

time AL = {β1, β2, ..., θ} and states, i.e. the network settings

{I,S1,S2,S3}. However, since a clear connection between

the change of network settings and the choice of β is hard to

be found, the RA problem can hardly be modeled as a MDP.

Therefore, we turn to a state-free Q-learning method, known

as stateless Q-learning (SLQL) [12], to solve the RA problem.

The traditional SLQL algorithm mainly composes of two

steps, namely the Q-value update step and the action selection

step. In the first step, the Q-value of a chosen β, which is

the estimated utility of β and denoted by Q(β), is updated

according to the following rule,

Q(β) = Q(β) + α(r −Q(β)), (16)

where r is the received reward, which equals the value of the

utility function in (11) after DNA is completed. Note that the

update rule in (16) implies that the information of historical

rewards are partly stored with the help of the update factor α,

which can also help to smooth the impacts of different NEs.

In the action selection step, the RAF takes either the

exploration or exploitation mode to select β. The exploration

mode aims to collect enough experience for a better decision,

and thus the β is randomly selected from the action set AL.



On the other hand, in the exploitation mode, the RAF insists

on the best action known so far, therefore the β rendering the

highest Q(β) is selected. The tradeoff between the exploration

and exploitation modes is determined by a probability factor ω.

Specially, if ω is large, the exploration mode is more preferred

than the exploitation one, and otherwise, the converse is true.

Unfortunately, due to the random selection in the explo-

ration mode, the traditional SLQL algorithm may frequently

choose those infeasible β, i.e., β > βmax, which induces

severe performance loss. Therefore, an enhanced SLQL al-

gorithm is proposed to reduce the selections of the infeasible

β by restricting the action sets in both the exploration and

exploitation modes. The steps of the eSLQL algorithm for the

RA problem are summarized in Algorithm 2. Specially, if this

is the first run of the algorithm, i.e., β′ does not exist, the RAF

goes through the following steps for initialization:

• Set the initial values of Q(β) and ω;

• Find the value of the threshold βmax by using bisection

search over AL, and then determine the feasible action

set AF , infeasible action set AI , and trial set AT based

on βmax, where AT is a subset of AI and its size is

called exploration factor δ, i.e. |AT | = δ;

• Choose an initial action β′ from AF .

If not, the RAF takes the following steps to find β based

on the reward r received after the end of DNA:

• Update Q(β) according to r and (16);

• Update AF , AT and Q(β) if the feasibility of the action

β′ changes. Specially, lines 7 and 8 correspond to the

case that a feasible action β′ becomes infeasible, while

lines 9 and 10 are operated when an infeasible action β′

becomes feasible;

• Take either the exploration mode (line 13) or the exploita-

tion mode (line 15) to update β′ according to ω, where

rand() generates a random number in [0, 1].

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed

algorithms. Packet transmission time T , frame duration of

LAA-LTE network Tf and mini-slot length σ are chosen as

10ms, 300ms and 20µs respectively.

A. The SL algorithm

In this part, the performance of the SL algorithm is evalu-

ated under the scenario where β = 1.618, N1 = 5, N2 = 6,

λ1 = {0.03, 0.05, 0.08, 0.09, 0.11}, and λ2 = {0.05, 0.03,

0.05, 0.3, 0.02, 0.1}. For comparison, we use the exhaustive

search method to deal with the network access problem and the

corresponding optimal throughput is 0.4754. Table I illustrates

the performance of the top 15 most frequently reached NEs in

a 100000 Monte-Carlo (MC) test of the SL algorithm, where

the throughput and the appearance frequency are listed in the

last two columns. In the table, it is evident that all the NEs

achieve more than 95% performance of the optimum and two

of them (marked with ∗) are exactly the optimal solutions. As

these NEs are achieved with relatively high probability and the

Algorithm 2 The eSLQL Algorithm in The RAF

1: if β′ does not exist then

2: Set Q(βi) = 0, ∀i ∈ AL, ω ∈ (0, 1).
3: Determine βmax, set AF = {β|β ∈ AL, β ≤ βmax},

AI = {β|β ∈ AL, β > βmax}, AT ⊆ AI .

4: Randomly choose β′ ∈ AF .

5: else

6: Obtain reward r and update Q(β′) with (16).

7: if β′ ∈ AF and r = 0 then

8: Set AF = {β|β ∈ AL, β < β′}, AI = {β|β ∈
AL, β ≥ β′}, AT ⊆ AI and Q(βi) = 0, ∀i ∈ AL.

9: else if βt ∈ AT and r 6= 0 then

10: Set AF = {β|β ∈ AL, β ≤ β′}, AI = {β|β ∈
AL, β > β′}, AT ⊆ AI and Q(βi) = 0, ∀i ∈ AL.

11: end if

12: if rand()< ω then

13: Randomly choose β′ from AF ∪AT .

14: else

15: Choose β′ from AF with the biggest Q-value.

16: end if

17: end if

TABLE I
TOP 15 MOST FREQUENTLY REACHED NES AND OPTIMAL POINTS

SU 1 SU 2 SU 3 SU 4 SU 5 SU 6 Rtotal %
NE1 WiFi WiFi LAA LTE LTE LAA 0.4636 3.656%
NE2 LAA WiFi WiFi LTE LTE LAA 0.4636 3.593%
NE3∗ WiFi WiFi LAA LTE LAA LAA 0.4754 3.357%
NE4∗ LAA WiFi WiFi LTE LAA LAA 0.4754 3.352%
NE5 WiFi LTE LAA LTE WiFi LAA 0.4593 3.151%
NE6 LAA LTE WiFi LTE WiFi LAA 0.4593 3.044%
NE7 WiFi LAA WiFi LTE LAA LAA 0.4716 2.897%
NE8 WiFi LAA LAA LTE WiFi LAA 0.4711 2.871%
NE9 LAA LAA LAA LTE LAA WiFi 0.4716 2.863%

NE10 LAA WiFi WiFi LTE WiFi LAA 0.4716 2.846%
NE11 LAA LAA WiFi LTE WiFi LAA 0.4711 2.802%
NE12 WiFi WiFi LAA LTE WiFi LAA 0.4716 2.785%
NE13 WiFi LAA WiFi LTE LTE LAA 0.4516 2.315%
NE14 LTE WiFi LAA LTE WiFi LAA 0.4506 2.170%
NE15 LAA WiFi LTE LTE WiFi LAA 0.4506 2.160%

average throughput of the MC test is 0.4552, the effectiveness

of the algorithm can be demonstrated. In addition, from the

table, it can be observed that the heavily high traffic user, i.e.

SU 4, prefers LTE network because its existence on unlicensed

band will induce heavy utility decrease even if the choice of

LTE gets zero payoff intuitively. Also, for slightly high traffic

user, i.e. SU 6, prefers LAA-LTE network rather than WiFi

network to boost the overall performance of the unlicensed

band by avoiding contention. It is worth noticing that though

shown with a specific scenario because of the limited space,

the phenomena are generalizable with other setups.

Fig.4 illustrates the evolution of the mixed strategies of the

SUs when NE 3 is finally achieved. It is shown that the SL

algorithm converges to a pure NE within tens of iterations,

which proves the efficiency of the algorithm.

B. The Two-Level Learning-Based Mechanism

In this subsection, we evaluate the performance of the

proposed two-level learning-based mechanism in a variational
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Fig. 4. The evolution of mixed strategies of 6 SUs.

environment. More specifically, there are 5 IUs and 10 SUs

in the system with λ1 = {0.03, 0.05, 0.08, 0.09, 0.11} and

λ2 = {0.01, 0.02, 0.03, 0.03, 0.04, 0.05, 0.08, 0.09, 0.2, 0.3}
at the beginning of the iteration. After a certain time, the

numbers of IUs and SUs are changed to 20 and 5, respectively,

with the corresponding traffic sets λ1 = {0.03, 0.04, 0.05,

0.06, 0.06, 0.07, 0.07, 0.03, 0.04, 0.05, 0.06, 0.06, 0.07, 0.07,

0.1, 0.1, 0.2, 0.2, 0.2, 0.2} and λ2 = {0.07, 0.08, 0.08, 0.1,

0.2}. The parameters of the proposed eSLQL algorithm are

given by AL = {0.1, 0.2,..., 9.9}, α = 0.1 and δ = 5.

Fig. 5 compares the performance of the proposed learning-

based solution with that of the optimal method mentioned

in Section III-B. As is depicted in the figure, the proposed

algorithm quickly approximates to the optimal performance

after the initialization and then takes an immediate action to

the variation of the network setting. The huge performance

fluctuations in the figure are caused by the exploration mode

in the eSLQL algorithm, and the minor ones are induced

by the multiple local optimal NEs obtained by the SL al-

gorithm. Though some performance fluctuations exist, the

average throughput of the proposed algorithm yields over 95%
throughput of the optimal solution in both network settings.

The effectiveness and adaptability of the proposed solution

are therefore confirmed. In the actual deployment, after the

initialization, the iteration can be slowed down to reduce the

complexity and the decisions of the previous iteration can be

resumed when huge fluctuations are met, to avoid the deep

downgrade.

VI. CONCLUSIONS

This article has presented a learning-based coexistence

mechanism for LAA-LTE based HetNets. Aiming to maxi-

mize the normalized throughput of the unlicensed band while

guaranteeing the QoS of users, we have considered the joint

resource allocation and network access problem. The two-level
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Fig. 5. The performance of the proposed two-level learning-based mechanism
vs optimal solution.

framework has been developed to decompose the problem into

two subproblems. And then learning-based solutions have been

proposed to solve them one by one. The simulation results

have shown the proposed solution has achieved near-optimal

performance and been more efficient and adaptive due to its

distributed and learning-based manner.
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