
HAL Id: hal-01859973
https://hal.science/hal-01859973

Submitted on 22 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Modular Framework for Dynamic QoS Management
at the Middleware Level of the IoT: Application to a

OneM2M Compliant IoT Platform
Clovis Anicet Ouedraogo, Samir Medjiah, Christophe Chassot

To cite this version:
Clovis Anicet Ouedraogo, Samir Medjiah, Christophe Chassot. A Modular Framework for Dynamic
QoS Management at the Middleware Level of the IoT: Application to a OneM2M Compliant IoT
Platform. IEEE International Conference on Communications (ICC 2018), May 2018, Kansas City,
United States. �10.1109/ICC.2018.8422889�. �hal-01859973�

https://hal.science/hal-01859973
https://hal.archives-ouvertes.fr

1

A Modular Framework for Dynamic QoS
Management at the Middleware level of the IoT

Application to a oneM2M compliant IoT platform

Clovis Anicet Ouedraogo 1, Samir Medjiah 1,2, Christophe Chassot 1,3
1 CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse, France

2 Univ. Toulouse, UPS, LAAS, F-31400 Toulouse, France
3 Univ. Toulouse, INSA, LAAS, F-31400 Toulouse, France

{ouedraogo, medjiah, chassot} @ laas.fr

Abstract—The Internet of things (IoT) has evolved
exceptionally in recent years; enabling a large number of
heterogeneous devices to be interconnected to users via the
Internet. This new concept promises in a few years to interconnect
billions of devices, which will generate many challenges on the
infrastructure supporting these communications. One of these
challenges is the satisfaction of the different QoS requirements of
the applications. To address this challenge, we identified two
bottlenecks with respect to the QoS, which are the networks and
the intermediate entities (i.e. middleware) allowing the
applications to interact with the devices. In this paper, we propose
a modular framework to ensure the QoS of applications at the
middleware-level through QoS-oriented mechanisms deployed
dynamically and autonomously on the middleware entities. The
benefits of this framework are presented through test scenarios in
the vehicular transportation domain.

Keywords— Internet of Things; Quality of Service; Middleware;
Modular Framework; Dynamic deployment; Autonomic Computing;

I. INTRODUCTION
The Internet of Things (IoT) is a new paradigm that

particularly relies on new communication architectures and
protocols, including the middleware (MW) level. To ensure
interoperability between connected objects and applications, the
oneM2M initiative proposed a distributed REST-based
middleware service [1]. Through this MW, applications can
collect data and/or trigger commands thanks to distant sensors
and actuators through simple (e.g. http) requests (see Fig. 1).

Fig. 1. Overview of an IoT Middleware

These different applications have different requirements in
terms of Quality of Service (QoS), and particularly bounded
response times. These needs face two bottlenecks: the traversed
IP networks, and the intermediate entities implementing the MW
layer. In this paper, we address the problem of the bottleneck

represented by the MW layer with regard to the QoS
requirements of IoT applications.

To tackle this QoS problem, the approach which is explored
in this paper is based on the dynamic (i.e. at design-time but also
at runtime) and autonomous (i.e. without human interactions)
deployment of software modules implementing QoS-oriented
mechanisms at the MW level. This deployment is achieved
seamlessly for the applications and the connected objects.
Basically, the considered mechanisms act on the applicative
traffic with the aim to differentiate their processing within the
considered MW nodes.

Modular programming is a software design technique [2]
that emphasizes separating the functionality of a program into
independent and interchangeable modules, such that each one
contains everything necessary to execute only one aspect of the
desired functionality. A module interface expresses the elements
that are provided and required by the module.

To implement the proposed approach, we consider in Fig. 2
a typical deployment infrastructure for MW-based IoT
applications. Each application is accessed using a user terminal
such as computers or smartphones. An IoT MW is linking the
application to the physical sensors and actuators. The application
backend as well as some MW entities are deployed in public or
private Cloud. Some MW entities may be deployed within the
Service Provider private infrastructure using dedicated nodes
(typically for IoT gateways) or generic deployment nodes such
as COTS hardware. Moreover, an autonomic manager is
supposed to provide the adequate modules deployment policies
thanks to logical effectors, on the basis of the information (QoS
metrics, resource state, etc.) retrieved from the logical sensors.
Let us precise here that the paper is not focused on the autonomic
manager.

The contributions of this paper include (1) the design and the
implementation of the QoS management modules, (2) the
architecture allowing their integration in MW entities, and (3)
their performance evaluation in terms of benefits and costs
through an illustrative scenario coming from the vehicular
transportation domain.

The remainder of this paper is organized as follows. Section
II states the considered problem as well as the related state of the
art. Section III presents the integration architecture of the QoS

2

management modules into the oneM2M-compliant middleware
entities. Section IV describes the design principles of these
modules. Section V presents the performances emulation of our
solution. Finally, Section VI concludes the paper and gives
insights on our envisioned perspective works.

Fig. 2. Overview of the deployment approach

II. CONTRIBUTION POSITIONING AND RELATED WORK
As part of the standardization efforts, various MW-level

service layers have been proposed in the context of the IoT.
These MW layers include several functional and nonfunctional
services for the management of IoT devices. However, these
standard-based MWs do not propose any solution for the QoS
management at the MW level. Indeed, QoS is considered a
result of the underlying networks [1].

However, several specific (i.e. not standard) solutions [3]
have been proposed. [4] proposes to enhance the MW WuKong
[5] for the QoS management. It introduces the concept of
quality score that considers multiple QoS metrics (response
time, reliability, etc.). Adequate physical devices are selected
as well as their optimal deployment is decided in order to
achieve the highest quality score. The limit of this approach lies
in the fact that applications’ QoS requirements are not taken
into account dynamically. In the project MiLAN [6],
Heinzelman proposes a MW that manages both nodes and the
network. Depending on the application description and its
expressed QoS requirements, the MW configures both the
network and the MW nodes to meet these requirements.
However, MiLAN needs a specific state diagram of every
application scenario and for every WSN context, which is very
complicated in the dynamically changing IoT context. Other
solutions such as [7][8] rely on the integration of the MQTT
protocol [9] for QoS management. This protocol includes a
basic form of QoS management. It offers three levels of
message delivery guarantee: QoS Level 0: Messages are
delivered in a best-effort fashion without receive
acknowledgment; QoS Level 1: Messages are guaranteed to be
delivered at least once; and QoS Level 2: Messages are
guaranteed to be delivered exactly once. Let us also note that
the last specification of the oneM2M standard [10] proposes to
integrate the MQTT protocol. MQTT does offer a certain
guarantee for message delivery. However, in the IoT context,
applications can have different requirements additionally to the
simple message delivery guarantee.

III. SOFTWARE ARCHITECTURE FOR A SEAMLESS INTEGRATION
OF QOS MECHANISMS IN A ONEM2M-COMPLIANT MW

A. Seamless integration in the oneM2M-compliant OM2M
MW
The oneM2M standard is expected to prevail as the main

IoT MW architecture since it enables and facilitates the
interoperability at different levels (Fig. 3). At the
communication level, the IoT entities are able to “talk” to each
other, i.e. applications/objects are able to communicate with
other applications/objects independently from their access
network technologies or communications protocols. At the data
level (i.e. semantic interoperability), entities are able to
“understand” each other. This is achieved through the semantic
extension, present in oneM2M since its release 2 [1].

Fig. 3. oneM2M’s horizontal architecture (providing a unifying
framework for silo applications)

The oneM2M functional architecture identifies logical
entities dubbed “MW nodes” (typically server / gateways of
previous Fig. 1), each one offering a portion of the MW service.
It is a resource-oriented architecture (RoA) where the
functionality of the system is exposed by means of APIs. Each
of these entities is composed of software modules that
implement each one of the node’s features. Thus, based on this
modular architecture of the MW node, we propose to integrate
the new QoS-oriented mechanisms as modules. These modules
can be incorporated dynamically at design or run time in a
seamless fashion without any modification of the original MW
node.

As shown in Fig. 4, the integration location of these QoS
modules into the communication model of a oneM2M MW
node, is justified by the constraint imposed by the different
application level protocols (HTTP, CoAP, MQTT) supported
by the node. Each of these application protocols has a different
message (request or response) structure. We have chosen to
propose our QoS modules in a protocol-agnostic way. Thus,
new applications protocols are automatically supported as long
as the MW node support them.

Fig. 4. Integration of QoS management modules into the oneM2M
communication model of a MW node

3

The communication diagram shown in Fig. 5 represents the
communication model before (1) and after (2) the integration of
the QoS oriented modules.

Fig. 5. Basic communication diagram of a oneM2M node before and after
integration of QoS-oriented modules (QoS function)

This integration approach can be implanted in all open-
source implementations of the oneM2M standard such as
OCEAN Mobious [11], IoT-DM [12], or OASIS SI [13], since
they share the same modular architectural style. In the
following section, we apply our approach to the open source
Eclipse OM2M platform [14], initially developed at LAAS-
CNRS [15].

B. Application to Eclipse OM2M
OM2M nodes are built following a modular architectural style
based on the OSGi standard [16]. Thanks to this
implementation, it is possible to integrate our QoS mechanisms
in the form of OSGi modules. Our integration approach is
achieved so that the OM2M node maintains its modular design
and can operates without these new modules (i.e. seamless
integration).
An OM2M node (in-cse or mn-cse) is composed of the
following modules:
 Core module: The Core module is responsible of the

processing of generic requests and responses (i.e.
protocol-agnostic messages). It implements features such
as Registration, Discovery, Re-routing, Notifications, etc.

 Binding modules: The Binding modules act as translators
of protocol specific messages to generic messages and
vice versa. A binding module is necessary for every
supported protocol (HTTP, CoAP, MQTT, etc.)

 Persistence modules: The Persistence modules are
responsible for implementing the data storage strategy.
There is on interface module, and as many as supported
storage locations (in-memory, file or server databases)

 Interworking Proxy Entity (IPE) modules: Similar to the
Binding modules, they provide translation of generic
messages into non-IP (Bluetooth, ZigBee, Z-Wave, etc.)
messages and vice versa.

To achieve this integration, we had to consider two options:
(1) to re-implement the Binding modules and Interworking
Proxy Entity modules of a node in order to add a new interface
to be used for the communication with our QoS modules. Such
a modification would have resulted in a new version of Eclipse
OM2M; or (2) to use the OSGi feature “Proxying Service” [17]
which allows to intermediate an OSGi service. We have chosen
the second option which enables the integration of our

mechanisms without affecting the oneM2M standard being
implemented through Eclipse OM2M. Furthermore, this option
has the advantage not to change any element of the current
implementation of OM2M.

Fig. 6. Internal structure of an OM2M node integrating QoS-oriented
modules

As shown in Fig. 6, the main element of this architecture is
the “adapter” module. This component is specified following a
design pattern [18]. It intermediates the OSGi service between
the “core” module and the “binding” modules. Depending on
its configuration (coming from the autonomic manager), it also
decides to pass the request message through zero or several
modules before reaching the “core” module. The same applies
for the response message. An example is illustrated in Fig. 7.

Fig. 7. Adapter module of the proposed architecture

IV. DESIGN PRINCIPLES OF THE QOS-ORIENTED MODULES
In this section, we present the design of our QoS-oriented

modules that implement mechanisms inspired from QoS
management at the IP level coming from IETF DiffServ
working group [19]. The DiffServ architecture is based on a
simple model where traffic entering a network is first
conditioned, then assigned to a class of behavior. Each class is
uniquely identified by a code that can be found as a “mark” in
the IP packets. The packets are then routed following the
behavior associated to the code of the class to which they
belong (e.g. packets marked A will be systematically delayed if
the node load is higher that a given value). Following these
same principles, five QoS modules acting on the applicative
traffic (i.e. on the http requests/responses) have been designed
and implemented in JAVA: The Adapter, the Classifier, the
Dropper, the Delayer, and the Scheduler.

A. The Adapter
The algorithm of the Adapter module is inspired from [18].

When a message is received by this module, the input policy is
checked in order to pass the message into every module
indicated in the input policy and in the specified order (lines 1
to 7). The input policy being applied, and if no module has
dropped the message, it is passed to the “core” module for

4

normal processing (line 8). The output policy is finally applied
and similarly to the input policy (lines 9 to 17).

If any module drops the message (request as in line 5 or
response as in line 14), an error message is issued and sent to
the “binding” module for its transmission to the request issuer
as specified by the oneM2M standard.

Algorithm 1: Adapter

00:
01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:

Input: message; modules; input-policy; output-policy; CSEService.
Output: message.
begin
for (i=0 to sizeof(input-policy)) then

id ← input-policy[i]
service ← module[id]
message ← service(message)
if (message==null) then
return error_message

end for
message ← CSEService(message)
for (i=0 to sizeof(output-policy)) then

id ← output-policy[i]
service ←module[id]
message ← service(message)
if (message==null) then
return error_message

end for
return message
end

B. The Classifier
The Classifier module offers message classification and

marking services. It first tries to identify the class of the
received message (line 1). If a class is identified, the message is
then marked with the associated tag (lines 2 and 5).

Algorithm 2: Classifier

00:
01:
02:
03:
04:
05:
06:
07:

Input: message; pattern.
Output: message.
begin
class ← findClassOf(message)
if (class is identified) then
 tag ← pattern[class]

Mark(message, tag)
end if
return message
end

C. The Dropper
The Dropper module offers a service of packet rejection

following a given rejection percentage. Upon the reception of a
message, the Dropper module first identifies the priority of the
message which associated to its mark (line 1), then calculates
the percentage of the previously rejected messages with the
same priority (line 4). If this percentage is still lower than the
specified one in the QoS policy, then the message is rejected
and a null message is returned to the Adapter. Else, the message
is returned without any modification to the Adapter (lines 5 to
8).

D. The Delayer
The Delayer module offers to delay messages based on their

priority. It first identifies the priority of the message (line 1),
and then waits the required delay corresponding to the
identified priority (lines 3 to 6). After the elapsed delay, the
message is returned without modification to the Adapter
module.

Algorithm 3: Dropper

00:
01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:

Input: message; pattern.
Output: message.
begin
Initialize p ←message.priority
if (p ≠ null) then
 if (p is a key of pattern) then

percentage ← rejected[p]/total[p]
if percentage<pattern[p] then

rejected[p] ← rejected[p]+1
message← null

end if
end if

end if
total[p] ← total[p]+1
return message
end

Algorithm 4: Delayer

00:
01:
02:
03:
04:
05:
06:
07:
08:
09:

Input: message; pattern.
Output: message.
begin
Initialize p ←message.priority;
if (p ≠ null) then
 if (p is a key of pattern) then

 delay ← pattern[p]
wait(delay)

end if
end if
return message
end

E. The Scheduler
The Scheduler module redefines the message scheduling

based on their priority. It operates through two processes: (1)
the first process enqueues the received message in an internal
queue, and delivers this message when it progresses to the head
of the queue (lines 1 to 11), (2) the second process schedules
(reorders) the messages within the queue according to their
priority (lines 13 to 17)

Algorithm 5: Scheduler

00:
01:
02:
03:
04:
05:
06:
06:
07:
08:
09:
10:

Input: message; pattern.
Output: message.
begin
Initialize p ←message priority;
if (p ≠ null) then
 if (p is a key of pattern) then

add message to queue
wait for the message to be the head of the queue
message ← head of the queue
remove the head of the queue
end if

end if
return message
end

00:
01:
02:
03:
04:
05:

Input: queue.
Output: N/A
begin
while (true) then
 if (queue is not empty) then
 sort queue by priority
 end if
end

V. IMPLEMENTATION AND EVALUATION
The efficiency of the proposed approach is evaluated

through a scenario (case study) dealing with the vehicular

5

transportation area. Within this scenario, the first goal is to
measure the expected benefits induced by a QoS policy
consisting (to face a QoS degradation) in the dynamic
deployment of several QoS modules on the considered MW
entities. The second goal is to evaluate the cost associated to the
performed deployment. The scenario is presented in the next
section A. Section B and C are devoted to the evaluations
associated to the two targeted goals.

A. Presentation of the scenario
We consider three Infrastructure-to-Vehicle (I2V)

applications [20] having different QoS requirements (see Table
I).

TABLE I. CONSIDERED IOT APPLICATIONS

App. Description Rate Latency Loss

A [20] Traffic Signal Violation Warning 10 req/s
(minimal)

100 ms
(Allowable)

0%
(Allowable)

B [20] Free-Flow Tolling 10 req/s 50 ms
(Allowable) N/A

C [20] Just-In-Time Repair Notification 10 req/s N/A 0%
(Allowable)

The considered architecture is shown in Fig. 8 and described
through Table II. The applications are emulated through
stochastic HTTP traffic injectors where 1500 requests are sent
to the server and 1000 to the gateway, 500 requests from each
application (A, B, and C). The MW level entities (server and
gateway) are real entities whose specifications are provided in
Table II.

Fig. 8. Considered architecture for scenario

In order to assess the effects of the envisioned policies and
implemented through the QoS modules, we have considered the
processing time within the considered server and gateway MW
nodes.

This scenario is divided into three stages:
1) Stage 1: Detection of an unsatisfied latency constraint

and elaboration of a QoS-oriented global policy
The first stage is initiated by an event indicating to the

autonomic manager that the latency constraint of application A
(supposed to be more important than application A) is not
satisfied. The autonomic manager is also notified that the
average response times within the server and the gateway are
respectively 65ms and 40ms, whatever the applicative traffic.
In order to meet the 100ms of end-to-end latency required by
the application A, still taking in account as best as possible the
QoS requirement of applications B and C, we suppose that the
autonomic manager decides to perform a global policy
consisting in two successive (local) policies applied on the
gateway then on the server (see stages 2 then stage 3). Let us
recall here that our goal is not to discuss of the optimality of the

chosen policy, but to evaluate the effectiveness of a plausible
policy.

TABLE II. DESCRIPTION OF THE ARCHITECTURE SCENARIO

Managing Entity

Element Description

Autonomic
Manager

This entity implements the control loop MAPE-K Erreur ! Source
du renvoi introuvable. and allows (among other tasks) to decide
when, where and how to deploy the implemented modules in order
to meet the QoS requirements of the targeted application(s).

Touchpoints

Element Description

Sensors
A logical component allowing to retrieve the processing time in the
different nodes of the middleware.

Effectors
A logical component allowing to add/remove or modify modules
into the middleware nodes.

Managed Entity

Element Description

Specifications

RAM
(Gb)

CPU
(x3.3
GHz)

Disk
(Gb)

App. pool A pool of applications including A, B, C
applications. - - -

Cloud Virtualized environment hosting the
“Server” entity. 4 4 40

Server
Entity that represents the set of instances
of the infrastructure node specified in the
oneM2M standard (i.e. IN-CSE)

1 1 10

Gateway
Entity that represents an intermediate
middleware node as specified in the
oneM2M standard (i.e. MN-CSE)

0.5 1 10

2) Stage 2: Implementation of a scheduling policy on the

gateway (first part of the global policy)
The second stage consists in the implementation of the first

part of the policy defined by the autonomic manager. This one
has to deploy three different modules on the gateway: An
Adapter, a Classifier and a Scheduler. This policy is aimed at
prioritizing (on the gateway) the traffic coming from the
application A (Fig. 9).

Fig. 9. Second stage of the scenario

3) Stage 3: Implementation of a joint scheduling and
dropping policy on the server (second part of the global policy)

The third stage consists in the implementation of the second
part of the chosen policy, through the combination of a
scheduling policy and a dropping policy within the server. Four
modules have then to be deployed by the autonomic manager:
An Adapter, a Classifier, a Scheduler, and a Dropper. This
policy is aimed at prioritizing (on the server) the traffic coming

6

from the applications A and B, and if the constraints is not
satisfied, to drop the traffic coming from B (Fig. 10).

Fig. 10. Third stage of scenario

B. Evaluation of the benefits induced by the defined policies
1) Evaluation of the scheduling policy performed within the

gateway
Fig. 11 presents the evolution time of the processing time of

traffics A and C within the gateway. The curves represent the
moving average over 50 requests. The scheduling policy was
deployed around req# 464.

Fig. 11. Evolution of the processing time of traffics coming from
applications A and C, within the gateway

We can notice three phases in the evolution of the
processing time of the different traffics:
 Phase 1: [req#1 to req#464]: During this phase, the three

traffics are handled without differentiation within the
MW node. We can notice an average of 40ms for
applications A and C. This average for the application
A is considered unsatisfying by the autonomic manager
(65ms + 40ms > 100ms). It triggers the second stage of
the scenario.

 Phase 2 [req#465 to req#480]: The observed peak is
related to the deployment of the QoS policy (Adapter +
Classifier + Scheduler)

 Phase 3 [req# 481 to req#1000]: This phase corresponds
to the reduction and then the stabilization of the
processing time for traffic A around an average of 26ms
meeting the initial requirements of application A (65ms
+ 26ms < 100ms).

2) Evaluation of the joint scheduling + dropping policy
performed within the server

Fig. 12 presents the evolution time of the processing time of
traffics A, B and C within the server.

Fig. 12. Evolution of the processing time of traffics coming from
applications A, B and C, within the server

We can distinguish 5 phases:
 Phase 1 [req# 1 to req# 264]: During this phase, the three

traffics are handled without differentiation. We can
notice an average of 65ms (for either A, B, or C). This
will trigger the third stage of the scenario.

 Phase 2 [req# 265 to req# 339]: The observed peak is
related to the deployment of the QoS policy
implemented by a new scheduling (i.e. Adapter +
Classifier + Scheduler)

 Phase 3 [req# 340 to req# 585]: This phase corresponds
to the reduction and then the stabilization of the
processing time for traffic A (36ms) and an increase of
the processing time for traffic B and C (average around
80ms). Requirements of application A is thus satisfied.
However, since application B is sensitive to delay (65ms
+ 80ms > 50ms), its requirements are no longer fulfilled.
Therefore, the autonomic manager will augment the
QoS policy in order to abandon all requests of
application B if their waiting time (when leaving the
Scheduler) exceeds 40ms.

 Phase 4 [req# 586 to req# 660]: The observed peak in
the processing time is related to the deployment of new
elements to make evolve the already deployed QoS
policy (i.e. deployment the Dropper module only).

 Phase 5 [req# 661 to req# 1000]: This phase corresponds
to the reduction and then the stabilization of the
processing time for traffic A (15ms), traffic B (36ms but
with 27% of dropped requests), and traffic C (30ms).

C. Evaluation of the costs associated to the QoS modules
deployment
1) Introduction
Since we aim to dynamically handle QoS requirements of

IoT applications, we need to take into account the deployment
time of the QoS-oriented modules. The performance
measurements presented hereinafter allows to assess the
deployment time (including the activation time) of the QoS
modules within the considered gateway and server MW nodes.
In this test, and in order to not bias the results by additional
upload time (linked to the network conditions), the QoS
modules are supposed to be already present within the system
hosting the MW node as illustrated in Fig. 13.

7

Fig. 13. Software architecture for the performance measurements

Based on this measured time, it is possible to estimate the
total deployment time through this simple formula:

(ms)deployment
)bit/ms(throughput

)bit(size
ing(ms)commission

(ms)deployment)loading(msing(ms)commission

network

module
tt

ttt





The “Controller” entity depicted in Fig. 13 is responsible for
the deployment of modules within the OSGi platform (and
eventually remotely). The deployment of every module is
repeated over 1000 iterations and the results are presented and
discussed in the following sections.

2) Results and Discusions

Fig. 14. Average deployment time (ms) of the QoS-oriented modules

Fig. 14 presents the average deployment time of each
implemented QoS module. Among all the QoS modules, we see
that the Adapter module has the highest deployment time
(50ms), followed by the Scheduler (25ms), the Classifier
(23ms) and finally the Delayer (18ms). Thus, the deployment
time of a QoS policy is linked to the size of the involved QoS
modules. Indeed, in our implementation, the size of the QoS
modules are as follows: The Adapter module (i.e. OSGi
Bundle) is 1Mb, the Scheduler is 12 Kb, the Classifier is 10kb,
and finally the Dropper and the Delayer are both 7Kb. For
example, overriding the scheduling policy will require around
100ms of deployment time.

Since the Adapter module is required for any QoS policy
deployment, we could consider that the Adapter module has to
be part of the initial deployment of the OM2M middleware
node. Thus, only other QoS modules (that are small in size) are
to be deployed during run-time depending on the QoS policy
planned by the autonomic manager.

VI. CONCLUSION AND FUTURE WORK
QoS management in the IoT is still challenging goal. In this

paper, we presented one of the approaches that we envision to
meet IoT applications’ QoS requirements. We detailed our
vision of a modular architectures and how we can use them to
manage the IoT applications’ QoS requirements at the
middleware level. We have also presented the design and
implementation of QoS oriented modules, their integration

architecture within the oneM2M-compliant OM2M
middleware, and the experimental evaluation of both the
benefits and costs of the proposed solutions through a scenario
coming from the vehicular transportation domain.

Even though, the deployment of the QoS modules into the
middleware nods can be considered, this solution cannot fit all
the cases. Thus, we also consider, as future work, the dynamic
deployment of microservices in which QoS management
mechanisms will be implemented taking advantages of both
approaches (joint deployment of QoS microservices and QoS
modules).

Finally, the contributions presented in this paper fall in our
general approach that consists in a dynamic and autonomous
end-to-end management of the QoS at the middleware level
through the deployment of QoS mechanisms within the
middleware nodes (in the form of modules) or outside the MW
(in the form of microservices).

REFERENCES
[1] oneM2M, TS-0002-V2.7.1, “Requirements”, August 2016.
[2] S. Yau, and J.-P. Tsai, “A Survey of Software Design Techniques”, in

IEEE Transactions on software engineering, vol. 12, pp. 713-721, 1986.
[3] Razzaque M A et al. Middleware for internet of things: a survey in IEEE

Internet of Things Journal, pp. 70-95, 2016
[4] S.-Y. Yu, Z. Huang, C.-S. Shih, K.-J. Lin, J. Hsu, “QoS Oriented Sensor

Selection in IoT System”, in IEEE and Internet of Things
(iThings/CPSCom), 2014.

[5] K.-J. Lin, N. Reijers, Y.-C. Wang, C.-S. Shih, and J. Y. Hsu, “Building
Smart M2M Applications Using the WuKong Profile Framework”, in
2013 IEEE International Conference on Green Computing and
Communications and IEEE Internet of Things and IEEE Cyber, Physical
and Social Computing, pp 1175-1180, August 2013.

[6] W. Heinzelman, A. Murphy, H. Carvalho, M. Perillo, “Middleware to
Support Sensor Network Applications”, Network, IEEE, vol. 18, issue 1,
pp. 6-14, 2004.

[7] A. Sîrbu, S. Caminiti, P. Gravino, V. Loreto, V. Servedio, F. Tria, “A new
platform for Human Computation and its application to the analysis of
driving behaviour in response to traffic information”, CCS14 Proceedings
in Human Computation, 2014.

[8] IBM, “Node-RED, a visual tool for wiring the internet of things”, 2015.
[9] A. Banks and R. Gupta, “MQTT Version 3.1.1 Errata 01”, OASIS

Approved Errata, December 2015.
[10] oneM2M, TS-0010-V2.4.1, “MQTT protocol Binding”, August 2016
[11] The OCEAN Mobius HomePage [online] Available :

developers.iotocean.org/archives/module/mobius.
[12] The IOTDM HomePage [online] Available :

wiki.opendaylight.org/view/IoTDM:Main.
[13] The IoT Oasis HomePage [online] Available: www.iotoasis.org .
[14] M. B. Alaya, Y. Banouar, T. Monteil, C. Chassot, K. Drira, “OM2M :

Extensible ETSI-compliant M2M Service Platform with Self-
configuration Capability”, in Procedia Computer Science, vol. 32, 2014,
pp. 1079-1086.

[15] The OM2M HomePage, [online] Available: www.om2m.org.
[16] The OSGi HomePage, [online] Available: www.osgi.org.
[17] The OSGi Alliance, “OSGi Core Release 6”, June 2014, pp 385-387.
[18] E. Gamma, J. Vlissides, R. Johnson, R. Helm, “Design Patterns Elements

of Reusable Object-Oriented Software”, October 1994, pp. 157-170.
[19] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, “An

architecture for differentiated services”, RFC 2475, IETF, Dec. 1998.
[20] The CAMP Vehicle Safety Communications Consortium, DOT HS 809

859, “Vehicle Safety Communications Project Task 3 Final Report
Identify Intelligent Vehicle Safety Applications Enabled by DSRC”, May
2004.

[21] O. Kephart , D. M. Chess, “The vision of autonomic computing”,
Computer, v.36 n.1, p.41-50, January 2003

