Deadline-guaranteed Point-to-Multipoint Bulk
Transfers 1in Inter-Datacenter Networks

Long Luo, Hongfang Yu, Zilong Ye*
School of Information&Communication Engineering, Cyber Space Security Center,
University of Electronic Science and Technology of China, Chengdu, P. R. China
* California State University, Los Angeles, CA 90032, USA

Abstract—Many modern cloud services are operated across
geographically distributed datacenters, and they are usually asso-
ciated with a demand of transferring bulk data among datacenters
for achieving a high performance and reliability. These transfers
(e.g., data replications and synchronizations) may require the
inter-datacenter networks to deliver data from one Point (or
datacenter) to Multiple Points (or datacenters) and impose a
deadline on the transfer for providing a guaranteed service to
end users. However, very little work has been done to manage an
efficient point-to-multipoint bulk transfer while considering the
deadline requirements. In this paper, we investigate the deadline-
aware point-to-multipoint (P2MP) transfer problem and propose
a centralized deAdline-Guaranteed transfEr (AGE) approach that
can guarantee the deadline for P2MP transfers while efficiently
utilizing the inter-datacenter bandwidth resources. For each
arriving request, AGE jointly determines the transfer source
selections and bandwidth allocations such that the number of
deadline-guaranteed transfers can be maximized. Our simulation
experiments show that AGE can accommodate up to 53.3%
more transfers whose deadline requirements are met. In addition,
AGE can achieve 20% higher network utilization than prior bulk
transfer approaches.

I. INTRODUCTION AND RELATED WORK

Today, an increasing number of service providers operate
their services in the cloud or datacenters at geographically
distributed locations to serve their users worldwide [1, 2].
In order to improve the service performance, fault tolerance,
data synchronization or replication, many cloud applications of-
ten perform Point-to-MultiPoint (P2MP) bulk transfers among
multiple geographically distributed datacenters that run their
tasks [3]-[5]. For example, the geo-distributed machine learn-
ing computing task that relies on the servers from multiple
datacenters may regularly transfers bulk synchronization data
and intermediate computation results across multiple working
datacenters during the learning procedure.

In addition to the bulk size (e.g., ranging from tens of
terabytes to petabytes), one key characteristic of these P2MP
transfers is that they are often associated with deadline require-
ments [6]—[8]. According to an interview survey at Microsoft
[6], 100% of the customers claim that they have deadline
requirements for all the inter-datacenter transfers and opt to use
a network that can guarantee the transfer deadline for ensuring

This work is supported in part by the National Natural Science Foundation
of China under Grant No. 61271171, 61401070 and 61701074, and the
National Key Research and Development (R&D) Program under Grant No.
2016YFB0800105.

their application service quality. Actually, missing the deadline
will greatly degrade the service performance or even violate the
service level agreements (SLAs) contracted with the customers,
which may result in a significant amount of penalty [8].

Managing an efficient bulk transfers while ensuring the
deadline is not easy. Recently, there are many existing ap-
proaches on the inter-datacenter transfer problem [1, 2, 7]-
[14]. Most of them focused on how to fully utilize the dynamic
leftover bandwidth resources to schedule and deliver data for
point-to-point (P2P) transfer requests. There are few works on
investigating P2MP bulk transfers [12, 14]. Compared to the
P2P transfer with a single destination, the P2MP transfer is
associated with multiple required destinations, which is more
challenging to be addressed. To accommodate P2MP transfers,
one possible solution is to consider a P2MP transfer as multiple
individual P2P transfers and use existing P2P transfer methods
to schedule them separately [1, 2, 7]-[11]. This solution may
finish some of these individual P2P transfers before deadlines,
but does not guarantee the completion of the entire P2MP
transfer till the deadline. While to optimize the application
performance, we should provide deadline guarantees at the level
of P2MP transfers rather than individual P2P transfers. More
recently work [12, 14] considered to schedule a given P2MP
transfer as a whole and proposed to construct forwarding trees
to simultaneously deliver the required data from the source
datacenter to all destinations at the same rate. It maximizes the
data transferred before deadline for all required destinations,
however, it has poor performance because the slowest destina-
tion throttles the completion time for all destinations. Hence, it
is not efficient if we just simply apply the existing P2P transfer
approaches or the state-of-the-art P2MP transfer approach to
address the deadline-aware P2MP transfer problem.

In this paper, we propose a centralized deAdline-Guaranteed
transfEr (AGE) approach, which can efficiently address the
P2MP transfer problem such that the P2MP-level deadline
can be guaranteed and network utilization can be optimized.
Our key idea of AGE is that, in a P2MP transfer request,
any destination that has completed the transfer before deadline
can serve as a source and deliver the required data to other
uncompleted destinations of this request. This gives us the
opportunity to dynamically select the transfer data source
for required destinations during the transfer procedure. More
specifically, AGE jointly optimizes the transfer source selection

and bandwidth allocation, which enables many unused band-
width resources to be available for delivering the required data,
thus achieving an efficient utilization of the network resources
while ensuring the deadline for transfer requests. AGE differs
significantly from prior work since it performs flexible transfer
source selections in addition to bandwidth allocations. In AGE,
the computation of the optimal (i.e., the maximum deadline
guarantees) transfer source selection and bandwidth allocation
for each request is formulated as an Mixed Integer Linear
Program (MIP). For many small-scale transfer problems, we
can obtain the optimal solutions by directly solving the MIPs
built for them. However, it is time-consuming or sometimes
intractable to apply MIPs to solve large-scale transfers (i.e.,
those have deadline of several hours). In these cases, AGE
divides the time into a series of small time intervals and
accordingly builds a series of small MIPs, each of which is to
maximize the data that can be transferred in a particular small
time interval. AGE progressively solves these small MIPs until
it finds a deadline guaranteed solution or exceeds the transfer
deadline. Whatever the actual deadline is, AGE can always
compute a deadline guaranteed schedule for every transfer
request in a reasonable time.

The main contributions of this work are summarized as
below:

o We address the deadline-constrained P2MP transfer prob-
lem by jointly optimizing the transfer source selection
and the bandwidth allocation to guarantee deadlines and
efficiently utilize the network resources. To the best of
our knowledge, this is the first study that explores the
deadline-guaranteed P2MP bulk transfer (Section II).

o We formalize the transfer problem as a MIP model, and
we also present a basic algorithm to compute the optimal
solution and an acceleration algorithm to speed up the
computation through progressively solving a series of
smaller MIPs (Section III).

o We evaluate AGE by simulating data transfer scenarios
for network topologies observed from real inter-datacenter
networks. Our results show that AGE provides deadline
guarantees for up to 53.3% more transfer requests and
achieves around 20% higher network utilization, compared
to prior solutions (Section IV).

II. MOTIVATION AND OUR APPROACH
A. Point-to-MultiPoint (P2MP) transfers

Data transfer is very common in inter-datacenter networks.
A key finding is that up to 77% cloud services run backup
and replication among three or more geographically distributed
datacenters [10]. Such geo-replication requires to transfer bulk
data from one point to multiple points (P2ZMP) over the inter-
datacenter networks. Examples of service providers that use
geo-replication include Google [5], Microsoft [3], Amazon [4]
and etc. [12]. The applications (e.g., search, CDNs, streaming,
etc.) they host may need the replication of search index, popular
content, database, and etc., to improve the service reliability
against failures.

Data size:20GB S

Fig. 1: A P2MP request example: 20GB data are required to
be transferred from S to Dy, Dy and Ds.

Completion time:

3 Dy: 100s, Dy: 2005, o pom
! Ds: 200s S
200MB/s 3. 100MB/s >~ 100MB/s
YO -

Completion time:
Di: 200s, Dy 200s,
D3 200s

(b) Approach 2: Constructing a forwarding tree to transfer data.

Completion time:
Dy: 66.75, Dy 133.45,
Ds 133.4s5

s

(c) Approach 3: Guaranteeing deadline through flexibly source selection.

Fig. 2: A motivation example: comparison of different policies
to the transfer problem in Fig. 1.

Deadline: Deadline is one of the most important SLAs im-
posed by many cloud applications to the inter-datacenter trans-
fers. Many online service applications such as search and
video streaming are time-sensitive, which naturally expect to
complete transfers before a certain time, or namely deadline
[1, 2,7, 8, 15]. While, the inter-datacenter transfers are delay-
tolerant and usually do not impose strict bandwidth guarantee
during the transferring process, which allows cloud providers
to dynamically schedule the bulk data transfer by fully utilizing
the bandwidth resources on inter-datacenter links.

Although there exists many literatures on the bulk transfer
problem, we unfortunately observe that none of them can
efficiently handle the P2MP transfers, especially the deadline
guarantees required by customers. Considering an illustrative
P2MP transfer request in Fig. 1, a volume of 20G B data needs
to be replicated from datacenter S to three remote destination

datacenters D;, D2 and D3 within 150 seconds (i.e., the
deadline is 150s) after it is submitted. The link between B and
D has a available capacity of 100M B/ s, while the rest network
links have a capacity of 300M B/s. One possible approach
(i.e., approach 1 in Fig. 2) to satisfy the transfer request is
to handle it as three individual point-to-point (P2P) transfers
and process them independently using current P2P transfer
approaches [7]-[11]. Such an approach can split the original
P2MP transfer three sub-transfers: Ry : (src = S, dest = Dy),
Ry : (src = S,dest = D), and R3 : (src = S,dest = D3)
as shown in Fig. 2(a). Fig. 2(a) shows one of the possible
bandwidth allocations using Approach 1: the bulk data at source
A will be delivered to D1 at a rate of 200M B/s and to D3 at a
rate of 100M B/s. As a result, the sub-transfers Ry and R3 will
be completed in 100s and 200s, respectively. While for sub-
transfer R, to fully utilize the leftover bandwidth resources,
it will transfer the data at a rate of 200M B/s between 100s
and 200s. Anther approach is to handle the P2MP transfer as
a whole [12], which constructs a forwarding tree rooted at the
source that transfers data to all the destinations at the same
rate (e.g., using the maximum achievable rate of the bottleneck
link). Fig. 2(b) illustrates one of the possible forwarding trees
built by this approach (i.e., approach 2 in Fig. 2): the bulk
data will be transferred from S to three destinations at the
same rate 100M B/s, which is the maximum achievable rate
of the bottleneck link B-D. Consequently, approach 2 would
obtain the same completion time 200s as that of approach
1. Obviously, neither of these two approaches can finish the
transfer before the required deadline 150s.

Actually, there is an more efficient way to schedule this
P2MP transfer (in Fig. 1) by flexibly determining the trans-
fer source for required destinations, which can guarantee the
completion of the transfer before the required deadline. Recall
the transfer request in Fig. 1, one possible solution is to first
arrange a sub-transfer from source S to destination Dy. Once
this sub-transfer is completed, we can initiate two sub-transfers:
one from S to D; and another one from Dy to D3 (see Fig.
2(c)). This approach can lead to the completion of the requested
P2MP transfer no later than 133.4 seconds, which meets the
deadline 150s. This example gives us the motivation that jointly
considering the transfer source selection and the bandwidth
allocation can significantly reduce the transfer completion
time for P2MP transfer requests. Accordingly, the chance of
guaranteeing deadline can also be greatly improved. In addition,
the network resource utilization can also be highly increased
when the transfer source selection and the bandwidth allocation
are jointly optimized.

B. Overview of AGE

Based on the motivation, we propose AGE, which jointly
optimizes the transfer source selection and the bandwidth
allocation to maximize the probability of deadline guarantee
for inter-datacenter P2MP transfers. AGE adopts a logically
centralized controller to manage the transfer requests. The
controller maintains the network wide states, bandwidth usages
and traffic demands, and performs the admission control to the

submitted transfer requests, as well as provisioning the transfer
source selection and spatial-temporal bandwidth allocation for
the accepted requests. In particular, AGE works as follows.
When a P2MP transfer request arrives, AGE quickly deter-
mines whether the request can be admitted or not, taking into
consideration the inputs such as available bandwidth resources,
inter-datacenter tunneled paths and the requested data transfer.
For the accepted requests, the controller enforces the joint
optimization solution using available tools in inter-datacenter
networks, such as SDN, to dynamically add rules to active
forwarding paths between datacenters [8].

AGE performs the request admission control in an online
fashion. It is based on a first-come first-served manner and does
not allow preemption. In AGE, the previously made decisions
are not allowed to be revoked, and each newly arriving transfer
request needs to be scheduled by considering the residual
bandwidth in the network. Note that one may achieve better
solutions by rescheduling all the unfinished transfer requests to
accommodate new transfer requests. However, such reschedule
is time-consuming because it increases not only the problem
complexity but also the problem scale, which is not practical.
AGE can ensure the deadlines for many P2MP transfers re-
quests through flexibly selecting the transfer source.

Similar to previous works on the inter-datacenter transfer
problem [7, 8, 10, 12], AGE assumes a time slotted system
where time is divided into a series of discrete timeslots at equal
lengths. The allocated bandwidth is fixed within a timeslot
but may vary across different timeslots. The main idea of
our transfer schedule algorithm (see the details in Section
IIT) is summarized as follows. When a P2MP transfer request
arrives, AGE essentially tries to use residual network capacity
to complete it before deadline by solving an optimization
problem (Section III-B). For a P2MP transfer request, AGE
quickly accepts it if all the required destinations can complete
the data transfer before the deadline, otherwise AGE will reject
it. Note that a rejected request can be resubmitted by the clients
later time, as long as the deadline has not expired.

III. THE TRANSFER SCHEDULING ALGORITHM IN AGE
A. Network model

We use a graph G = (V) E) to model the inter-datacenter
network, where set V' includes all the datacenters and set F
contains the inter-datacenter links. Each link e € E connects
two datacenters and has a time-varying capacity c.,. We
assume tunnel-based forwarding is used and there exists several
pre-established tunnel paths between each pair of datacenters.
Meanwhile, we use P,, = (u,u1,...,v) to denote a tunnel
path between datacenter u and v. As for a P2MP transfer
request, we describe it by (s, {d*,d?,...,d™}, f,t*,t%), where
s, {d',d?,...,d™}, f, t1, t? respectively denote the source
datacenter, the required destination datacenters, the to-be-
transferred data size, the start time and the deadline.

B. Problem formulation and basic algorithm

Our formulation is based on the following assumptions for
every P2MP transfer request. First, we take the request arrival

time 797" as the start time (¢!) of data transfer. Second, a

destination datacenter can be as a potential new transfer source
for other destinations when it has received all the required data.
For the practical concerns such as the operational cost, we
assume that each destination receives data from one datacenter.
The proposed AGE approach consists of three main steps,
which are (1) Determining the transfer sources, (2) allocating
available bandwidth resources, and (3) guaranteeing deadlines
for each transfer requests. The detailed designs of these three
steps are as follows.

Determining the source for transfers: We use a binary h},
to denote whether a datacenter k € {s,d*,d?,...,d™} can
serve as the transfer source at time ¢ € [t*,¢]. For the original
transfer source datacenter s, we certainly have

Vt:hl =1 (1)

While for a transfer destination datacenter d € {d*, ..., d™}, as
mentioned before, it can become an available transfer source
at time ¢ if it has received the complete package of data f by
the end of timeslot ¢t — 1:

thpt—1
vtd: Y > wha> fhy)
r=t! kk#d

where 27, ;, > 0 represents the data volume received at destina-
tion d from datacenter k at time 7 € (¢!, ¢! +¢—1]. Meanwhile,
a datacenter k is able to transfer data to datacenter d,d # k
only if it is an available transfer source:

Vi d ko k # d g < fh 3)

To be practical, each destination is restricted to set up transfer
connection with a single source datacenter in the process of
data delivery:

Vd: Y za=1 4)

k,k#d

where binary zj 4 denotes whether datacenter k is the transfer
source of destination d. Clearly, there should be

Vt,dkk#d:af 4 < fopa ®)
Vt,d,k k£ d: Tl g > 2pa (6)

Allocating available bandwidth resources: Let y} , » denote
the bandwidth resources that allocated along the routing path
P from datacenter k to datacenter d at time ¢. The allocations
are feasible if:

Vt,dkk#d: > ayhap >l (7)
PEPr.a
Ve,t : ZZ Z y]?d,p-[(e € P) < Ce,t 3
k d PEPa

where constant o denotes the length of each time slot and ex-
pression 3, 37, Y pep, , Ur.a.pl(e € P) denotes the amount
of traffic on link e at time ¢. Equation (7) states that the
allocated routing and bandwidth resources should at least be
capable of transferring the demanding data size; Equation (8)

expresses the link load is restricted to not exceed the capacity
to avoid link congestion.

Guaranteeing deadline for each transfer request: This needs
us to ensure the data transfer can be completed before the
deadline for every destination datacenter. Let binary w, denote
whether the destination d € {d',...,d™} has received all
the data before deadline ¢2. Guaranteeing the deadline for
destination d requires the transfer to be completed no later than
time ¢! 4 2, so we have

t14¢?
Vd : Z Z Tp g > fwq)
T=t! k,k#d

Maximizing the deadline-guaranteed destinations (basic
algorithm): Our baseline algorithm for addressing the P2MP
transfer problem is straightforward and is summarized in Al-
gorithm 1. Given GG and a deadline-constrained P2MP transfer
request R, our goal is to maximize the number of destinations
that meet the specified deadline through solving the correspond-
ing MIP problem in Algorithm 1.

If the number), wy of completed destinations equals to
the number of required destinations for a request, we accept
this request and transfer the required data during the scheduled
transfer period. Besides, for every link, the residual bandwidth
resources will be updated as the available bandwidth (before
the acceptation) minus the allocated resources (y).

Algorithm 1 Basic Algorithm

1: Input: R = (s,d',...,d™, f,t!,t?): a transfer request;
Pup = {P1,Ps,..., P} k-shortest paths between the
datacenter u and v;

Ce,i: Tesidual link bandwidth on link e € E at time ¢ €
(t1,¢2].

2: Output: Return the completion status wy in the solution

of the following problem:
>, wa

de{d*,....dm}
s.t. constraints (1)-(9).

max

C. Acceleration algorithm

Although our baseline algorithm can obtain the optimal
transfer solutions for many requests, it may not work well
for requests that last for a long time. The linear program-
ming (in Algorithm 1) built for a P2MP transfer request has
O(|N|?|P||T|) variables, where |N|, |P|, |T'| denotes the num-
ber of datacenters, tunnel paths and time slots, respectively. | V|
and |P| are usually small because the inter-datacenter networks
usually have limited number of datacenters and a small number
of available tunnel paths between two datacenters. However,
the scale of the number of time slots |7'| may vary largely
(e.g., ranging from dozens to hundreds or even thousands
of 5-minute time slots) because the transfer deadline usually
ranges from hours to a few days [7]. As a result, when the

deadline of transfers increases, the number of variables involved
in the linear programming will grow dramatically, making
the problem difficult to be solved in a reasonable time. For
example, for a transfer request that involves 5 datacenters, , 5
tunnel paths between each pair of datacenters and a completion
deadline of 10 hours, the linear programming built for it
includes at least 52 x 5 x % = 15000 variables, if the time
slot is set to be 5-minute. For such cases, it is computation-
ally intractable to solve the linear programming problem and
obtain the optimal solution through employing the commodity
optimization solvers. Therefore, to overcome this limitation,
we present an acceleration algorithm to efficiently address the
transfer source selection and the bandwidth allocation when the
transfer problem has large-scale.

Algorithm 2 Acceleration Algorithm(R, P)

1: Generate time series {7y} through Tp =
ot g = 2,5, Ty = t1, T, = 12,
0=1;
wg=1,¥Vd=1,..,m;
while >, W, > 0 and 0 < do
Let w, be given parameters and solve the linear pro-
gramming with equations (1)-(8), (10)-(11) and objective
of max ", wa;
6: For all destinations d, update wy: Wy = Wgq — wy;
7: 0=0+1,
8
9

To—1 +

: end while

if S, @Y < 0 then
10: return The transfer solutions y.
11: end if
12: return Missing the deadline.

The main idea of our acceleration algorithm (Algorithm
2) is to divide the time line into several (i.e., k) number
of short length-equal time intervals and solve a series of
small optimization problems, each of which is built for a
time interval. Since each divided time interval contains a few
number of time slots, we can efficiently solve the small linear
programming built for each time interval. In particular, if there
exists data that remains to be transferred at the beginning of
a given time interval, the algorithm generates an optimization
problem that maximizes the data amount that can be transferred
before the end of this time interval (Line 4-Line 8 in Algorithm
2). For the optimization problem built for the #-th time interval
(Ty, Ty+1], the percentage wy of the can-be-transferred data
(in this time interval) over the proportion w, of the data that
remains to be transferred to destination d satisfies:

To+1

vd : Z Z af 4 > fwq (10)
=Ty k,k#d
Vd : 0 <wy < wy (11)

After obtaining the transfer allocations at each iteration, the
algorithm fixes the allocation decisions and update the volume
{wq,Vd} that remains to be transferred according to {wq, Vd}

BMP2P SDCCast BAGE

= 100

2 90

o

s 2

g 70 |4l 1l 7

& ANl Al Ol

£ 60 ?= ?\ A % é B

o N AL N Al

g %0 [N Nl /NNl TN O R

a "EYR BB :R 1IN

40 PN PR BN PR NI N
1 2 3 4 5 6 7
#the number of destinations
(a) Gscale

100 BMP2P BDCCast BAGE

= B B

£ 1m

o 1Tm

E 18 all

5 %0 |l N TR R
N & A BN N

e NIl NN N A X

o N NN NN N

oI NN NN A

s |INLINL NN N N

b ANENE RN ENE

@ H N PN BN N N

S, LN INI /NI PN PR R
1 3

2

4
#the number of destinaitons

(%]
[=2]
-

(b) Equnix
Fig. 3: The impact of the number of destinations

results. The Algorithm 2 is stopped when one of the following
conditions is satisfied: 1) the required data has been transferred
to all destinations (or) d Efl < 0); 2) the number of iteration
0 reaches the iteration limit x.

IV. EVALUATION

We compare the proposed AGE approach with the following
approaches: 1) MP2P: which simply applies the state-of-the-art
deadline-aware P2P transfer approach [8] to the P2MP transfer,
considering every P2MP transfer request as multiple individual
point-to-point (P2P) transfer requests and using [8] to schedule
each P2P transfer with a deadline-guaranteed allocation through
solving a min-cost flow formulation; 2) DCCast: considers each
P2MP transfer as a whole with the objective of minimizing the
transfer completion time [12].

We evaluate the performance of the above three approaches
by running simulations over two realistic inter-datacenter net-
works: 1) Google’s GScale topology, which has 12 datacen-
ters and 19 inter-datacenter links, and 2) Equnix topology,
which has 20 datacenters and 141 inter-datacenter links. We
implement all the simulations in Python and employed Mosek
(https://www.mosek.com/) as our backend optimizer to solve
the MIPs in simulated algorithms. We consider P2MP trans-
fer requests with different number of required destinations
and varying traffic load, respectively. We collect the number
of transfer requests that meet their deadlines, denoted by
Nieadline—met and measure the performance metric deadline-
met ratio using W x 100%, where Nioiq; is the
total number of P2MP transfer requests submitted during the
simulation runtime.

Figure 3 shows the ratios of deadline-met transfer requests
with varying number of destinations (from 1 to 7). The results

show that AGE outperforms both MP2P and DCCast in terms
of the deadline-met ratio. This is because AGE considers the al-
ready completed destinations as selectable new transfer sources,
and thus potentially exploits many unused bandwidth resources
to speed up the completion time. As the number of the required
destinations increases, we also find out that the deadline-met
ratio of the MP2P approach decreases while AGE maintains a
high standard. This is as expected since an increasing number
of P2P transfer requests will be generated by MP2P for a given
P2MP transfer as the number of destinations grows, which will
resulting in consuming more bandwidth resources and a longer
time to complete all the P2P transfer requests. In contrast, AGE
considers the P2MP transfer request as a whole, which leads
to a stable deadline-met ratio performance. From Fig. 3, we
can also observe that DCCast performs the worst deadline-
met ratio among three compared approaches. This is because
DCCast greedily transfers data from the source to all required
destinations at the maximum achievable rate of the bottleneck
link per timeslot without considering the deadline requirement.
As a result, many requests will miss their deadlines when
DCCast is used.

Figure 4 plots the network utilization collected from simu-
lations on GScale network. Note that we omit to present the
results obtained from Equnix network because they are similar
as those from GScale network. We use the metrics of total
network utilization and effective utilization in [8] to measure
the network utilization achieved by the three algorithms. Total
network utilization refers to the network utilization of all
(including both deadline-met and deadline-missed transfer data)
transfers, and effective network utilization only refers to the
transfers that meet their deadlines. From the plotted curves
in Fig. 4, we can observe that the deadline-agnostic solution,
DCCast, achieves a high total network utilization but a very
low effective network utilization. This result is as expected
because DCCast does not respect the deadline requirements
when scheduling bulk transfers. In contrast, AGE and MP2P
achieves much better effective network utilization, as they
avoid wasting resources for deadline-missed requests by only
admitting transfer requests whose deadlines can be guaranteed.
In addition, we find AGE outperforms than MP2P solution
in terms of effective network utilization, due to the higher
deadline-guarantees achieved by AGE.

V. CONCLUSION

In this paper, we investigate how to efficiently manage the
inter-datacenter P2MP bulk transfers that are associated with
deadline requirements. We propose a centralized deAdline-
Guaranteed transfEr (AGE) approach, which performs on-line
admission control and joint optimizes the transfer source se-
lection and the bandwidth allocation for inter-datacenter P2MP
transfer requests to guarantee the deadline while efficiently
utilizing the network resources.

The transfer problem is formulated as a Mixed Integer
Linear Program (MIP). The deadline-guaranteed schedule can
be found by solving the MIP, which ensures that the maximum

-“*-MP2P -* DCCast_total

100 *-D(CCast_effective *AGE

B il b - b

80

60 T N T

40

/‘/\'/\/—\
20 ¢

1 2 3 4 5 6 7 8 9 10 11
Request Arrival Rate (per timeslot)

Network Utilization (%)

Fig. 4: AGE achieves the improved effective network utiliza-
tion, compared to MP2P and DCCast [12].

number of destinations can completely receive all the to-be-
transferred data before deadlines. For a given transfer request,
AGE accepts if all the destinations can complete the required
data transfer before the deadline; otherwise AGE rejects it. A
baseline algorithm is presented to solve the MIP and obtains
the optimal results if the problem can be solved in a reasonable
time. Furthermore, to solve the large-scale transfer problems,
an accelerate algorithm is proposed that progressively splits
the original transfer schedule into a series of small schedules
and solves them efficiently. We conducted comprehensive sim-
ulations on real-world network topologies, and found that the
proposed AGE approach can effectively accommodate 53.3%
more transfer requests with deadline guarantees, while achiev-
ing around 20% higher network utilization, compared to state-
of-the-art transfer solutions.

REFERENCES

[1] C-Y. Hong, S. Kandula et al., “Achieving High Utilization with
Software-Driven WAN,” in SIGCOMM, 2013.

[2] S. Jain, A. Kumar, S. Mandal et al., “B4: Experience with a Globally-
Deployed Software Defined WAN,” in SIGCOMM, 2013.

[3] “Microsoft azure: Cloud Computing Platform & Services.”
https://azure.microsoft.com/.

[4] “Amazon Web Services
https://aws.amazon.com/.

[5] “Compute Engine - iaas -
https://cloud.google.com/compute/.

[6] V.Jalaparti et al., “Dynamic Pricing and Traffic Engineering for Timely
Inter-Datacenter Transfers,” in SIGCOMM, 2016.

[7] S.Kandula, I. Menache, R. Schwartz et al., “Calendaring for Wide Area
Networks,” in SIGCOMM, 2014.

[8] H. Zhang, K. Chen, W. Bai et al., “Guaranteeing Deadlines for Inter-
Data Center Transfers,” IEEE/ACM Transactions on Networking (TON),
vol. 25, no. 1, pp. 579-595, 2017.

[9] X. Jin, Y. Li, D. Wei, S. Li, J. Gao, L. Xu et al., “Optimizing Bulk

Transfers with Software-Defined Optical WAN,” in SIGCOMM, 2016.

N. Laoutaris, M. Sirivianos, X. Yang et al., “Inter-Datacenter Bulk

Transfers with Netstitcher,” in SIGCOMM, 2011.

Y. Feng, B. Li, and B. Li, “Postcard: Minimizing Costs on Inter-

Datacenter Traffic with Store-and-Forward,” in ICDCSW, 2012.

M. Noormohammadpour et al., “Dccast: Efficient Point to Multipoint

Transfers Across Datacenters,” in HotCloud, 2017.

L. Luo, H. Yu,Z. Ye, and X. Du, “Online Deadline-Aware Bulk Transfer

over Inter-Datacenter WANS,” in INFOCOM, 2018.

M. Noormohammadpour, C. S. Raghavendra et al., “QuickCast: Fast

and Efficient Inter-Datacenter Transfers using Forwarding Tree

Cohorts,” in INFOCOM, 2018.

K. Hsieh, A. Harlap, N. Vijaykumar et al., “Gaia: Geo-Distributed

Machine Learning Approaching LAN Speeds.” in NSDI, 2017.

(AWS) - Cloud Computing Services.”

Google Cloud Platform.”

[10]
(1]
[12]
[13]

[14]

[15]

