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Abstract—The smart grid concept has transformed the tra-
ditional power grid into a massive cyber-physical system that
depends on advanced two-way communication infrastructure
to integrate a myriad of different smart devices. While the
introduction of the cyber component has made the grid much
more flexible and efficient with so many smart devices, it
also broadened the attack surface of the power grid. Partic-
ularly, compromised devices pose great danger to the healthy
operations of the smart-grid. For instance, the attackers can
control the devices to change the behaviour of the grid and
can impact the measurements. In this paper, to detect such
misbehaving malicious smart grid devices, we propose a ma-
chine learning and convolution-based classification framework.
Our framework specifically utilizes system and library call lists
at the kernel level of the operating system on both resource-
limited and resource-rich smart grid devices such as RTUs,
PLCs, PMUs, and IEDs. Focusing on the types and other
valuable features extracted from the system calls, the framework
can successfully identify malicious smart-grid devices. In order
to test the efficacy of the proposed framework, we built a
representative testbed conforming to the IEC-61850 protocol
suite and evaluated its performance with different system
calls. The proposed framework in different evaluation scenarios
yields very high accuracy (avg. 91%) which reveals that the
framework is effective to overcome compromised smart grid
devices problem.

Index Terms—Smart Grid, Compromised Devices, Cyberse-
curity, Machine Learning, Call List.

I. INTRODUCTION

The ability to sense and react to what is happening in
the power grid by smart devices has revolutionized the
power industry. By measuring the grid parameters, smart
grid devices are able to control the electrical grid much
more safely and efficiently than ever before [1]. Indeed, the
introduction of the smart devices into the decade-old power
grid definitely is a giant step that modernize the traditional
grid; however, it also brings challenging security problems
that are critical to tackle [2].

One of the most critical security problems in the power
domain involves compromised smart grid devices. Compro-
mising the smart devices such as sensors that measure the
behavior of the power grid or controllers that either directly
or indirectly controlling the behavior of the grid can have

dire consequences: For instance, a sensor supplying false
information may cause the control device to raise the voltage,
possibly overloading the grid. Similarly, a malicious activity
on a control device may accomplish the same hazard directly,
making electricity unavailable. To ensure a healthy supply of
such a critical resource, it must be ensured the smart grid
devices on the grid must behave as expected and provide
healthy operations.

In this paper, we propose a new framework to detect
compromised smart devices in a smart grid environment.
Specifically, the framework extracts statistics of system and
library calls at the kernel level in the operating system
which is subsequently fed into a machine-learning based
classification model and convolution process. Analyzing the
detailed metrics of how two call lists differ on type, length,
distribution, and ordering, the proposed framework is able
to identify benign devices from the compromised ones in
all the evaluated cases. In addition, the framework obtains
high accuracy when applying it on the data gathered from
a representative testbed of smart grid devices conforming to
IEC61850 protocol suite.

Our key contributions are listed as follows:
• We propose a detection framework that combines in-

formation extracted from system and library call lists
(type of calls, length of call lists, and ordering of the
calls), convolution, and machine learning algorithms to
identify compromised smart grid devices based on the
devices’ behavior.

• We propose an adversary model that considers three fun-
damental malicious activities stemming from compro-
mised devices: direct grid control, indirect grid control,
and surveillance activity from attackers.

• We demonstrate the efficacy of the proposed framework
by evaluating 5 different realistic cases that specify how
behaviour of authentic and compromised devices can
differ in the smart grid.

• Finally, we obtained high accuracy (91% average) on
the detection of compromised smart grid devices for all
the different analyzed cases.

The remainder of the paper is structured as follows:
Section II presents the related work. Section III discussesc© 2018 IEEE
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the smart grid context and explicitly defines the adversary
model and the problem being solved. Section IV describes
the analysis of call list patterns. Section V discusses how
to make a distinction for each case. Section VI evaluates
the performance of the framework and finally, Section VII
concludes the paper and discusses future work.

II. RELATED WORK

Existing works investigating the security of smart grid and
industrial control systems (ICS) mostly deal with identifying
counterfeit devices in the supply chain domain as the main
focus for the compromised devices. In [3] and [4], the authors
offer different approaches for detecting fake electronic parts.
Outbound beaconing, intelligent secure packaging, and better
tracking systems are some of the countermeasures that are
proposed to fight against counterfeiting on the supply chain
side [5]. Common theme of these research is a focus on
hardware level detection. In a similar fashion, authors in [6]
dealt with detecting counterfeit devices on software layer
using statistical correlation. Simulating three different attack
models on a smart grid testbed, the authors compared the
data gathered from devices to ground truth. A hand-picked
threshold value were used to decide whether the device was
compromised.

On the other hand, the analysis of network traffic with
the intention of classifying device behavior is a well studied
subject.Ahmed et al. presented a plethora of statistical and
machine learning methods for behavioral network traffic
analysis [7]. Specifically in ICS, the authors of [8] are using
network traffic to identify counterfeit ICS devices.

The techniques that are employed in this paper are inter-
secting with some anomaly detection approaches. Existing
data mining approaches has been reviewed by Agrawal et
al. [9]. In the smart grid context, authors in [10] use a neural
network model to detect malicious voltage control actions.
In [11], researchers apply a rule based detection mechanism
to detect attacks in smart grid.

Difference from existing work- Our work differs from
the existing research as follows: The proposed framework
operates on software level (at the kernel), and works for
devices both in the supply chain as well as outside of it.
Compared to approaches that solely focuses on the analysis
of network data, the use of system and library call data
offers a unique insight on the behavior of devices and is
immune to random factors that affects the network state.
To the best of our knowledge, this is the first study to
provide a comprehensive framework with machine-learning
and convolution techniques for the analysis of system and
function call lists in the context of smart grid.

III. SMART GRID CONTEXT AND ADVERSARY MODEL

This section discusses the adversary model focusing on the
compromised device problem and the representation of the
behavior of smart grid devices as a state machine.

IdleAdjust Frequency Adjust Voltage

high voltage

return

frequency anomaly

return

Figure 1: A partial state machine representing reactive nature
of an IED. In case IED senses a high voltage, it does nec-
essary computations and routine calls to adjust the voltage;
and in case of a frequency anomaly, the device, then, adjusts
frequency. This behavior could be generalized to other smart
grid devices.

A. Adversary Model

As discussed earlier, the adversary model in this work
deals with an unauthorized control of the smart grid devices
via compromising. In case of such a malicious event, the
activity of a malicious actor could be categorized in three
distinct classes:

• Direct grid control with specific commands: A com-
promised command & control device, such as an IED,
may allow the attacker to issue commands directly to
affect the state of the grid.

• Indirect grid control via fake measurements: A
compromised sensor may send fake measurements to
indirectly exert control over the smart grid.

• Surveillance of sensitive data: A compromised device
may allow sensitive and confidential data and measure-
ments to be gathered from the devices.

B. Characterization of Smart Grid Device Processes

Majority of the critical field devices that are utilized in the
grid include RTUs, PLCs, PMUs, and IEDs. In this work, the
proposed framework specifically focus on these field devices:

• Remote Terminal Unit (RTU): Monitors relevant pa-
rameters about a system of subject and transmits this
data to a central unit. This is an example of a resource
limited device, where memory and computation power
is rather limited.

• Programmable Logic Circuit (PLC): Directly controls
actuators to manipulate physical phenomena in the grid.

• Phasor Measurement Unit (PMU): Measures electrical
waves in an electrical grid.

• Intelligent Electornic Devices (IED): Receives data
from sensors and issues control commands to regulate
the grid. IED is an example of a resource-rich device,
where in contrast to resource-limited devices, memory
and computation power is abundant.

A key observation about these devices is that they are
reactive: they respond to the events they receive in the
smart grid in a deterministic fashion. Figure 1 illustrates this
behavior with a state machine representation.

Moreover, most of the computation nowadays is done
through programs that run on operating systems. A program
must interact with the operating system to utilize system’s
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Figure 2: A state machine showing the initial, the benign
computing, and the malicious (compromised) computation
states.

resources through libraries that directly or indirectly use a
standard library, such as allocating memory and sending a
packet over the network to communicate with other com-
puters. By obtaining system and/or library call traces over
time, it is possible to identify which state the computing unit
was operating on by analyzing the call list [12]. In other
words, a computing unit responds to an event by a series of
computation of which leaves a deterministic trace of system
and library calls.

C. Problem Definition

After defining the adversary model and characterizing
the smart grid devices in terms of state machines, here
we introduce another state machine representation which
serves as the explicit definition of the compromised behavior
detection problem.

Let us consider the following state machine, which is a
simplified version of the earlier state machine and shown in
Figure 2, where

• qI is the idle state,
• qB is the benign computation mode, e.g., expected

activity. This is the state which the intended computation
takes place; for example, a sensor might receive a timed
IRQ to gather the readings and send it to a central unit,

• qM is the compromised mode, e.g., unexpected activity.
The device could be doing anything here, e.g. poisoning
the sensor measurements or sending harmful control
commands as discussed earlier.

The goal of this work is to identify whether the monitored
device has ever operated in state qM . With the assumption
that every described state emits a deterministic trace of
system and library call lists, it is possible to construct a
framework that can identify whether a given device is com-
promised. Finally, it is assumed that benign and malicious
activities do not produce identical call list patterns.

IV. ANALYSIS OF CALL LIST PATTERNS

To effectively utilize call lists as a discriminatory point
between computing states, it is necessary to define what
constitutes a call list and examine various measures of how
two call lists are different. In this section, we define the call
list and introduce the set of measures that are used in this
work. Afterwards, the cases, which are based on the values
of the defined metrics may take, are discussed.

A. Definitions

A Call List LS is a finite sequential list of system or
library calls when a computing unit finishes its operation in
an arbitrary state qS .

SD

( ∣∣∣∣∣∣∣
malloc
malloc
free
free

∣∣∣∣∣∣∣ ,
∣∣∣∣malloc
free

∣∣∣∣
)

= 0 (1)

Set Distance SD(L1, L2) is the measure of how two call
lists are different according to the type of calls they inhibit.
Let A be the set of calls in L1, and B the set of calls
in L2. The function SD(L1, L2) is simply the number of
unique elements (cardinality) that is contained in A, but not
in B. Formally stated, SD(L1, L2) = |A − B|. Note that
SD(L1, L2) 6= SD(L2, L1). Equation 1 gives an example
where SD = 0.

LD

( ∣∣∣∣∣∣
malloc
malloc
malloc

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
free
free
free

∣∣∣∣∣∣
)

= 0 (2)

Length Distance LD(L1, L2) is simply the difference of
number of system calls contained by two call lists. LD = 0
indicates two call lists are of the same length, while LD 6= 0
indicates one list is longer than another by given amount,
without specifying which one it is. Equation 2 gives an exam-
ple where LD = 0. Note that LD(L1, L2) = LD(L2, L1).

ED

( ∣∣∣∣∣∣∣
malloc
malloc
free
free

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣
malloc
free
malloc
free

∣∣∣∣∣∣∣
)

= 0 (3)

Euclidean Distance ED(L1, L2) is a measurement unit
that intermixes both type and length difference between
two call lists. vLi

is an N dimensional vector where each
dimension is mapped to total number of calls made to that
particular system or library function belonging to call list
Li. With this definition, ED(L1, L2) is simply equal to
|vL1
− vL2

|, or ED(L1, L2) = |vL1
− vL2

|. Equation 3 gives
an example where ED = 0.

HD

( ∣∣∣∣∣∣∣
malloc
malloc
free
free

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣
malloc
free
malloc
free

∣∣∣∣∣∣∣
)

= 2 (4)

Hamming Distance HD(L1, L2) is simply the number
of operations required to be undertaken in order to make
two call lists identical. Note that HD(L1, L2) = 0 implies
two lists are identical. Equation 4 gives an example where
HD = 2.

B. Call List Difference Cases

The following is the list of all the identified critical points.
These are also utilized in the performance evaluations in
Section VI.

1) SD(LM , LC) > 0: Malicious state makes a call that
is not contained in the benign state.



Figure 3: Overview of the framework. Using the harvested
system or library call list, summary statistics and activity
signal values are computed, which subsequently fed into a
Support Vector Machine (SVM) to make a decision.

2) SD(LC , LM ) < 0: Benign state makes a call that is
not contained in the malicious state. Subsequent cases
assume SD(LC , LM ) = SD(LM , LC) = 0

3) LD(LC , LM ) 6= 0: Two call lists inhibit same type of
calls, but differing in length. Subsequent cases assume
LD(LC , LM ) = 0

4) ED(LC , LM ) 6= 0: Two call lists are of the same
length and contains the same type of calls, but their
internal distribution is different. Next case assumes
ED(LC , LM ) = 0

5) HD(LC , LM ) 6= 0 Two call lists are of the same
length, contains same type of calls, their internal dis-
tribution is the same but their order is not identical.

V. OVERVIEW OF THE FRAMEWORK

In this section, details of the proposed framework is
introduced. As shown in Figure 3, the framework utilizes
a classifier model to make a decision whether or not the
observed device has been exhibiting malicious activity (i.e.,
compromised device behaviour). The feature set contains the
following classes:

1) Total number of calls made for each call type,
2) Average number of calls for each call type,
3) A value derived from activity signal.
As the collected behavioral data exhibits linearly separable

features, a binary Support Vector Machine (SVM) classifier
with a linear kernel is used.

Activity signal is the measure of how the order of calls in
the observed list is in compliance with ground truth. Two call
lists cannot be separated using summary statistics if two call
lists differ only in the order of calls made. To address this
challenge, Algorithms 1, 2, and 3 are proposed to be used in
succession. Figure 4 gives an overview on the data flow in
the context of activity signal.

The main idea is to use a classification model that predicts
the next sequence of calls by inspecting the previous list of
calls. If the predictions are true, it is inferred the call list
is exhibiting expected patterns. On the other hand, if the
predictions are failing, it is inferred the call list is exhibit-
ing unexpected patterns; thus, the framework concludes the
malicious activity is present. To quantify the mis-prediction
ratio, a cascade of convolution and max-pooling operations
are employed in the framework.

Upon receiving the call list, the first step is to pre-process
the call list through an operation called bucketing. Algo-
rithm 1 describes the computation required for this operation.

Algorithm 1: Bucketing
input : system or library call list
output: bucketed call list

1 begin
2 Sbucket ← configure()
3 Swindow ← configure()
4 T ← configure()
5 for i← 1 to input.length - Sbucket do
6 for j ← 1 to Sbucket - 1 do
7 R[i][j] ← input[i + j - 1]

8 R[i].last ← input[i + Sbucket - 1]

9 return R

Algorithm 2: Constructing Raw Prediction Signal
input : bucketed call list
output: raw prediction signal

1 begin
2 Sbucket ← configure()
3 Swindow ← configure()
4 T ← configure()
5 for i← 1 to R.length do
6 Ctarget ← R[i].last
7 Cpredict ← predict(R[i])
8 if Cpredict = Ctarget then
9 P[i] ← 0

10 else
11 P[i] ← 1

12 return P

Over a sliding window of a configured size called bucket
length, each call is mapped into one feature column, with
the last one being the call the framework is trying to predict.
The experimental results indicated a bucket length of 32 calls
is an acceptable trade-off between run-time performance and
accuracy.

After the bucketing procedure, the pre-processed data is
fed into the prediction signal generator. Algorithm 2 de-
scribes the computation required to accomplish this opera-
tion. For each entry resulting in the dataset after bucketing
operation, the predictor yields 0 if it was correctly predicted,
1 if the prediction failed. The resulting array of binary values
is named as activity signal. For this process, the framework
is utilizing random forest machine learning algorithm as the
predictor as it provides the best performance.

Lastly, Algorithm 3 reduces the binary array obtained
from Algorithm 2 to a single integer value using a cascade
of convolution and max-pooling. The convolution kernel is
simply sums all the values in the sliding window. Max-
pooling picks the maximum element over a sliding window.
Since max-pooling procedure uses non-overlapping windows,
the data size is reduced by a factor of window size each time
this operation is conducted. The resulting value is aimed
to be higher in unexpected activity, and lower in expected
activity. The cascade of convolution and max-pooling idea
originates from convolutional neural networks (CNN), where
a much more complex architecture involving these techniques
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Figure 4: Demonstration of how data is transformed when computing the activity signal value. The received call list is first
pre-processed through a procedure called bucketing. The pre-processed data is then fed into the classification model, which
emits a 0 for correct and 1 for incorrect prediction. Resulting array of binary values is then sum-convoluted with a kernel
size of 100. The convoluted values are then max-pooled with a non-overlapping sliding window of size 100. The output of
the max-pooling is again processed with another round of convolution and max-pooling, which is continued until a single
integer is obtained.

Algorithm 3: Reducing Raw Prediction Signal
input : raw prediction signal
output: an integer giving a measure of how far the call list is

straying away from ground truth.
1 begin
2 TC ← input
3 while TC .length < Swindow do
4 for i← 1 to TC .length− Swindow do
5 TA[i] ← sum from TC [i] to TC [i+ Swindow]

6 for i← 1 to TA.length− Swindow by Swindow do
7 TB [i] ← max from TA[i] to TA[i+ Swindow]

8 TC ← TB

9 return sum(TC)

Figure 5: Accuracy of the framework applied individually to
each case as defined in Section IV-B. The framework was
able to exploit call list differences in all the cases. The red
line indicates the average accuracy of 99%.
are used for image recognition tasks with success [13].

VI. PERFORMANCE EVALUATION

To test the overall classifier against the cases identified
in Section IV, the state machine depicted in Figure 7 was
utilized to generate data representing the behavior of authen-
tic and compromised devices. Each execution of the state
machine on the smart grid device is called an experiment.
This state machine operates on events. Given an event, the
smart grid device makes a transition to the state concerned,
emits a call list, and returns to the idle state.

Figure 6: Results on data gathered from resource rich (RR)
devices and resource limited (RL) devices. The framework
accurately identifies compromised devices when looking
solely at library calls, which indicate one of the two data
sources may contain discriminatory information while the
other one does not. The red line indicates the average
accuracy of 91.25%
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Figure 7: State machine representation of the test cases on a
smart grid device.

The smart grid device’s state machine operated on the
following principles:

• The machine starts at qI .
• At each turn, the machine transitions to either state qC

or qM , with state transition probabilities pC and pM .
• At state qC and qM , the machine outputs a list of pre-

determined call list and transitions back into qI .



• The total amount of events to be run in an experiment is
randomly chosen according to a Gaussian distribution of
mean of 10000 and standard deviation of 3000 events.
A probability distribution is used to introduce variance
in total number of calls. Mean and standard deviation
numbers are picked by trial and error to ensure amount
of data doesn’t affect the outcome of the experiments.

• After the total amount of events are processed, the ma-
chine transitions to terminal state qT and halts without
producing any call trace.

For each case to be mentioned, there are a total of 60
experiments:

• 30 experiments run with pC = 1 and pM = 0, and the
resulting data are assumed to be coming from authentic
devices.

• 30 experiments run with pC = 0.99 and pM = 0.01.
The machine learning classification model (i.e., random

forest) that is dealing with the generation of activity signal is
trained on one single instance of the authentic call list. Then,
the decision model is trained with 2/3 of the experiments,
and the remaining 1/3 is used for testing.

The results of aforementioned setting is presented in
Figure 5. In cases 1 through 5, the framework was able to
exploit differences in call lists to accurately identify authentic
devices from compromised ones. In case 6, the framework
did as good as randomly guessing the device authenticity as
benign and malicious computation emit completely identical
call lists.

The framework is further tested on the dataset obtained
in our previous study [6]. The data was obtained using
a representative smart grid implemented by utilizing open
source IEC61850 library libiec61850. The dataset consists of
data obtained from resource-rich devices as well as resource-
limited devices after emulating three explicit attacks: infor-
mation leakage, measurement poisoning, and saving data into
the device memory to be sent later to attackers. Devices are
also run without emulating any malicious activity, resulting
in call lists data that is utilized as ground truth. As with
previous test, 2/3 of the dataset is utilized for training, and
remaining 1/3 is used for testing.

The results are shown in Figure 6. The algorithm was able
to make good use of both system and library call lists in
resource rich devices. Though, it was only able to obtain
a high accuracy using only system calls in resource-limited
devices. This fact indicates one of the two data sources may
contain discriminatory information while the other one does
not.

VII. CONCLUSIONS AND FUTURE WORK

Compromised devices pose great danger to the healthy
operations of the smart grid. The attackers may utilize
compromised devices to change the behaviour of the grid
and modify critical measurements. In this paper, we proposed
a novel detection framework that combines information ex-
tracted from system and library call lists, convolution, and
machine learning algorithms to detect compromised smart
grid devices. The performance of the proposed framework

on a realistic smart-grid testbed conforming to the IEC-
61850 protocol suite was evaluated on 5 different realistic
cases. The test cases specified how behaviour of authentic
and compromised devices could differ in the smart grid. The
evaluation results demonstrated that the proposed framework
can perform with very high accuracy (average 91%) on
the detection of compromised smart grid devices. Although
the proposed framework yielded highly accurate results, we
ill consider other features from the devices to enhance to
framework in our future work.
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