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Abstract—The paper presents a deep learning-aided iterative
detection algorithm for massive overloaded MIMO systems. Since
the proposed algorithm is based on the projected gradient descent
method with trainable parameters, it is named as trainable
projected descent-detector (TPG-detector). The trainable inter-
nal parameters can be optimized with standard deep learning
techniques such as back propagation and stochastic gradient
descent algorithms. This approach referred to as data-driven
tuning brings notable advantages of the proposed scheme such
as fast convergence. The numerical experiments show that TPG-
detector achieves comparable detection performance to those of
the known algorithms for massive overloaded MIMO channels
with lower computation cost.

I. INTRODUCTION

Multiple input multiple output (MIMO) systems have at-

tracted great interests because they potentially achieve high

spectral efficiency in wireless communications. Recently, as

a consequence of high growth of mobile data traffic, massive

MIMO is regarded as a key technology in the 5th generation

(5G) wireless network standard [1]. In massive MIMO sys-

tems, tens or hundreds of antennas are used in the transmitter

and the receiver. This fact complicates the detection problem

for MIMO channels because the computational complexity of

a MIMO detector, in general, increases as the numbers of

antennas grow. A practical massive MIMO detection algorithm

should possess both low energy consumption and low com-

putational complexity in addition to reasonable bit error rate

(BER) performance.

In a down-link massive MIMO channel with mobile termi-

nals, a transmitter in a base station can have many antennas but

a mobile terminal cannot have such a number of receive anten-

nas because of the restrictions on cost, space limitation, and

power consumption. This scenario is known as the overloaded

(or underdetermined) scenario. Development of an overloaded

MIMO detector with computational efficiency and reasonable

BER performance is a highly challenging problem because

conventional naive MIMO decoders such as the minimum

mean square error (MMSE) detector [2] exhibit poor BER

performance for overloaded MIMO channels, and an optimal

detection based on the exhaustive search is evidently compu-

tationally intractable.

Several search-based detection algorithms such as slab-

sphere decoding [3] and enhanced reactive tabu search

(ERTS) [4] have been proposed for overloaded MIMO chan-

nels. Though these schemes show excellent detection per-

formance, they are computationally demanding, and it may

prevent us from implementing them into a practical massive

overloaded MIMO system. As a computationally efficient ap-

proach based on the ℓ1-regularized minimization, Fadlallah et.

al proposed a detector using a convex optimization solver [5].

Recently, Hayakawa and Hayashi [6] proposed an iterative

detection algorithm with practical computational complexity

called iterative weighted sum-of-absolute value (IW-SOAV)

optimization (see also [7]). The algorithm is based on the

SOAV optimization [8] for sparse discrete signal recovery.

In addition, the algorithm includes a re-weighting process

based on the log-likelihood ratio, which improves the detection

performance. The IW-SOAV provides the state-of-the-art BER

performance among overloaded MIMO detection algorithms

with low computational complexity.

The use of deep neural networks has spread to numerous

fields such as image recognition [9] with the progress of

computational resources. It also gives a great impact on design

of algorithms for wireless communications and signal process-

ing [10], [11]. Gregor and LeCun first proposed the learned it-

erative shrinkage-thresholding algorithm (LISTA) [12], which

exhibits better recovery performance than that of the original

ISTA [13] for sparse signal recovery problems. Recently, the

authors proposed the trainable ISTA (TISTA) [14] yielding

significantly faster convergence than ISTA and LISTA.

TISTA includes several trainable internal parameters and

these parameter are tuned with standard deep learning tech-

niques such as back propagation and stochastic gradient de-

scent (SGD) algorithms. From our research work on TISTA

[14] and several additional experiments (an example will

be presented in Section III), we encountered a phenomenon

that the convergence to the minimum value is accelerated

with appropriate parameter embedding for several numerical

optimization algorithms such as the projected gradient descent

method and the proximal gradient method. We call this phe-

nomenon data-driven acceleration of convergence.

Most of known acceleration techniques for gradient descent
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algorithms such as the momentum methods do not care about

the statistical nature of the problems. On the other hand, the

data-driven acceleration is obtained by learning the statisti-

cal nature of the problem, i.e., stochastic variations on the

landscape of the objective functions. The internal parameters

controlling the behavior of the algorithm are adjusted to match

the typical objective function via training processes. The data-

driven acceleration is especially advantageous in implementa-

tion of detection algorithms because it reduces the number of

iterations without sacrificing the detection performance. This

makes the algorithm faster and more power efficient.

The goal of this paper is to propose a novel detection algo-

rithm for massive overloaded MIMO systems, which is called

Trainable Projected Gradient-Detector (TPG-detector). The

proposed algorithm is based on the projected gradient descent

method with trainable parameters. We have confirmed that

data-driven acceleration improves the detection performance

and the convergence speed. Though deep learning architectures

for massive MIMO systems were recently proposed as deep

MIMO detectors (DMDs) in [15], [16], no deep learning-aided

iterative detectors for massive overloaded MIMO channels

have been proposed as far as the authors are aware of.

Furthermore, an application of data-driven tuning to MIMO

detectors has not yet been studied in the related literatures.

II. DATA-DRIVEN TUNING

We here introduce the concept of the data-driven tuning of

numerical optimization algorithms, whose origin is the work

by Gregor and LeCun [12]. For improving the performance

of a numerical optimization algorithm, several trainable pa-

rameters can be embedded in the algorithm. By unfolding an

iterative process of a numerical optimization algorithm, we

have a multilayer signal-flow graph that is similar to a deep

neural network. Since each component of the signal-flow graph

is differentiable, these trainable parameters can be adjusted by

standard deep learning techniques. The training data can be

randomly generated according to a channel model.

Figure 1 (a) illustrates a signal-flow diagram of an iterative

numerical optimization algorithm where Processes A, B, and

C are processes whose input/output relationships are expressed

with differentiable functions. By unfolding the signal-flow

diagram, we obtain a signal-flow graph similar to a multilayer

neural network (Fig. 1(b)).

Each process contains trainable parameters that are rep-

resented by the black circles in Fig. 1(b). The trainable

parameters can control behavior of the processes A, B, and

C. Appending a loss function, e.g., the squared loss function,

at the end of the unfolded signal-flow graph, we are ready

to feed randomly generated training data to the graph. We

can apply back propagation and a SGD type parameter update

(SGD, RMSprop, Adam, etc.) to optimize the parameters.

III. DATA-DRIVEN ACCELERATION

We now discuss a simple example of the data-driven ac-

celeration in more detail. As a toy model closely related to
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Fig. 1. (a) A signal-flow diagram of an iterative algorithm, (b) Data-driving
tuning based on an unfolded signal-flow graph with a loss function

the MIMO channel, we consider a quadratic programming

problem with binary variables.

Let us consider a simple quadratic optimization problem

minimize
1

2
‖Ax− y‖22 subject to x ∈ {−1,+1}n, (1)

where A ∈ Rn×n is a given matrix and ‖ · ‖2 represents the

Euclidean norm. We assume that y is stochastically generated

as y = Ax̃ + w ∈ Rn where x̃ is a vector randomly

sampled from {−1,+1}n uniformly at random and w ∈ Rn

consists of i.i.d. Gaussian random variables with zero mean

and variance σ2. The optimization problem is essentially same

as the maximum likelihood estimation rule for the Gaussian

linear vector channel.

Since solving this problem is known as an NP-hard problem

in general, we need to solve the problem approximately. We

here exploit a valiant of the projected gradient (PG) algorithm

to solve (1) approximately. The PG algorithm can be described

by the recursive formula:

rt = st + γAT (y −Ast), (2)

st+1 = tanh (αrt) , (3)

where t = 1, . . . , T and tanh(·) is calculated element-wisely.

The PG algorithm consists of two computational steps for

each iteration. In the gradient descent step (2), a search

point moves to the opposite direction to the gradient of the

objective function, i.e., ∇1

2
‖Ax− y‖22 = −AT (y −Ax). The

parameter γ controls the step size causing critical influence

on the convergence behavior. In the projection step (3), soft-

projection based on the hyperbolic tangent function is applied

to the search point to obtain a new search point nearly rounded

to binary values. Precisely speaking, the projection step is

not the projection to the binary symbols {−1,+1}. This

is because the true projection to discrete values results in

insufficient convergence behavior in a minimization process.

The parameter α controls the softness of the soft projection.

Note that this type of nonlinear projection has been commonly

used in several iterative multiuser detection algorithms such as

the soft parallel interference canceller [17].



According to the data-driven tuning framework, we can em-

bed trainable parameters into the PG algorithm. The trainable

PG (TPG) algorithm is based on the recursion

rt = st + γtA
T (y −Ast), (4)

st+1 = tanh (αrt) . (5)

The trainable parameters {γt}
T
t=1 play a key role in the

gradient descent step by adjusting its step size adaptively. For

simplicity, the parameter α is fixed and treated as a hyper

parameter.

As described in the last section, the parameters {γt}
T
t=1 are

optimized by the standard mini-batch training. The ith training

data di , (xi, yi) is generated randomly, i.e., xi ∈ {−1,+1}n

is generated uniformly at random and the corresponding yi is

then generated according to yi = Axi +w with a given A. A

mini-batch consists of D training data D , {d1, d2, . . . , dD}.

In the following experiment, a matrix A is randomly generated

for each mini-batch. Each element of A follows the Gaussian

PDF with mean 0 and variance 1.

For each round of a training process, we feed these mini-

batches to the TPG algorithm to minimize the squared loss

function L(Θt) , D−1
∑

di∈D ‖xi− x̂t(yi)‖22, where x̂t(y) ,
st+1 is the output of the TPG algorithm with t iterations and

Θt , {γ1, . . . , γt} is a set of trainable parameters up to the

tth round. A back propagation process evaluates the gradient

∇L(Θt) and it is used for updating the set of parameters as

Θt := Θt+∆ where ∆ is determined by a SGD type algorithm

such as the Adam optimizer.

It should be remarked that a simple shingle-shot training

for a whole process by letting t = T does not work well

(see also Fig. 2) because the vanishing gradient phenomenon

prevents appropriate parameter updates due to the fact that

the derivative of the soft projection function (5) becomes

nearly zero almost everywhere. In order to avoid the vanishing

gradient phenomenon, we use an alternative approach, i.e., in-

cremental training as TISTA [14]. In the incremental training,

the parameters {γt}
T
t=1 are sequentially trained from Θ1 to

ΘT in an incremental manner. The details of the incremental

training is as follows. At first, Θ1 is trained by minimizing

L(Θ1). After finishing the training of Θ1, the values of

trainable parameters in Θ1 are copied to the corresponding

parameters in Θ2. In other words, the results of the training

for Θ1 are taken over to Θ2 as the initial values. For each

round of the incremental training which is called a generation,

K mini-batches are processed.

We show the numerical demonstration of the TPG al-

gorithm. In the experiment, the noise variance is fixed to

σ2 = 4.0. The number of iterations of the TPG algorithm

is T = 20. In the training process, we use K = 100 mini-

batches per generation. The mini-batch size is set to D = 200
and Adam optimizer [18] with learning rate 0.0005 is used

for the parameter updates. The initial value of the trainable

parameters are given by γt = 1.0× 10−4 (t = 1, . . . , T ). The

softness parameter is fixed to α = 8.5 for the TPG algorithm.

Figure 2 shows the mean squared error (MSE) as a function

of iteration steps of the plain PG algorithm based on (2),
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Fig. 2. MSE as a function of iteration steps. The curve (PG) represents the
MSE of the plain PG algorithm with γ = 6.5 × 10−4. The curve (TPG)
corresponds to the MSE of the TPG algorithm and the curve (TPG-noINC)
corresponds to the TPG algorithm without incremental training.

(3) (α = 6.0, γ = 6.5 × 10−4) and the TPG algorithms

based on (4), (5) (with/without incremental training). The

MSE is defined by 10 log10(E[||x − x̂t(y)||22]/n) (dB) and

it is estimated from 104 random samples of A, y and x. The

parameter γ = 6.5 × 10−4 in the plain PG algorithm is the

optimal value for T = 20 (See also Fig.3). From Fig. 2, we

can observe that the TPG algorithm provides much smaller

MSEs than those of the plain PG algorithm. The MSE of TPG

achieves −80 dB at t = 8 but the PG yields the smaller MSE

after t = 19. Namely, TPG shows much faster convergence

and it implies that the optimal parameter tuning drastically

improves the convergence speed. This is an example of the

data-driven acceleration of convergence. The effect of the

incremental training can be confirmed by comparing the MSEs

of the TPG algorithms with/without incremental training. The

MSE curve of TPG-noINC is almost flat, indicating that the

parameter tuning is not successful in the case of the TPG

algorithm without incremental training.

In Fig. 3, we show the γ dependence of the MSE perfor-

mance in the plain PG algorithm. We find that the parameter γ
must be selected carefully to obtain appropriate convergence.

In other words, the sweet spot of γ is relatively narrow, i.e.,

close neighborhood of 6 × 10−4 is only allowable choice for

achieving −100 dB at T = 200. This means that optimization

of the step size is critical even for the plain PG algorithm.

In addition, the TPG algorithm achieves the lower MSE

performance (around −130 dB) which cannot be achieved

by the plain PG algorithm. This fact implies that having

independent step size parameters for each iteration provides

substantial improvement on the quality of the solution.

IV. PROBLEM SETTING FOR OVERLOADED MIMO

CHANNELS

The section describes the channel model and introduces

several definitions and notation. The numbers of transmit and

receive antennas are denoted by n and m, respectively. We

only consider the overloaded MIMO scenario in this paper

where m < n holds. It is also assumed that the transmitter
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does not use precoding and that the receiver perfectly knows

the channel state information, i.e., the channel matrix.

Let x̃ , [x̃1, x̃2, . . . , x̃n]
T ∈ S̃n be a vector which consists

of a transmitted symbol x̃j (j = 1, . . . , n) from the jth

antenna. The symbol S̃ ⊂ C represents a symbol alphabet,

i.e., a signal constellation. Similarly, ỹ , [ỹ1, ỹ2, . . . , ỹm]T ∈
Cm denotes a vector composed of a received symbol ỹi
(i = 1, . . . ,m) by the ith antenna. A flat Rayleigh fading

channel is assumed here and the received symbols ỹ then

reads ỹ = H̃x̃ + w̃, where w̃ ∈ Cm consists of complex

Gaussian random variables with zero mean and covariance

σ2
wI . The matrix H̃ ∈ Cm×n is a channel matrix whose (i, j)

entry h̃i,j represents a path gain from the jth transmit antenna

to the ith receive antenna. Each entry of H̃ independently

follows the complex Gaussian distribution with zero mean and

unit variance. For the following discussion, it is convenient

to derive an equivalent channel model defined over R, i.e.,

y = Hx+ w, where

y ,

[

Re(ỹ)
Im(ỹ)

]

∈ R
M , H ,

[

Re(H̃) −Im(H̃)

Im(H̃) Re(H̃)

]

,

x ,

[

Re(x̃)
Im(x̃)

]

∈ S
N , w ,

[

Re(w̃)
Im(w̃)

]

∈ R
M ,

and (N,M) , (2n, 2m). The signal set S is the real counter

part of S̃. The matrix H ∈ RM×N is converted from

H̃ . Similarly, the noise vector w consists of i.i.d. random

variables following the Gaussian distribution with zero mean

and variance σ2
w/2. Signal-to-noise ratio (SNR) per receive

antenna is then represented by SNR , Es/N0 = N/σ2
w,

where Es , E[||H̃x̃||22]/m stands for the signal power per

receive antenna and N0 , σ2
w stands for the noise power per

receive antenna. Throughout the paper, we assume the QPSK

modulation format, i.e., S̃ , {1 + j,−1 + j,−1 − j, 1 − j},

which is equivalent to the BPSK modulation S , {−1,+1}.

V. TRAINABLE PROJECTED GRADIENT (TPG)-DETECTOR

The maximum likelihood estimation rule for the MIMO

channel defined above is given by

x̂ = argminx∈{−1,+1}N‖Hx− y‖22. (6)

Fig. 4. The tth layer of the TPG-detector. The trainable parameters are γt
and θt.

This problem is a non-convex problem and finding the global

minimum is computationally intractable for a large scale prob-

lem. Our proposal, TPG-detector, is based on the projected

gradient method for solving the above non-convex problem

approximately. The process of TPG-detector is described by

the following recursive formulas:

rt = st + γtW (y −Hst), (7)

st+1 = tanh

(

rt
|θt|

)

, (8)

where t(= 1, . . . , T ) represents the index of an iterative step

(or layer) and we set s1 = 0 as the initial value. This algorithm

estimates a transmitted signal x from the received signal y and

outputs the estimate x̂ = sT+1 after T iterative steps.

The steps (7) and (8) correspond to the gradient descent step

and to the projection step, respectively, as described in Sec-

tion IIIs. The matrix W in the gradient step (7) is the Moore-

Penrose pseudo inverse matrix of H , i.e., W , HT (HHT )−1.

Precisely speaking, W should be HT as in (4). However,

we adopt the modification inspired by [19] because this

modification improves the BER performance of the proposed

scheme. As in the case in (5), we use the hyperbolic tangent

function as the soft projection.

The trainable parameters of TPG-detector are 2T real scalar

variables {γt}
T
t=1 and {θt}

T
t=1 in (7) and (8), respectively.

The parameters {γt}
T
t=1 in the gradient step control the step

size of a move of the search point. In order to achieve fast

convergence, appropriate setting of these step size parameters

is of critical importance as described in Section III. It should

be remarked that similar constant trainable parameters are also

introduced in the structure of TISTA [14]. The parameters

{θt}
T
t=1 control the softness of the soft projection in (8).

One of the advantages of TPG-detector is that the number

of trainable parameters is small, i.e., O(T ), and it leads to

fast and stable training processes. For example, the number of

trainable parameters of TPG-detector is constant to N and M
though a DMD [15] contains O(N2T ) parameters in T layers.

The computational complexity of TPG-detector per iteration

is O(MN) because one needs to calculate the vector-matrix

products Hst and W (y −Hst) that take O(MN) computa-

tional steps. We need to calculate the pseudo inverse matrix

W taking O(M3) computational steps only when H changes.

The TPG-detector is trained based on the incremental train-

ing described in Section III. The training data is generated

randomly according to the channel model with fixed variance

σ2
w corresponding to a given SNR. As described in Section IV,
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we assume a practical situation in which a channel matrix H
is a random variable. According to this assumption, a matrix

H is randomly generated for each mini-batch in a training

process of TPG-detector.

VI. NUMERICAL RESULTS

In this section, we show the detection performance of TPG-

detector and compare it to that of known algorithms such as

IW-SOAV which is known as one of the most efficient iterative

algorithms for massive overloaded MIMO systems.

A. Experimental setup

A transmitted vector x is generated uniformly at random.

The BER is then evaluated for a given SNR. We use randomly

generated channel matrices for BER estimation.

TPG-detector was implemented by PyTorch 0.4.0 [20]. The

following numerical experiments were carried out on a PC

with GPU NVIDIA GerForce GTX 1080 and Intel Core i7-

6700K CPU 4.0GHz × 8. In this paper, a training process is

executed with T = 50 rounds using the Adam optimizer [18].

A training process takes within 25 minutes under our environ-

ment. To calculate the BER of TPG-detector, a sign function

sgn(z) which takes −1 if z ≤ 0 and 1 otherwise is applied to

the final estimate sT+1.

As the baselines of detection performance, we use the

ERTS [4], IW-SOAV [6], and the standard MMSE detector.

The ERTS is a heuristic algorithm based on a tabu search

for overloaded MIMO systems. The parameters of ERTS is

based on [4]. The IW-SOAV is a double loop algorithm whose

inner loop is the W-SOAV optimization recovering a signal

using a proximal operator. Each round of the W-SOAV takes

O(MN) computational steps, which is comparable to that of

TPG-detector. After finishing an execution of the inner loop

with Kitr iterations, several parameters are then updated in

a re-weighting process based on a tentative recovered signal.

This procedure is repeated L times in the outer loop. The

total number of steps of the IW-SOAV is thus KitrL. In the

following, we use the simulation results in [6] with Kitr = 50.
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B. Main results

We first present the BER performance of each detector

as a function of SNR for (N,M) = (200, 128) in Fig. 5.

The results show that the MMSE detector fails to detect

transmitted signals reliably (BER ≃ 10−1) because the sys-

tem is underdetermined. The ERTS detector shows the best

BER performance in a middle SNR region where SNR is

between 10 dB and 20 dB. On the other hand, TPG-detector

exhibits the BER performance superior to that of the IW-

SOAV (L = 1), i.e., TPG-detector achieves approximately

5 dB gain at BER = 10−4 over the IW-SOAV (L = 1).

Note that the computational cost for executing TPG-detector

with T = 50 is almost comparable to that of the IW-SOAV

(L = 1). More interestingly, the BER performance of TPG-

detector is fairly close to that of IW-SOAV (L = 5). For

example, with SNR = 20 dB, the BER estimate of TPG-

detector is 6.8× 10−5 whereas that of the IW-SOAV (L = 5)

is 4.3×10−5. It should be noted that the total number iterations

of the IW-SOAV (L = 5) is 250.

Figure 6 shows the BER performance for (N,M) =
(300, 196). In this case, ERTS shows relatively poor BER per-

formance without a narrow region. TPG-detector successfully

recovers transmitted signals with lower BER than that of the

IW-SOAV(L = 1). It again achieves about 5 dB gain against

the IW-SOAV(L = 1) at BER = 10−5. Although the IW-

SOAV (L = 5) shows considerable performance improvements

in this case, the gaps between the curves of TPG-detector and

the IW-SOAV (L = 5) are about 2 dB at BER = 10−5.

In Fig. 7, we show the BER performance of TPG-detector

and IW-SOAV (L = 1) for some antenna sizes N with the

rate M/N = 0.6 fixed. The gap of their BER performances

is especially large for SNR= 20 (dB). We also find that the

gain of the TPG-detector increases as N grows though these

algorithms have the same computational costs. It is confirmed

that the TPG-detector outperforms other low-complexity algo-

rithms especially in the massive overloaded MIMO channels.

Finally, Fig. 8 displays the learned parameters {γt, |θt|}
of TPG-detector after a training process as a function of

a layer index t(= 1, . . . , T ). We find that they exhibit a

zigzag shape with damping amplitude similar to that observed
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in TISTA [14]. The parameter γt, the step size of a linear

estimator, is expected to accelerate the convergence of the

signal recovery. Theoretical treatments for providing reason-

able interpretation on these characteristic shapes of the learned

parameters are interesting open problems.

VII. CONCLUDING REMARKS

In this paper, we proposed TPG-detector, a deep learning-

aided iterative decoder for massive overloaded MIMO chan-

nels. TPG-detector contains two trainable parameters for each

layer: γt controlling a step size of the linear estimator and θt
dominating strength of the nonlinear estimator. The total num-

ber of the trainable parameters in T layers is thus 2T , which

is significantly smaller than that used in the previous studies

such as [15], [16]. This fact promotes fast and stable training

processes for TPG-detector. The numerical simulations show

that TPG-detector outperforms the state-of-the-art IW-SOAV

(L = 1) by a large margin and achieves a comparable detection

performance to the IW-SOAV (L = 5). TPG-detector therefore

can be seen as a promising iterative detector for overloaded

MIMO channels providing an excellent balance between a low

computational cost and a reasonable detection performance.

There are several open problems regarding this study. First,

adding a re-weighting process similar to the one used in the

IW-SOAV (L ≥ 2) to TPG-detector seems an interesting

direction to improve the detection performance. Secondly,

enhancing TPG-detector toward a large constellation such as

QAM is a practically important problem.
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