
1

MIPS: Instance Placement for Stream Processing
Systems based on Monte Carlo Tree Search

Xi Huang, Ziyu Shao∗, Yang Yang
School of Information Science and Technology, ShanghaiTech University

Email: {huangxi, shaozy, yangyang}@shanghaitech.edu.cn

Abstract—Stream processing engines enable modern systems
to conduct large-scale analytics over unbounded data streams
in real time. They often view an application as a direct acyclic
graph with streams flowing through pipelined instances of various
processing units. One key challenge that emerges is instance
placement, i.e., to decide the placement of instances across servers
with minimum traffic across servers and maximum resource
utilization. The challenge roots in not only its intrinsic complexity
but also the impact between successive application deployments.
Most updated engines such as Apache Heron exploits a more
modularized scheduler design that decomposes the task into two
stages: One decides the instance-to-container mapping while the
other focuses on the container-to-server mapping that is delegated
to standalone resource managers. The unaligned objectives and
scheduler designs in the two stages may lead to long response time
or low utilization. However, so far little work has appeared to
address the challenge. Inspired by recent success of applications
of Monte Carlo Tree Search (MCTS) methods in various fields,
we develop a novel model to characterize such systems, formulate
the problem, and cast each stage of mapping into a sequential
decision process. By adopting MCTS methods, we propose MIPS,
an MCTS-based Instance Placement Scheme to decide the two-
staged mapping in a timely yet efficient manner. In addition,
we discuss practical issues and refine MIPS to further improve
its performance. Results from extensive simulations show, given
mild-value of samples, MIPS outperforms existing schemes with a
significant traffic reduction and utilization improvement. To our
best knowledge, this paper is the first to study the two-staged
mapping problem and to apply MCTS to solving the challenge.

I. INTRODUCTION

Recent years have witnessed an explosive growth of data
streams that are incessantly generated from a wide assortment
of applications, e.g., Twitter [1], Facebook [2], and LinkedIn
[3]. To conduct large-scale, real-time processing for such data
streams, a number of stream processing engines have been
proposed and launched, aiming at high scalability, availability,
responsiveness, and fault tolerance [1]–[6].

To date, stream processing engines have evolved over three
generations [7]. Among most recent third-genernation engines,
Apache Storm [1] and Heron [6] stand out by their extensive
adoption and support from a large community [8] [9], as well
as their modularized and scalable design. Typically, engines
like Storm and Heron view each stream processing application
as a direct-acyclic graph, a.k.a. a topology, where data streams
(edges) are processed through pipelined components (nodes).

To launch applications, users submit their requests to the
system scheduler. Requests arrive in an online manner, each
specifying the topology of a given application, along with the
parallelism requirement, i.e., the number of instances for each
component, and their resource demands. Upon deployment, a
key step and challenge to the scheduler is instance placement,
i.e., to decide how to distribute instances within a cluster of
heterogeneous servers, containers [10], or processes. Besides
the intrinsic complexity of the problem being NP-hard [11],
instance placement is often associated with two objectives:

∗ The corresponding author of this work is Ziyu Shao.

1) to shorten response time, the instances of successive com-
ponents should be placed in proximity with minimum cross-
server or -container traffic; 2) to achieve high resource utiliza-
tion, the placement should utilize as few servers/containers
as possible. However, these two objectives may conflict each
other, as Figure 1(a) shows. Any inadvertent placement could
lead to either high cross-server traffic with long response time,
or low resource utilization with unnecessary overheads.

Constrained by the underlying scheduler design, instance
placement generally falls into two categories. The first one
is typified by Storm. Terming each instance a task, Storm’s
scheduler manages both the computation and enforcement
of task placement with a direct control over its underlying
cluster’s resources [1]. Consequently, the scheduler can di-
rectly map tasks to servers through an one-staged decision,
each server running a few processes that host tasks within
their threads. However, Storm’s built-in schemes, round-robin
(RR) and first-fit-decreasing (FFD), are often blamed for their
blindness to traffic patterns between components upon decision
making [12]. Motivated by that, previous studies abound, fo-
cusing on designing one-staged placement schemes [11]–[14].
Despite their effectiveness, such an integrated scheduler design
has come to its end due to the highly coupled implementation
of resource management and scheduling [15].

Application (Topology)

A B C D
3 1 2

Placement II:

Placement I:

Server 1 Server 2 Server 3

Server 1 Server 2 Server 3

Traffic 3 # of utilized servers 3

A
B

C D

A
C

B
D

Traffic 6 # of utilized servers 2

(Capacity: 3)

(Capacity: 3)

Res. demand: 2311

(a) A potential trade-off between traffic
reduction and high resource utilization

Stage 1 !"#$%&#'($)%*)'*#%&+#(,$-

Stage 2 !.*#%&+#(,$)%*)$(,/(,$-

A
B

C D

Container X Container Y Container Z

Server 1 Server 2

!0&'1)23)capacity: 3)

!0&'1)23)capacity: 5)

X
Y

Z

(b) Instance placement in two
stages with discrepant goals

Fig. 1. Basic settings: A topology consists of four components, each with
one instance. Observations: (a) Placement I incurs 6 units of traffic between
the two utilized servers, while Placement II reduces the traffic by 3 units
but at the cost of one extra server being used. (b) A sample two-staged
instance placement: Instances are distributed with minimum cross-container
traffic, then containers are deployed to servers in the order of (X, Y, Z), each
assigned to the server with minimum but sufficient resources (best fit).

This calls for a more modularized scheduler design, which
typifies the second category. One landmark is Twitter’s re-
placing Storm with Heron in 2015 [6]. Compared to Storm,
Heron refines the engine design by treating each instance
as an independent process in a container, while delegating
resource management to more established cluster schedulers
such as YARN [16] and Nomad [17]. Consequently, instance
placement is decided in two stages. The first stage focuses on
distributing instances onto a set of containers, a.k.a., instance-
container mapping, often done by Heron’s scheduler. Next,

ar
X

iv
:2

00
8.

00
15

6v
1

 [
cs

.N
I]

 1
 A

ug
 2

02
0

2

containers are submitted as jobs and assigned to servers by the
cluster scheduler, a.k.a., container-server mapping. Compared
to one-staged schemes, the design for two-staged placement is
even more challenging: Any unilateral effort in optimizing the
placement on either stage would be in vain if their objectives
are inconsistent. Figure 1 (b) shows such an example: Stage 1
decides the instance-container mapping with minimum traffic
across containers, whereas Stage 2 focuses on maximizing
resource utilization by using best fit heuristic, inducing 2 units
of traffic between containers. However, the optimum amounts
of traffic is 1 by placing container Y, Z together in the same
server and container X in the other. This is due to stage 1 aims
at reducing cross-container traffic whereas stage 2 doesn’t. By
far, very little work has been conducted to work on this two-
staged mapping problem. Often times solutions for Storm are
tailored to Heron’s first stage mapping, leaving a large space
for performance improvement in Heron-like systems.

In this paper, we focus on the two-staged instance placement
problem that handles requests arriving in realtime. We target at
highly modularized stream processing engines such as Apache
Heron, to design an efficient instance placement scheme, with
aligned objectives for both stages in minimizing traffic while
maximizing resource utilization, so that the system can make
timely but effective scheduling decisions. The challenges of
the problem come from the combinatorial nature of mapping
problems in both stages, the resource contention among dif-
ferent applications and their instances, the conflicts between
objectives, and the online nature of request arrivals.

To address the challenges, various heuristics and approxi-
mation algorithms are available [18] [19]. Notably, in recent
years, there have been a progression of success in applying
Monte Carlo Search Tree (MCTS) methods to solving prob-
lems that involve sequential decision processes [20], such as
the gameplay of Go [21]. In fact, each mapping stage can
also be viewed as a sequential decision process that places
instances (containers) successively onto containers (servers).
Moreover, MCTS takes the advantage of random sampling,
achieving a tradeoff between computational efficiency and
optimality largely affected by estimate accuracy. To decide
instance placements, low computational efficiency is favorable,
while the accurate evaluation of consequent mappings is also
critical. By leveraging MCTS, we propose MIPS, an efficient
two-staged instance placement scheme for stream processing
systems. Our main results and contributions are as follows.

Modeling and Formulation: With Apache Heron as the
prototype, we develop a novel model that accurately charac-
terizes most updated stream processing systems with a highly
modularized design. Based upon the model, we formulate the
online instance placement problem as a two-staged constrained
mapping problem, aiming at cross-server/container traffic re-
duction with high resource utilization. To our best knowledge,
this is the first model for such stream processing systems and
the first formulation for the two-staged mapping problem.

Algorithm Design: Considering the problem is in general
NP-hard, we adopt MCTS techniques with the Upper Confi-
dence Bound for Trees (UCT), by taking the advantage of its
anytime property, i.e., more computing power generally leads
to better performance. By transforming each mapping stage to
a sequential decision process, we propose MIPS, a random-
ized scheme that decides two-staged instance placement in a
timely yet effective manner. Besides, we refine MIPS from
various aspects to promote its sampling quality, accelerate the
computation, and overcome some practical issues.

Experiment Verification and Analysis: Existing schemes
are almost designed for Storm. To make them comparable
with MIPS, we propose their variants under Heron. Then we
conduct extensive simulations to evaluate MIPS against them.
Our results and analysis show that MIPS notably outperforms
existing schemes with both low traffic and high utilization.

To the best of our knowledge, this is the first paper that
studies the two-staged instance placement problem for Heron-
like systems. The rest of the paper is organized as follows.
Section II describes the model and problem formulation for the
problem, while Section III proposes MIPS and discusses its
variants to further accelerate the algorithm. Section IV presents
results from simulations with the corresponding analysis,
followed by the conclusion in Section V.

TABLE I
MAIN NOTATIONS

Notation Description
S The set of servers in the cluster

Γs,k Capacity of k-th type of resource on server s

θs,s′
The communication cost per traffic unit from
server s to s′

Gr Graph that corresponds to topology r (speci-
fied by request r)

Vr The set of components in topology r
Er The set of data streams in topology r
p(v) The number of instances of component v
Iv The set of instances of component v

d(i) The resource demand of instance i
w(e) The traffic rate of data stream e
Cr The set of containers of topology r

d(c) The resource capacity of container c

C(s, r) The set of containers on server s before
deploying topology r

Ir The set of all instances in topology r
Xr
i,c Decision that places instance i in container c

Y rc,s Decision that places container c on server s

II. MODEL AND PROBLEM FORMULATION

We develop a model for stream processing systems based
on Heron and formulate the two-staged instance placement
problem. Main notations are summarized in Table I.

A. Overall System Model
We consider a Heron-based data stream processing system

running within a cluster of servers, denoted by set S. The
servers are interconnected according to some network topology
[22] [23]. User requests arrive at the system in an online
fashion, each denoted by r. Heron’s scheduler receives and
processes requests in a first-in-first-out manner. For each
request r, the scheduler instantiates its specified application
and maps its instances to containers. Next, the mapping is
handed over to the underlying resource manager, e.g., YARN
[16] or Nomad [17]. Then containers are assigned to servers,
whereafter the application are set ready to run.

B. Cluster Model
Regarding each server, we consider K types of resources,

such as CPU cores, memory, and storage. The resource capac-
ity of server s is denoted by a vector Γs, where Γs,k denotes
the capacity of k-th type of resource. Between any servers
there always exists a non-blocking path for traffic transmission,
which is commonly achievable in existing data center networks
[22]. Transmission from server s to s′ incurs a communication
cost of θs,s′ per traffic unit, e.g., giga-bytes.

3

C. Streaming Application Model
Each request r specifies the logical topology of a given ap-

plication, denoted by a directed acyclic graph Gr , (Vr, Er).
Vr denotes the set of components that make up the application,
while Er ⊆ Vr × Vr denotes the set of directed data streams
between components. In practice, the diameter of Gr is often
not too large, mostly less than four [1].

For component v ∈ Vr, we use p(v) to denote its paral-
lelism, i.e., the number of its instances, and Iv to denote the
set of its instances such that |Iv| = p(v). The deployment of
any instance i ∈ Iv has a resource demand of d(i) ∈ RK+ . For
any instance i, we use v(i) to denote its belonging component.

For data stream e ∈ Er, its traffic rate is denoted by w(e).
In practice, traffic rates can be either pre-defined by users or
estimated using historical data [14] [24] [11]. Given any two
components v1 and v2 such that (v1, v2) ∈ Er, the traffic is
assumed evenly spread from instances of v1’s to v2’s, which
is achievable by adopting shuffling policy in Heron or Storm
[1] [6]. Therefore, the rate between instance i1 ∈ Iv1 and i2 ∈
Iv2 is obtained as w(i1, i2) , w(v1,v2)

p(v1)p(v2)
. For non-successive

instances i1, i2, we set w(i1, i2) = 0. The model can be easily
extended to cases with uneven traffic patterns.

D. Deployment Model
Besides logical topology, a request also specifies the number

of containers to deploy instances. Per request r, the scheduler
constructs a set of containers, denoted by Cr. Each container
c ∈ Cr has a resource capacity of d(c) ∈ RK+ . Meanwhile,
we denote the set of containers on server s before deploying
request r by C(s, r).

E. Placement Decisions
For request r, the instance placement consists of two stages.
The first stage is to decide a mapping from instances of

request r, i.e., Ir ,
⋃
v∈Vr Iv to containers Cr, denoted by

Xr. Each entry Xr
i,c ∈ {0, 1} indicates whether instance i is

mapped to container c. The decision Xr maps each instance
onto exactly one container, while ensuring the resource con-
straints for each container, i.e.,∑

c∈Cr
Xr
i,c = 1, ∀i ∈ Ir and

∑
i∈Ir

d(i) � d(c), ∀c ∈ Cr.

(1)
The second stage is to decide another mapping from con-

tainers Cr to servers S, denoted by Y r. Each entry Y rc,s ∈
{0, 1} indicates whether container c is mapped to server s.
The decision Y r maps each container to exactly one server
without violating the resource constraints on servers, i.e.,∑

c∈Cr
Y rc,s = 1, ∀s ∈ S∑

c∈C(s,r)

d(c) +
∑
c∈Cr

Y rc,sd(c) � Γs, ∀t and s ∈ S.
(2)

F. Optimization Objectives
Regarding instance-container mapping, it is highly desirable

to place successive instances with data streams in between
into the same containers in order to minimize cross-container
traffic, reducing considerable communication overheads and
shortening response time [13]. Formally, given decision Xr

for request r, the total traffic between container c, c′ ∈ Cr is

Tc,c′(X
r) ,

∑
i,i′∈Ir

Xr
i,cX

r
i′,c′w(i, i′). (3)

Hence, the total cross-container traffic for request r is

T (Xr) ,
∑

c,c′∈Cr
Tc,c′(X

r). (4)

On the other hand, deploying containers also incurs additional
resource overheads [10]. For high resource utilization, the
decision should map instances to as few containers as pos-
sible. Therefore, given decision Xr, the number of utilized
containers is

U(Xr) ,
∑
c∈Cr

min{1,
∑
i∈Ir

Xr
i,c}, (5)

where the term for container c is equal to one only if there is
any instance residing in container c.

Regarding container-server mapping, containers with inten-
sive traffic in between should be placed closely to minimize
the inter-server communication cost. Fixed Xr and given Y r,
the cost for request r between server s and s′ is

Ws,s′(Y
r) ,

∑
c,c′∈Cr

Y rc,sY
r
c′,s′θs,s′Tc,c′(X

r). (6)

The total communication cost incurred after deployment is

W (Y r) ,
∑
s,s′∈S

Ws,s′(Y
r). (7)

G. Problem Formulation
For request r, we formulate the instance-container mapping

problem (ICMP) as

Minimize
Xr

αT (Xr) + (1− α)U(Xr)

Subject to Xr
i,c ∈ {0, 1} and (1).

(8)

where α ∈ [0, 1] is a tunable parameter that weights the
importance of cross-container traffic reduction compared to
decreasing the number of utilized containers. Meanwhile, we
define the container-server mapping problem (CSMP) as

Minimize
Y r

W (Y r)

Subject to Y rc,s ∈ {0, 1} and (2).
(9)

III. ALGORITHM DESIGN

ICMP and CSMP are both non-linear combinatorial op-
timization problems. Such problems are generally NP-hard
with a huge search space size (e.g., O(2|I

r|×|Cr|) for ICMP),
while coupled resource constraints add even more complex-
ity. Inspired by recent progressive success [21] in applying
random sampling methods like MCTS to solving complex
problems with sequential decision making processes, we shift
our perspective by viewing each stage as a sequential decision
process that places instances (or containers) successively. By
leveraging MCTS, we aim at developing an efficient scheme
to solve each stage of mapping, hopefully well balancing the
computational complexity and effectiveness.

A. Overview of MCTS
MCTS is derived from tree search methods [25] that handle

sequential decision processes. The key idea of such tree search
methods is to build a single-rooted tree that corresponds to
the process. Each tree node represents a system state, while
each outgoing edge represents the action that leads to the next
state. In this way, each path from root node to a leaf indicates
a complete decision sequence with an eventual reward. The
problem then turns to be finding a policy that chooses an action
to execute from current node to the next node with maximum

4

reward. In some cases, direct construction of the search tree
may require excessive compute resource due to its large search
space size and branching factor.

MCTS takes a detour by incrementally constructing part of
the tree with random sampling on a round basis. Each node
maintains the estimates of the reward of executing different
actions to its child nodes. Within each round, MCTS proceeds
by following a framework with four basic steps: 1) Traversal:
Starting from the root node, recursively finds the next node
to traverse by choosing the one with the maximum reward
estimate, until reaching a leaf node or some unexpanded node
(with unvisited child nodes); 2) Expansion: Upon an unex-
panded node, MCTS expands it by adding one of its unvisited
child to the partially built tree; 3) Simulation: Starting from
a newly added node, MCTS conducts a random simulation to
sample a complete decision sequence. 4) Back-propagation:
The reward induced by the acquired sequence is then back-
propagated along the way to the root node, refining the reward
estimates of visited nodes. After numbers of rounds (samples),
MCTS returns the next action from the root to the next child
node that is most likely towards the optimal decision sequence.
The process is then replayed on the subtree that is rooted at
the chosen child node.

Algorithm 1 MIPS for the two-staged instance placement
1: %% Handle request r.
2: function MIPS FOR ICMP(Ir, Cr)
3: Initialize count← 0 and action sequence A ← ∅.
4: Initialize root node ηroot with Cr.
5: while count < |Ir| do
6: (a, η)← NEXT ACTION(ηroot, stage=1)
7: Update A ← A

⋃
{a} and ηroot ← η

8: count← count + 1
9: return A

10:
11: function MIPS FOR CSMP(Cr, S)
12: Initialize count← 0 and action sequence A ← ∅.
13: Initialize root node ηroot with S.
14: while count < |Cr| do
15: (a, η)← NEXT ACTION(ηroot, stage = 2)
16: Update A ← A

⋃
{a} and ηroot ← η

17: count← count + 1
18: return A

MCTS has various favorable properties that contribute to its
successful application. One of them is its anytime property. For
an anytime algorithm, it can return a valid solution whenever
interrupted before it ends; on the other hand, more compute
resources generally leads to results of better quality, well
balancing the tradeoff between computational complexity and
optimality of solution. This property is particularly desirable
for instance placement: On one hand, given its overwhelming
search space size and progressively request arrivals, the sched-
uler should determine an effective placement but in a timely
fashion, instead of undertaking a time-consuming decision
process; on the other hand, provided with more resources,
the scheduler should be able to improve the placement rather
than resort to tedious parameter tuning tricks. Another is that
MCTS only provides a generic framework, whereby system
designers can customize the basic steps to further optimize
their applications.

B. Modeling Decision Trees and Algorithm Design
To leverage MCTS, we need to cast each mapping stage

into a sequential decision process.

Algorithm 2 Sub-functions for MIPS
1: function NEXT ACTION(η, sid)
2: Set η as root node η0.
3: Initialize t← 0 and MAX SAMPLE NUM.
4: while t < MAX SAMPLE NUM do
5: η ← TRAVERSE(η0)
6: ∆← SIMULATE(η, stage = sid)
7: if ∆ > 0 then
8: BACK PROP(η,∆)
9: t← t+ 1 and best child← BEST CHILD(η0, 0)

10: return a(η0, best child), best child
11:
12: function TRAVERSE(η)
13: while η is not a leaf do
14: if Auntried(η) 6= ∅ then
15: return EXPAND(η)
16: else η ← BEST CHILD(η, ω =

√
2)

17: return η
18:
19: function EXPAND(η)
20: Choose (i0, c0) ∈ Auntried(η) uniformly randomly
21: Place instance i0 onto container c0
22: return the resultant node η′

23:
24: function BEST CHILD(η, ω)
25: return arg min

η′∈M(η)

Q(η′)
N(η′)+1 − ω

√
2 lnN(η)
N(η′)

26:
27: function SIMULATE(η, sid)
28: while η is not a leaf do
29: Choose a ∈ Auntried(η) uniformly randomly
30: Execute a and obtain the resultant node η′

31: Set η ← η′

32: if in stage sid and η satisfies constraints (sid) then
33: return ∆(η) %% Reward at leaf node η.
34: else return −1 %% Ends in an invalid mapping.
35:
36: function BACK PROP(η, ∆)
37: while η is not root do
38: N(η)← N(η) + 1 and Q(η)← Q(η) + ∆
39: η ← parent of η

Decision Tree for ICMP: First, we transform the decision
process for instance-container mapping into a decision tree.
For request r, we construct a tree for its instance-container
mapping, with each node η denoting the state associated with
a given mapping. The root node ηroot corresponds to the state
where no instances are mapped to containers, i.e., Xr

i,c = 0 for
all i and c. Each outgoing edge of ηroot indicates an action of
mapping some unmapped instance to some container, subject
to the resource constraint in (1). For example, the action of
mapping instance i0 to container c0 changes the mapping state
from ηroot to η with only Xr

i0,c0
= 1, denoted by a(ηroot, η).

Similarly, its child nodes then point to their descendants.
Recursively defined in this way, the tree eventually reaches
leaf nodes with mapping that satisfy (1). The reward ∆ for
each leaf node is set as the associated objective value defined
in (8) given its mapping.

Decision Tree for CSMP: Regarding CSMP, for request r,
we construct another tree for container-server mapping. The
root corresponds to the state where no given containers of

5

request r are mapped to servers, while each of its outgoing
edge denotes the action of mapping some unmapped container
to some server subject to resource constraint in (2). Edges
then point to its child nodes with resultant mapping, which
in turn point to more descendants. Leaf nodes are either valid
mappings from containers to servers, or mappings interrupted
due to limited resource. The reward for each leaf node is the
corresponding objective value defined in (9) given its mapping.

Every node η in the above trees maintains four states. The
first is N(η), denoting the times of node η being visited. The
second is Q(η), denoting the total accumulated reward node
η has received so far. In this way, Q(η)

N(η) reflects the expected
reward induced by following the decision sequence through
node η. The third is Auntried(η), denoting the set of all untried
mapping actions that satisfy resource constraint in (1). The
last is M(η), denoting the set of η’s children being visited.

To find the optimal decision sequence for each decision
tree, we propose MIPS, i.e., MTCS-based INstance placemenT
scheme to decide two stages of mapping, respectively. Algo-
rithm 1 shows the pseudocode of MIPS that decides the two-
staged instance placement for each request r.

Notably, to choose the best child node (Alg.2, line 25),
MIPS has to decide: 1) to exploit historical information by
choosing from the visited ones with the minimum objective
value, or 2) to explore an unvisited node with unknown
reward, a.k.a. the exploitation-and-exploration tradeoff [20].
To find the best possible placement, MIPS must well bal-
ance the tradeoff since 1) if over-dependent on the historical
information, MIPS may miss unvisited nodes that lead to
better placement, while 2) radical exploration might waste
resources on nodes with a far worse reward. To this end,
MIPS leverages the widely adopted Upper Confidence bound
for Trees (UCT) [26]. By viewing the problem as a multi-
armed bandit problem [27], UCT chooses the best child node
with the minimum upper confidence bound 1 (UCB1) value
(line 25 of Alg.2) [20]. The left-hand-side term of UCB is
the reward estimate, obtained by averaging the aggregating
rewards from past samples (to ensure the term to be finite, we
add one to the denominator); the right-hand-side reflects the
visited frequency. If a node has never been visited, the term
goes to infinity and its UCB value is −∞, thus the node must
be chosen with precedence. If a node is rarely visited but its
parent node is visited a great number of times, the node will
have a higher chance to be chosen. In this way, MIPS can
rebalance the tradeoff by choosing a proper value of weight
parameter w; thus greater w induces a more explorative search.

C. System Workflow
Upon request r’s arrival, the system first parses its topol-

ogy, resource demand, and parallelism requirement. In the
first stage, the system scheduler applies MIPS to obtain the
instance-container mapping. Then it eliminates the containers
with no instances assigned and submits each container as a job
to the underlying resource manager [17]. In the second stage,
cluster scheduler applies MIPS to decide the mapping from
containers to servers and enforces the deployment. In practice,
MIPS can be implemented as a custom module through APIs
provided by Heron and cluster schedulers [6] [16] [17].

D. Practical Issues and Refinement
By leveraging random sampling, the effectiveness of MIPS

heavily depends on the estimate accuracy for the objective
values of the tree nodes (states). Accurate estimates often re-
quire a large number of samples, inducing long computational
time and massive compute resources. Considering that some
samples may lead to decision sequences with unfavorably
high objective values, uniformly random simulation and node

expansion may still have much room for improvement. Hence,
to promote sampling quality, we optimize MIPS by refining
its way of 1) selecting unvisited children, 2) choosing the best
child, and 3) simulating.

1) Expansion policy (Alg.2, line 19-22): For ICMP, given
node η with unvisited children (untried actions), instead of
uniformly random selection, we favor the action that places
an instance to such a container that hosts any of its successive
instances. We assign such actions with a positive score and the
rest with zero score, while selecting an action only from those
with high scores. Thus MIPS biases the mappings that place
successive instances in proximity, reducing cross-container
traffic with least resources. Regarding CSMP, MIPS favors
mapping containers with traffic in between on the same server.

2) Best child selection (Alg.2, line 24-25): Although UCT
well balances the exploration-and-exploitation tradeoff, MIPS
must explore all children nodes before re-passing the visited
ones. However, some actions may obviously lead to high
objective values, as discussed previously. We bias such node
η by initializing N(η) = 1 and Q(η) with a large positive
value, pretending that the node has been visited once a priori
with an unfavorably high objective value.

3) Simulating (Alg.2, line 27-34): Starting from a given
node, MIPS simulates the rest of mapping decision process
by repetitively choosing an unmapped instance uniformly
randomly and assigning it to one of the containers. However,
such an aimless policy may lead to decision sequences that
place successive instances to different containers, incurring un-
desirably considerable traffic and resource overheads. Instead,
we refine the simulating strategy in the following way: Each
time MIPS randomly chooses one of the unmapped instances
and maps it to the container with minimum incremental cross-
container traffic. Likewise, when applied to CSMP, MIPS sim-
ulates by progressively placing the rest unmapped containers
to servers with minimum incremental cross-server traffic.

IV. SIMULATION

A. Basic Settings
Cluster Topology: We prototype a stream processing sys-

tem based on Heron [6] and cluster resource manager Nomad
[17]. We implement two custom schedulers based on MIPS in
the system and Nomad for instance-container and container-
server mapping, respectively. The system is deployed in clus-
ters that are constructed using two widely adopted topologies,
Jellyfish [23] and Fat-Tree [22], respectively. Within each
cluster are 24 homogeneous switches and 16 heterogeneous
servers. Each switch has a port number of 4, with a band-
width of 40Gbps on each port. For any two servers, the unit
communication cost of transferring data streams is set as the
number of hops of the shortest path between them.

Deployment Resources: Regarding resource allocation, we
consider CPU cores and memory on servers [6]. Every server
has a number of CPU cores ranging from 16 to 64 and memory
from 8G to 32G. For each stream processing application, all
of its containers have identical resource capacities.

Stream Processing Applications: We progressively submit
requests to the system scheduler to deploy applications with
common topologies [15] [13] [11]. Each request specifies a
topology with a depth varying from 3 to 5, and a number of
components ranging from 3 to 6. Besides, the parallelism for
each component ranges from 2 to 6. Instances of the same
component have identical functionalities. Instances’ resource
demand varies from 2 to 6 CPU cores and 4 to 8GB memory.

Compared Schemes: Besides Heron’s first-fit-decreasing
(FFD) scheme, most existing schemes are designed for Storm
[11] [13]. To make them comparable with MIPS, we propose
their variants for instance-container mapping under Heron.

6

0

200

400

600

800

F/B M/M (both) M/M (traffic) M/M (util.) R/B T/B
(a) Different Costs per Application under Different Schemes

C
os

t p
er

 A
pp

lic
at

io
n

ICMP: Cross−Container Traffic + Container Utilization
CSMP: Cross−Server Communication Cost under Jellyfish
CSMP: Cross−Server Communication Cost under Fat−Tree

F/B

M/M(both)

M/M(traffic)

M/M(util.)

R/B

T/B

0 200 400 600
(b) Cross−Container Traffic

0 3 6 9
(c) Num. of Utilized Containers

Fig. 2. Comparisons between MIPS/MIPS (M/M) and other schemes: R-Heron/Best-fit (means R-Heron in the first stage and Best-fit in the second stage),
T-Heron/Best-fit, and FFD/Best-fit, denoted by R/B, T/B, F/B, respectively. We run M/M under different values of α, including α = 1 (M/M traffic: minimizing
traffic only), α = 0 (M/M util.: minimizing container utilization only), and α = 0.5 (M/M both: targeting both objectives), according to (8).

R-Heron: Given an application, initialize all its containers.
Enumerate its components by a breadth first traversal on its
topology. If the topology has more than one sink node, then
add a virtual root node that precedes all sink nodes and
apply the traversal. Next, for each component, enumerate its
instances and repeat the following process. For each instance,
assign it to the container with minimum resource distance,
where the distance is defined as the traffic rate between the
container and other containers, adding the euclidean distance
between the instance’s resource demand vector and the con-
tainer’s available resource vector. If no containers have enough
resources to host an instance, then an error will be raised.

T-Heron: Given an application, initialize all its containers.
Sort all instances by their descending order of (incoming and
outgoing) traffic rate. Then assign each instance to one of its
application’s containers with minimum incremental traffic and
without exceeding the resource capacity of the container.

FFD [6]: Given an application, initialize all its containers,
an empty active container list, and a list of unmapped in-
stances. While there still exists unmapped instances, repeat
the process: 1) Choose the next unmapped instance from the
list; 2) sort the active containers by descending order of their
available resources; 3) pick the first active container with
sufficient resource; if no active container can host the instance,
add a new container to the list and assign the instance to it.

We adopt the best-fit scheme in Nomad [17] as the underly-
ing container-server mapping scheme for the baselines, which
assigns each container to the server with free resources that
best match its resource demand.

B. Results and Analysis
We show and analyze the results from our extensive simu-

lations of MIPS. Since MIPS is a randomized algorithm, we
repeat each simulation for 100 times and take the average of
the results to eliminate the impact of randomness.

Performance against Other Schemes: Figure 2 compares
two-staged MIPS (M/M) with other three schemes in terms of
costs in two stages. The number of samples per round is fixed
as 500 for MIPS. Figure 2 (a) makes a comparison of total
costs in each of the two stages induced by different schemes,
respectively. Note that for any scheme, the total cost of ICMP
remains the same while only the cost of CSMP differs under
Fat-Tree and Jellyfish, since the decision making for ICMP
does not involve communication costs that vary in topologies.
We make the following observations.

In the first stage, MIPS (M/M) with different values of α
effectively reduces the total cost of cross-container traffic and
container utilization compared to other schemes. For example,
M/M (traffic) with α=1 leads to the minimum cost of 549.152,
with a 13% reduction to F/B, 4% to T/B, and 12% to R/B.
M/M (util) and M/M (both) also lead to cost reduction but
slightly less than inferior to M/M (traffic).

Zooming into the observation, we further compare the cross-
container traffic and container utilization in Figure 2 (b) and
(c), respectively. Figure 2 (b) shows that MIPS (traffic) incurs
the minimum cross-container traffic. This is reasonable since
with α = 1, MIPS assigns successive instances into the same
containers in the best way possible. Different from THeron
also with a relatively low traffic, MIPS decides the placement
based on its experiences acquired from random sampling and
evaluation rather than greedy heuristics, leading to less traffic.
Meanwhile, other heuristics RHeron and FFD bring more
traffic due to their less or no focus on traffic reduction.

Figure 2 (c) shows that M/M (util.) achieves the minimum
container utilization at 7. Meanwhile, M/M (util.) also out-
performs heuristics FFD and RHeron that focus on utilization
by 6% less traffic. On the other hand, along with the traffic
reduction, extra container utilization comes as a price to M/M
(traffic) for its traffic reduction. Though, M/M (traffic) still
outperforms THeron in container utilization. Jointly consid-
ering traffic reduction and utilization, M/M (both) make a
well balance with about 2% traffic increase and little extra
utilization to the optimum at both sides. All such advantages
are conduced by MIPS’s well exploitation of random sampling.

In the second stage, Figure 2 (a) shows that M/M signifi-
cantly outpaces other schemes by an up to 60% reduction in
cross-server traffic under both topologies. This ascribes to not
only the advantage taken from the mapping in the first stage,
but the effectiveness of MIPS in the second stage as well.

Performance under Different Values of α: From previous
results, there seems to be a potential tradeoff between cross-
container traffic and container utilization. Figure 3 verifies
the relationship qualitatively by showing the costs incurred
by MIPS under Fat-Tree with α growing from 0 to 1: con-
tainer utilization gently increases while cross-container traffic
notably lessens, with cross-server traffic decreasing as well.
It seems plausible to place successive instances close to each
other to reduce cross-container traffic with only a few contain-
ers. However, due to the heterogeneity of instance resource
demands, this intuition may fail, as exemplified previously by
Figure 1 (a). Moreover, with online requests arrivals, prior
deployed applications may take up major server resources,
leaving only fragmented resources on servers for later arriving
applications. Their containers would either be deployed on
new servers or placed distantly on across existing servers.
MIPS carefully places instances to minimize the impact of
dependence between successive placement decisions.

Performance with Different Sampling Numbers: Besides,
sampling number is another key factor to MIPS’s performance
– more sampling means simulating more possible sequences,
conducing to more accurate estimates for MIPS’s eventual
decision making. However, that also requires longer computa-
tional time and more compute resources being consumed. A
natural question is that how many samples are sufficient to
decide placements with low traffic and resource consumption.

7

Cross−server traffic

Cross−container traffic

Container utilization

0 0.2 0.4 0.6 0.8 1

7
8
9

540
550
560
570
580
590

100
110
120

(a) Different Values of alpha

Cross−server traffic

Cross−container traffic

Container utilization

0 500 1000 1500

0 500 1000 1500

0 500 1000 1500
7.6
8.0
8.4

550
560
570
580
590

90
100
110
120
130

(b) Different Numbers of Sampling

Fig. 3. MIPS’s Performance sunder various choices of α and sample
numbers.

Cross−server traffic

Cross−container traffic

Container utilization

0 5 10 15 20

0 5 10 15 20

0 5 10 15 20
7.237
7.238
7.239
7.240
7.241
7.242

554.75

554.80

88.7
88.8
88.9
89.0
89.1

(a) Weighting factor w vs. costs

Var. of cross−server traffic

Var. of cross−container traffic

Var. of container utilization

0 5 10 15 20

0 5 10 15 20

0 5 10 15 20
0.1
0.2
0.3

2
3
4
5

3
4
5
6
7

(b) Weighting factor w vs. variances

Fig. 4. MIPS’s Performance sunder various choices of α and sample
numbers.

Figure 3 investigates the relationship between sampling num-
ber and MIPS’s performance, with α = 0.5. As the sampling
number grows from 0 to 500, there is a significant reduction in
the container utilization and cross-container traffic. However,
as the sampling number continues to rise, the improvement
gradually fades and eventually converges at around 1000 sam-
ples. This implies that in practice, compared to its enormous
sample space size, MIPS requires only mild-value of sampling
number to make timely yet efficient decisions with effective
placement with both low traffic and few container resources.

Performance under Different Exploration-Exploitation
Tradeoffs: To find the best possible placement within a limited
number of samples, MIPS has to decide in each round either
to exploit decision sequences with known reward estimates or
explore those with unknown rewards. Figure 4 investigates the
impact of weighting parameter w on the system performance
and the variance among repeated simulations, with α = 0.5
and sample number as 500 per round under Fat-Tree topology.
Figure 4 (a) shows that as parameter w varies from 0 to 20,
MIPS incurs costs roughly at the same level, with container
utilization around 7.239, cross-container traffic around 554.79,
and cross-server traffic around 88.8. This is reasonable since
with fixed settings those costs are supposed to remain constant
on the long-term average. However, we can still see a slight
fluctuation among the results under different choices of w.
The reason lies in the sampling quality induced by different
exploration-exploitation tradeoffs being made. With a smaller
value of w, MIPS tends to exploit those decision sequences
with known estimates, making the resultant decision largely
dependent on a limited set of sequences while missing those
with unknown but potentially better rewards. On the other
hand, a greater value of w leads to a more explorative search.
Due to the randomness of sampling, either undue exploitative
or explorative search can have a large variance among different
simulations. Figure 4 (b) verifies this: The variance of the three
costs all rise up after a drop from w = 0 to 5, suggesting that
w = 5 is a proper value for MIPS to balance the trade-off.

V. CONCLUSION

In this paper, we studied the two-staged instance place-
ment problem for stream processing engines like Heron. By
modeling each stage as a sequential decision-making process
and leveraging MCTS to the problem, we proposed MIPS,
a randomized scheme that decides the instance placement in
two stages in a timely yet efficient manner. To promote the
sampling quality, we refined MCTS from various aspects and
discussed practical issues. To evaluate MIPS against existing
schemes, we propose variants of the schemes in Heron-like
systems. Results from extensive simulations show that MIPS
outperforms existing schemes with both low traffic and high
resource utilization, but requires only mild-value of sampling.

REFERENCES

[1] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulka-
rni, J. Jackson, K. Gade, M. Fu, J. Donham et al., “Storm@twitter,” in
Proceedings of ACM SIGMOD, 2014.

[2] G. J. Chen, J. L. Wiener, S. Iyer, A. Jaiswal, R. Lei, N. Simha, W. Wang,
K. Wilfong, T. Williamson, and S. Yilmaz, “Realtime data processing
at facebook,” in Proceedings of ACM SIGMOD, 2016.

[3] D. Le-Phuoc, M. Dao-Tran, M.-D. Pham, P. Boncz, T. Eiter, and
M. Fink, “Linked stream data processing engines: Facts and figures,”
in Proceedings of International Semantic Web Conference, 2012.

[4] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst,
I. Gupta, and R. H. Campbell, “Samza: stateful scalable stream pro-
cessing at linkedin,” in Proceedings of the VLDB Endowment, 2017.

[5] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” 2015.

[6] “Heron documentation,” https://apache.github.io/incubator-heron/docs.
[7] T. Heinze, L. Aniello, L. Querzoni, and Z. Jerzak, “Cloud-based data

stream processing,” in Proceedings of ACM DEBS, 2014.
[8] “Storm community,” https://storm.apache.org/Powered-By.html.
[9] “Heron community,” https://wiki.apache.org/incubator/HeronProposal.

[10] “Docker document,” https://docs.docker.com/network/.
[11] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-storm:

Resource-aware scheduling in storm,” in Proceedings of AMC, 2015.
[12] L. Eskandari, Z. Huang, and D. Eyers, “P-scheduler: adaptive hierarchi-

cal scheduling in apache storm,” in Proceedings of ACSW, 2016.
[13] J. Xu, Z. Chen, J. Tang, and S. Su, “T-storm: Traffic-aware online

scheduling in storm,” in Proceedings of IEEE ICDCS, 2014.
[14] L. Aniello, R. Baldoni, and L. Querzoni, “Adaptive online scheduling

in storm,” in Proceedings of ACM SIGMOD, 2013.
[15] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,

J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter heron: Stream
processing at scale,” in Proceedings of ACM SIGMOD, 2015.

[16] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache hadoop
yarn: Yet another resource negotiator,” in Proceedings of ACM SoCC,
2013.

[17] “Nomad,” https://www.nomadproject.io/.
[18] G. L. Nemhauser and L. A. Wolsey, “Integer programming and

combinatorial optimization,” Wiley, Chichester. GL Nemhauser, MWP
Savelsbergh, GS Sigismondi (1992). Constraint Classification for Mixed
Integer Programming Formulations. COAL Bulletin, vol. 20, pp. 8–12,
1988.

[19] M. Chen, S. C. Liew, Z. Shao, and C. Kai, “Markov approximation for
combinatorial network optimization,” IEEE Transactions on Information
Theory, vol. 59, no. 10, pp. 6301–6327, 2013.

[20] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE T-CIAIG, vol. 4,
no. 1, pp. 1–43, 2012.

[21] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
p. 354, 2017.

[22] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proceedings of ACM SIGCOMM, 2008.

[23] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Network-
ing data centers, randomly.” in Proceedings of USENIX NSDI, 2012.

[24] A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy,
“Dhalion: self-regulating stream processing in heron,” Proceedings of
the VLDB Endowment, 2017.

[25] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited,, 2016.

[26] L. Kocsis, C. Szepesvári, and J. Willemson, “Improved monte-carlo
search,” Univ. Tartu, Estonia, Tech. Rep, vol. 1, 2006.

[27] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in
Proceedings of European conference on machine learning, 2006.

https://apache.github.io/incubator-heron/docs
https://storm.apache.org/Powered-By.html
https://wiki.apache.org/incubator/HeronProposal
https://www.nomadproject.io/

	I Introduction
	II Model and Problem Formulation
	II-A Overall System Model
	II-B Cluster Model
	II-C Streaming Application Model
	II-D Deployment Model
	II-E Placement Decisions
	II-F Optimization Objectives
	II-G Problem Formulation

	III Algorithm Design
	III-A Overview of MCTS
	III-B Modeling Decision Trees and Algorithm Design
	III-C System Workflow
	III-D Practical Issues and Refinement

	IV Simulation
	IV-A Basic Settings
	IV-B Results and Analysis

	V Conclusion
	References

