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Abstract—This paper considers a wireless powered multiuser
mobile edge computing (MEC) system, where a multi-antenna
access point (AP) employs the radio-frequency (RF) signal based
wireless power transfer (WPT) to charge a number of distributed
users, and each user utilizes the harvested energy to execute
computation tasks via local computing and task offloading. We
consider the frequency division multiple access (FDMA) protocol
to support simultaneous task offloading from multiple users to
the AP. Different from previous works that considered one-
shot optimization with static task models, we study the joint
computation and wireless resource allocation optimization with
dynamic task arrivals over a finite time horizon consisting of
multiple slots. Under this setup, our objective is to minimize
the system energy consumption including the AP’s transmission
energy and the MEC server’s computing energy over the whole
horizon, by jointly optimizing the transmit energy beamform-
ing at the AP, and the local computing and task offloading
strategies at the users over different time slots. To characterize
the fundamental performance limit of such systems, we focus
on the offline optimization by assuming the task and channel
information are known a-priori at the AP. In this case, the energy
minimization problem corresponds to a convex optimization
problem. Leveraging the Lagrange duality method, we obtain
the optimal solution to this problem in a well structure. It is
shown that in order to maximize the system energy efficiency,
the optimal number of task input-bits at each user and the AP are
monotonically increasing over time, and the offloading strategies
at different users depend on both the wireless channel conditions
and the task load at the AP. Numerical results demonstrate the
benefit of the proposed joint-WPT-MEC design over alternative
benchmark schemes without such joint design.

Index Terms—Mobile edge computing (MEC), wireless power
transfer (WPT), computation offloading, dynamic task arrivals.

I. INTRODUCTION

Wireless powered mobile edge computing (MEC) has at-

tracted growing research interests to support self-sustainable

computation for massive low-power wireless devices, by com-

bining emerging radio-frequency (RF) signal based wireless

power transfer (WPT) [1], [2] and MEC [3]–[5] techniques

into a joint design [6]–[8]. By deploying hybrid access points

(APs) each with triple roles of energy transmitter, informa-

tion transceiver, and MEC server, this technique can provide

continuous wireless energy supply for end users, such that

they can rely on the harvested energy for local computing

This work was supported in part by the National Natural Science Foundation
of China (Project No. 61871137 and 61871136), the Project of the Edu-
cation Department of Guangdong Province (Project No. 2017KZDXM028),
and the Natural Science Foundation of Guangdong Province (Project No.
2018A030310537). (J. Xu is the corresponding author.)

and computation offloading. As compared with conventional

MEC systems with fixed battery supplies at users, the wireless

powered MEC can significantly enhance the cost-efficiency

and sustainability of future Internet-of-things (IoT) networks,

by e.g., avoiding frequent battery replacement at users.

The design of wireless powered MEC systems encounters

various new technical challenges due to the involvement of

WPT, computation, and communication. In order to optimize

the system performance, it is crucial to perform multi-resource

allocation to achieve optimal balance between the wireless

energy supply from the AP versus the computation and

communication energy demand at these users. In the litera-

ture, there have been several prior works investigating joint

WPT, communication, and computation resource allocation

in wireless powered MEC systems, under different system

setups with one single user [6], multiple users [7], [8], and

user cooperation [9], [10], respectively. These works [6]–[10]

focused on one-shot optimization over a particular time slot by

assuming unchanged wireless channels and static task models

at users.

In practice, however, due to the randomness of compu-

tation traffics, the task arrival rates at users may fluctuate

substantially over time and space. On the other hand, due

to the randomness of wireless channels, the wireless energy

harvested from the AP may also change significantly over

time among different users. Therefore, it is an important yet

challenging problem to jointly design the WPT at the AP and

the computation and communication resource allocation at the

users, in order to properly control the users’ harvested energy

to well match their dynamic computation requirements in an

energy-efficient manner. Notice that in the literature, some

prior works [11]–[13] investigated joint communication and

computation management in MEC systems with dynamic task

arrivals over time, while other works (see, e.g., [14], [15] and

the references therein) considered dynamic energy manage-

ment with random energy arrivals for energy harvesting based

systems. However, there still lacks a joint design of the WPT

at the AP and the communication/computation energy demand

at the users for wireless powered MEC systems, by taking into

account both energy and task dynamics over time and space.

This thus motivates our study in this work.

This paper considers a wireless powered multiuser MEC

system, where a multi-antenna AP employs the energy beam-

forming to charge a number of distributed users with dynamic

task arrivals, and each user utilizes the harvested energy

http://arxiv.org/abs/1902.08779v1
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Fig. 1. The wireless powered MEC system model.

to execute the computation tasks via local computing and

computation offloading. Suppose that the downlink WPT from

the AP to the users and the uplink computation offloading

are operated simultaneously over orthogonal frequency bands,

and frequency division multiple access (FDMA) protocol is

employed to enable simultaneous task offloading from multiple

users to the AP. We focus on joint computation and wireless

resource allocation over a finite time horizon consisting of

multiple slots. Under this setup, our objective is to minimize

the system energy consumption including the AP’s transmis-

sion energy and the MEC server’s computing energy over

the whole horizon, by jointly optimizing the transmit energy

beamforming at the AP, as well as the local computing and

task offloading strategies at the users over different slots.

To further characterize the fundamental performance limit,

we assume that the channel state information (CSI) and the

task arrival information are perfectly known a-priori at the

AP. Accordingly, we adopt the offline optimization approach

to solve the energy minimization problem.1 Leveraging the

Lagrange duality method, we obtain well-structured optimal

solution to the joint-WPT-MEC design problem. It is shown

that in order to maximize the system energy efficiency, the

number of task input-bits at each user and the AP are mono-

tonically increasing over time, and different users’ offloading

strategies are adapted according to both the wireless channel

conditions and the task load at the AP. Numerical results

demonstrate the benefit of the proposed joint design over other

benchmark schemes without such joint design.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a wireless powered multiuser MEC system as

shown in Fig. 1, where an M-antenna AP (integrated with an

MEC server) employs WPT to charge a set K , {1, . . . ,K}

of single-antenna users, and provides cloud-like computation

capability to enable their computation-intensive applications.

We consider a finite time horizon with duration T , which

1Notice that the offline optimization approach has been widely adopted
in the energy harvesting based wireless communication [14] and the energy
management in smart grids [15]. The obtained optimal offline solution can
serve as the performance upper bound for any practical online designs, and
can also inspire practical online designs in the case when the CSI and the
task arrival information are casually known. We leave the online optimization
for the wireless powered MEC systems to our future work.

is divided into N slots each with duration τ = T/N . Let

N , {1, . . . , N} denote the set of the N slots. For each user

k ∈ K, the computation tasks arrive at the beginning of each

slot i ∈ N , with Ak,i ≥ 0 denoting the corresponding number

of task input-bits. In order to enable remote computing at

the AP, at each slot i ∈ N , the users need to offload the

computation tasks to the AP and download the computation

results of previously executed tasks from the AP. It is assumed

that each user is subject to a task completion deadline of T , i.e.,

each user needs to successfully execute their respective tasks

before the end of this time horizon. As commonly adopted

in the literature [5]–[8], where the computation results are

generally much smaller than the task input-bits, we focus on

the time and energy consumed by task offloading from the

users to the AP and ignore those consumed by computation

result downloading. In the following, we first introduce the

task execution at the users via local computing and computa-

tion offloading, and then present the WPT and the remote task

execution at the AP.

A. Task Execution and Computation Offloading at Users

During each slot i ∈ N , each user k ∈ K can execute

its tasks via local computing and computation offloading. Let

Lk,i ≥ 0 and Rk,i ≥ 0 denote the number of task input-bits for

user k’s local computing and offloading, respectively, which

are design variables to be optimized later. In this case, we

first have the following task causality constraints, such that

at each slot i ∈ N , the cumulative number of task input-bits

executed until that slot (i.e.,
∑i

j=1(Lk, j + Rk, j)) cannot exceed

that having already arrived at user k (i.e.,
∑i

j=1 Ak, j), i.e.,

i∑

j=1

Ak, j −

i∑

j=1

Lk, j −

i∑

j=1

Rk, j ≥ 0,

∀i ∈ {1, . . . , N − 1}, k ∈ K . (1)

In addition, we have the computation deadline constraints

at the users, i.e., each user k ∈ K needs to accomplish the task

execution by the end of the last slot N , which is expressed as

N∑

j=1

Ak, j −

N∑

j=1

Lk, j −

N∑

j=1

Rk, j = 0, ∀k ∈ K . (2)

1) Local Computing at Users: First, we consider the local

computing at user k ∈ K for executing Lk,i task input-bits

at slot i ∈ N , for which CkLk,i CPU cycles in total are

required, where Ck ≥ 0 denotes the number of required central

processing unit (CPU) cycles for executing one task input-bit

at user k ∈ K. Note that the value Ck depends on the type

of applications and the CPU architectures of user k. In order

to maximize the energy efficiency for local computing, each

user k ∈ K can apply dynamic voltage and frequency scaling

(DVFS) technique by adjusting the CPU frequency as CkLk,i/τ

during each slot i ∈ N [7]. As a result, in slot i ∈ N , the

energy consumption E loc
k,i

for local computing at user k ∈ K

is

E loc
k,i =

Ck Lk, i∑

n=1

ζk

(
CkLk,i

τ

)2

=

ζkC3
k

L3
k,i

τ2
, (3)
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where ζk ≥ 0 is the effective switched capacitance coefficient

of user k’s CPU chip architecture.

2) Computation Offloading from Users to AP: In order to

avoid co-channel interference, we adopt the FDMA protocol

for the K users to simultaneously offload their task input-bits

to the AP for remote server’s computing, where each user

k ∈ K is allocated with an identical system bandwidth of

B > 0. For each slot i ∈ N , let gk,i > 0 denote the channel

power gain from user k to the AP. Assuming the maximal-ratio

combining (MRC) based receiver at the AP, the transmission

energy consumption at user k for offloading Rk,i task input-

bits within slot i ∈ N is [7]

Eoffl
k,i =

τσ2

gk,i

(2
Rk, i
τB − 1), (4)

where σ2 is the additive white Gaussian noise (AWGN) power

at the AP receiver.

B. WPT and Remote Task Execution at AP

The AP needs to charge the K users via downlink energy

beamforming and remotely execute the offloaded computation

tasks for the K users.

1) WPT from AP to Users: First, consider the downlink

energy beamforming from the AP to the K users. At slot i ∈ N ,

let si ∈ C
M×1 denote the energy-bearing transmit signal and

Qi , E[sis
H
i
] ∈ CM×M the transmit energy covariance matrix

of the AP, where E[·] denotes the expectation operation and the

superscript H represents the conjugate transpose of a matrix

or vector. For ease of analysis, we consider that the input RF

power at each user k ∈ K is within the linear regime of the

rectifier.2 Then the amount of energy harvested by user k ∈ K

at slot i ∈ N is [1]

Ek,i = τηk tr
(
Qihk,ih

H
k,i

)
, (5)

where hk,i ∈ C
M×1 denotes the downlink channel vector from

the AP to user k at slot i, 0 < ηk ≤ 1 denotes the constant

energy harvesting efficiency of user k, and tr(·) denotes the

trace of a matrix.

2) Remote Computing at AP: Next, we discuss the remote

execution at the AP. During slot i ∈ N , the AP needs to

execute the users’ offloaded tasks by its integrated MEC server.

Let L0,i ≥ 0 denote the number of task input-bits computed

by the AP within slot i. In practice, at each slot i ∈ N , the

MEC server can only execute the task input-bits offloaded

from the users at the previous slots. Hence, at each slot

i ∈ N , the number of task input-bits cumulatively executed

by the AP (i.e.,
∑i

j=1 L0, j ) cannot exceed that cumulatively

offloaded from all the K users until the previous slot (i.e.,∑i−1
j=1

∑K
k=1 Rk, j). As in (1), the task causality constraints at

the AP are given by

i−1∑

j=1

K∑

k=1

Rk, j −

i∑

j=1

L0, j ≥ 0, ∀i ∈ N . (6)

2In practice, our proposed wireless powered MEC system design is extend-
able to the scenario with non-linear energy harvesting models at each user,
for which the transmit waveform optimization needs to be considered jointly
with the energy beamforming design at the AP [2].

In addition, the AP needs to complete all the task execution

by the last slot N . As a result, as in (2), the computation

deadline constraint for the AP is expressed as

N−1∑

j=1

K∑

k=1

Rk, j −

N∑

j=1

L0, j = 0. (7)

Based on (2), (6), and (7), the number of task input-bits

offloaded by user k at slot N must satisfy Rk,N = 0, as there is

no time left for the AP to further perform computation before

the deadline.

In order to remotely compute the tasks in an energy-efficient

manner, the AP employs the DVFS technique by adjusting

the CPU frequency as C0L0,i/τ during each slot i ∈ N ,

where C0 ≥ 0 denotes the number of required CPU cycles for

executing one task input-bit by the MEC server. In this case,

as in (3), the total amount of computation energy consumption

at the AP across the N-slot horizon is expressed as

EMEC =

N∑

i=1

ζ0C3
0

L3
0,i

τ2
, (8)

where ζ0 is the capacitance coefficient specified by the MEC

server’s CPU architecture.

C. Problem Formulation

Note that each user k ∈ K is powered by the energy

beamforming from the AP to achieve self-sustainable com-

putation. In this case, at each slot i ∈ N , the cumulatively

consumed energy at each user up to that slot cannot exceed

that cumulatively harvested from the AP. As a result, we obtain

the energy causality constraints on users’ battery storage:

i∑

j=1

E loc
k, j
+

i∑

j=1

Eoffl
k, j
≤

i∑

j=1

Ek, j, ∀i ∈ N, k ∈ K . (9)

We are interested in an energy-efficient joint-WPT-MEC

design to minimize the system energy consumption subject to

the energy/task causality and computation deadline constraints.

Specifically, we aim to minimize the energy consumption of

the AP, i.e.,
∑N

i=1 τtr(Qi)+EMEC, while ensuring the successful

task execution before the deadline, by jointly optimizing the

energy transmit covariance matrices {Qi}, the number of task

input-bits {L0,i} for remote execution at the AP, and the

number of task input-bits {Lk,i} and {Rk,i} for users’ local

computation and computation offloading, respectively. As a

result, the energy minimization problem is formulated as

min
{Qi,L0, i,Lk, i,Rk, i }

N∑

i=1

τtr(Qi) +

N∑

i=1

ζ0C3
0

L3
0,i

τ2
(10a)

s.t. (1), (2), (6), (7), and (9) (10b)

Lk,i ≥ 0, Rk,i ≥ 0, L0,i ≥ 0, ∀i ∈ N, k ∈ K (10c)

Qi � 0, ∀i ∈ N . (10d)

In particular, we consider offline optimization for problem

(10) by assuming that {hk,i, gk,i, Ak,i} are perfectly known

a-priori at the AP, in order to characterize the fundamental

performance upper bound and inspire practical online designs

in future work. Under this assumption, problem (10) is a
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convex optimization problem and can thus be solved by

standard convex optimization techniques such as the interior-

point method [16]. However, to reveal more design insights,

we apply the Lagrange duality method to obtain a well-

structured optimal solution to problem (10) in Section III.

III. OPTIMAL SOLUTION

As problem (10) is convex and satisfies Slater’s condition

[16], strong duality holds between problem (10) and its dual

problem. Let µk,i ≥ 0, µk,N ∈ R, νi ≥ 0, νN ∈ R, and

λk,i ≥ 0 denote the Lagrange multipliers associated with the

constraints in (1), (2), (6), (7), and (9), i ∈ {1, . . . , N − 1},

k ∈ K, respectively. By defining λ , [λ1,1, . . . , λK,N ]
†,

µ , [µ1,1, . . . , µK,N ]
†, and ν , [ν1, . . . , νN ]

†, where the

superscript † denotes the transpose of a vector, the partial

Lagrangian of problem (10) is given by

L(λ,µ,ν, {Qi, L0,i, Lk,i, Rk,i})

=

N∑

i=1

τtr
(
QiH̄i

)
+

N∑

i=1

(
ζ0C3

0
L3

0,i

τ2
+

N∑

j=i

νjL0,i

)

+

K∑

k=1

N∑

i=1

(∑N
j=i λk, jζkC3

k
L3
k,i

τ2
+

N∑

j=i

µk, jLk,i

)

+

K∑

k=1

N∑

i=1

(∑N
j=i λk, jτσ

2

gk,i

(
2

Rk, i
τB − 1

)

+

N∑

j=i

(µk, j − νj )Rk,i

)

−

K∑

k=1

N∑

i=1

N∑

j=i

µk, j Ak,i, (11)

where H̄i , IM −
∑K

k=1

∑N
j=i λk, jηkhk,ih

H
k,i

for any i ∈ N .

Accordingly, the dual function is expressed as

G(λ,µ,ν)

= min
{Qi �0,L0, i ≥0}

{Lk, i ≥0,Rk, i ≥0}

L(λ,µ,ν, {Qi, L0,i, Lk,i, Rk,i}). (12)

In order to obtain the dual problem of problem (10), we first

establish the following lemma.

Lemma 3.1: In order for the dual function G(λ,µ,ν) to be

lower bounded from below, it must hold that

H̄i � 0, ∀i ∈ N, (13a)

N∑

j=i

λk, j > 0, ∀i ∈ N, k ∈ K . (13b)

Proof: See Appendix A.

Based on Lemma 3.1, the dual problem of problem (10) is

then expressed as

max
λ,µ,ν

G(λ,µ,ν) (14a)

s.t. H̄i � 0, ∀i ∈ N (14b)

N∑

j=i

λk, j > 0, λk,i ≥ 0, ∀k ∈ K, i ∈ N (14c)

µk,i ≥ 0, νi ≥ 0, ∀k ∈ K, i ∈ {1, . . . , N − 1}. (14d)

Denote X as the feasible solution set of (λ,µ,ν) for problem

(14). Then, we solve problem (10) optimally by solving its

dual problem (14) equivalently.

A. Evaluating Dual Function G(λ,µ, ν)

Under any given (λ,µ, ν) ∈ X, by removing the irrelevant

constant terms in (11), the optimization problem in (12) can

be decomposed into the following (2N + 2NK) independent

subproblems for different time slots and users.

min
Qi �0

tr
(
QiH̄i

)
, ∀i ∈ N (15)

min
L0, i ≥0

ζ0C3
0

L3
0,i

τ2
+

N∑

j=i

νjL0,i, ∀i ∈ N (16)

min
Lk, i ≥0

∑N
j=i λk, jζkC3

k
L3
k,i

τ2
+

N∑

j=i

µk, jLk,i,

∀i ∈ N, k ∈ K (17)

min
Rk, i ≥0

∑N
j=i λk, jτσ

2

gk,i

(2
Rk, i
τB − 1) +

N∑

j=i

(µk, j − νj )Rk,i,

∀i ∈ N, k ∈ K (18)

Let Q∗
i
, L∗

0,i
, L∗

k,i
, and R∗

k,i
, k ∈ K, i ∈ N , denote the optimal

solutions to the subproblems in (15), (16), (17), and (18),

respectively. We establish the following lemmas.

Lemma 3.2: The optimal solution {Q∗
i
} to problem (15) is

given by Q∗
i
∈ Null(H̄), i ∈ N , where Null(·) denotes the null

space of a matrix.

Proof: As the matrix H̄i is semidefinite positive in

problem (15), with Qi � 0 , it follows that the minimal value

of tr(QiH̄i) is zero. Therefore, the optimal {Q∗
i
} to problem

(15) must satisfy Q∗
i
∈ Null(H̄i), ∀i ∈ N .

Lemma 3.3: The optimal solution {L∗
0,i
} to problem (16) is

given by

L∗0,i =

√√√√
τ2

[
−

∑N
j=i νj

]
+

3ζ0C3
0

, ∀i ∈ N, (19)

where [x]+ = max(x, 0).

Proof: See Appendix B.

Lemma 3.4: The optimal solution {L∗
k,i
} to problem (17) is

given by

L∗k,i =

√√√√√
τ2

[
−

∑N
j=i µk, j

]
+

3
∑N

j=i λk, jζkC3
k

, ∀i ∈ N, k ∈ K . (20)

Lemma 3.5: The optimal solution {R∗
k,i
} to problem (18) is

given by, ∀i ∈ N, k ∈ K,

R∗k,i =





[
τB log2

(∑N
j=i(νj−µk, j )Bgk, i∑N
j=i λk, jτσ

2 ln 2

)]
+

,

if
∑N

j=i(νj − µk, j ) > 0,

0,

if
∑N

j=i(νj − µk, j ) ≤ 0.

(21)

Note that Lemmas 3.4 and 3.5 can be are similarly proved

as for Lemma 3.3, and thus we omit the proofs for brevity.

Based on Lemma 3.2, it follows that Q∗
i

is not unique if H̄i is

rank deficient. For simplicity, we choose Q∗
i
= 0, i ∈ N , for

problem (15) without loss of optimality for obtaining the dual

function only. With (19)–(21) and Q∗
i
= 0, ∀i ∈ N , G(λ,µ, ν)

can be obtained under any given set (λ,µ,ν) ∈ X.
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B. Obtaining Optimal Dual (λopt,µopt, νopt)

Next, we maximize G(λ,µ,ν) over (λ,µ, ν) to solve the

dual problem (14). Note that the dual function G(λ,µ,ν)

is always concave but not necessarily differentiable. There-

fore, problem (14) is convex, and can thus be solved by

subgradient based methods such as the ellipsoid method

[16], in which the subgradient of G(λ,µ,ν) is
[
ζ1C

3
1
L∗3

1,1

τ2 +

τσ2

g1,1
(2

R∗
1,1

τB −1), . . . ,
∑N

j=1

ζKC3
K
L∗3
K, j

τ2 +

∑N
j=1

τσ2

gK, j
(2

R∗
K, j

τB −1), L∗
1,1
+

R∗
1,1
− A1,1, . . . ,

∑N
j=1 L∗

K, j
+

∑N
j=1 R∗

K, j
−

∑N
j=1 AK, j, 0, L

∗
0,2
−

∑K
k=1 R∗

K,1
, . . . ,

∑N
j=1 L∗

0, j
−

∑N−1
j=1

∑K
k=1 R∗

k, j

]†
∈ C(2NK+N)×1

with respect to (λ,µ,ν). Let (λopt,µopt, νopt) denote the ob-

tained optimal dual solution to problem (14).

C. Finding Optimal Primal {Q
opt

i
, L

opt

0,i
, L

opt

k,i
, R

opt

k,i
}

With (λopt,µopt,νopt) obtained, it remains to find the opti-

mal primal solution to problem (10). Since {L∗
0,i
}, {L∗

k,i
} and

{R∗
k,i
} are the unique optimal solution to problems (16), (17),

and (18), respectively, the optimal {L
opt

0,i
}, {L

opt

k,i
}, and {R

opt

k,i
}

to problem (10) can be directly obtained by replacing (λ,µ,ν)

with the optimal dual (λopt,µopt, νopt) in (19), (20), and (21),

respectively.

On the other hand, the optimal solution to problem (10)

cannot be obtained from Lemma 3.2 alone, and Q∗
i
= 0,

i ∈ N , are even not feasible for problem (10). Therefore, an

additional procedure is required to obtain the optimal {Q
opt

i
}.

With {L
opt

0,i
, L

opt

k,i
, R

opt

k,i
} obtained, the optimal {Q

opt

i
} to problem

(10) can be obtained by solving the following semidefinite

program (SDP) via convex solvers (e.g., CVX toolbox [16]):

{Q
opt

i
} , arg min

{Qi �0}

N∑

i=1

τtr(Qi) (22a)

s.t.

i∑

j=1

ζkC3
k
(L

opt

k, j
)3

τ2
+

i∑

j=1

τσ2

gk, j

(2
R

opt
k, j

τB − 1)

≤

N∑

j=1

τηk tr(Qjhk, jh
H
k, j ), ∀k ∈ K, i ∈ N . (22b)

By combining {Q
opt

i
} together with {L

opt

0,i
, L

opt

k,i
, R

opt

k,i
}, we fi-

nally obtain the optimal solution to problem (10). In summary,

Algorithm 1 for solving problem (10) is presented in Table I.

To gain essential design insights, based on Lemmas 3.3

and 3.4, we have Proposition 3.1 for the optimal executed

task input-bits allocated to the users’ local computing and the

AP’s remote computing as follows.

Proposition 3.1: For any user k ∈ K and the AP (k =

0), the optimal number of executed task input-bits {L
opt

k,i
} is

monotonically increasing over time, i.e.,

L
opt

k,1
≤ . . . ≤ L

opt

k,N
, ∀k ∈ K ∪ {0}. (23)

Proof: See Appendix C.

Remark 3.1: Proposition 3.1 indicates the monotonically

increasing feature of the optimal number of executed task

input-bits for both the users and the AP. This can be intuitively

understood as follows. Notice that the computation energy

TABLE I
ALGORITHM 1 FOR OPTIMALLY SOLVING PROBLEM (10)

a) Initialize (λ, µ, ν) with λk, i ≥ 0, µk, i ≥ 0, νk ≥ 0, H̄i � 0, and∑N
j=1

λk, j > 0, ∀k ∈ K , i ∈ N.

b) Repeat:

1) Obtain {L∗
0, i
}, {L∗

k, i
}, and {R∗

k, i
} under given (λ, µ, ν) accord-

ing to (19), (20), and (21), respectively;
2) Update (λ, µ, ν) based on the ellipsoid method [16], by using the

fact that the subgradient of G(λ,µ, ν) is
[ ζ1C

3
1
L∗3

1,1

τ2 +
τσ2

g1,1
(2

R∗
1,1

τB −

1), . . . ,
∑N

j=1

ζKC3
K

L∗3
K, j

τ2 +

∑N
j=1

τσ2

gK, j
(2

R∗
K, j
τB − 1), L∗

1,1
+

R∗
1,1
− A1,1, . . . ,

∑N
j=1

L∗
K, j
+

∑N
j=1

R∗
K, j
−

∑N
j=1

AK, j, 0, L∗
0,2
−

∑K
k=1

R∗
K,1

, . . . ,
∑N

j=1
L∗

0, j
−
∑N−1

j=1

∑K
k=1

R∗
k, j

]†
∈ C(2NK+N )×1

with respect to (λ, µ.ν).

c) Until the dual variables (λ, µ, ν) converge within the prescribed accu-
racy.

d) Set (λopt,µopt, νopt) ← (λ, µ, ν).

e) Output: Obtain {L
opt

0, i
}, {L

opt

k, i
}, and {R

opt

k, i
} under the dual optimal

(λopt, µopt, νopt) according to (19), (20), and (21), respectively, and

compute {Q
opt

i
} by solving the SDP in (22).

consumption functions in (3) and (8) for each slot are convex

with respect to the number of task input-bits. Therefore, in

order to reduce the energy consumption, it is desirable for the

users and the AP to evenly distribute the computation tasks

as far as possible. Due to the task causality constraints in (1)

and (6), it is evident that the computation load at each of the

users and the AP should monotonically increase over time,

as more tasks will be accumulated over time. This feature is

reminiscent of the monotonically increasing power allocation

in energy harvesting based wireless communications due to

the energy causality constraints (see, e.g., [14])..

Remark 3.2: Based on (21) in Lemma 3.5, in slot i ∈ N , the

optimal number of offloaded task input-bits R
opt

k,i
for each user

k ∈ K should be adapted according to the task load at the AP.

Specifically, under the case when the channels for both WPT

and computation offloading remain unchanged between user

k ∈ K and the AP, it holds that Rk,i+1 ≥ Rk,i if νi ≤ µk,i , ∀i ∈

{1, . . . , N − 2}. This implies that, when the penalty in energy

consumption for the AP to violate the task causality constraint

at slot i is smaller than that for user k, user k should offload

more task input-bits at the next slot i + 1, ∀i ∈ {1, . . . , N − 2}.

In addition, it is intuitively expected that R
opt

k,i
is propositional

to the offloading channel power gain gk,i from user k to the

AP at slot i ∈ N .

IV. NUMERICAL RESULTS

In this section, we provide numerical results to evaluate the

performance of the proposed algorithm, where M = 4 and

N = 10 are set with each slot duration being τ = 0.1 second.

For comparison, we consider the following four benchmark

schemes.

• Local computing only: Each user k ∈ K accomplishes its

computation tasks by only local computing. This scheme

corresponds to solving problem (10) by setting Rk,i = 0

and L0,i = 0, ∀i ∈ N , k ∈ K.

• Full offloading: Each user k ∈ K accomplishes its

computation tasks by fully offloading them to the AP.
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Fig. 2. The average energy consumption per slot at the AP versus the user
number K .

This scheme corresponds to solving problem (10) by

setting Lk,i = 0, ∀i ∈ N , k ∈ K.

• Myopic design: In each slot i ∈ N , both user k ∈ K

and the AP accomplish their task input-bits of Ak,i and∑K
k=1 Rk,i−1, respectively, i.e., we have Ak,i−Lk,i−Rk,i = 0

and L0,i−
∑K

k=1 Rk,i−1 = 0, ∀i ∈ N , k ∈ K. In this scheme,

the system energy minimization can be implemented

independently over each individual slot, as investigated

in [7].

• Separate WPT-MEC design: This scheme separately de-

signs the energy beamforming for WPT and the users’

computation offloading for MEC. First, the sum-energy

consumption of the K users is minimized subject to

their individual computation latency constraints [4]. The

AP then designs its energy beamforming with energy

minimization under the given energy demands at users.

In the simulation, the system parameters are set as follows,

unless stated otherwise. We set ηk = 0.3, C0 = Ck = 103

CPU cycles/bit, ζk = 10−28, ζk = 10−29, ∀k ∈ K, the receiver

noise power σ2
= 10−9 Watt, and the system bandwidth for

offloading B = 2 MHz. We also consider a distance-dependent

Rayleigh fading channel model [7] with the channel power

gain at a unit of reference distance set as −32dB. The number

Ak,i of task input-bits for user k ∈ K at slot i ∈ N is set

as a random variable following the uniform distribution of

Ak,i ∼ U(Amin, Amax) with Amin = 105 and Amax = 106 input-

bits unless stated otherwise. The numerical results are obtained

by averaging over 500 randomized channel realizations and

randomized task realizations.

Fig. 2 shows the average energy consumption per slot at the

AP versus the user number K , where the distances between

the AP and the K users are identical with dk = 4 meters,

∀k ∈ K. It is observed that the proposed design achieves

the lowest average energy consumption among all the five

schemes, and its gain over the benchmark schemes becomes

more significant when K increases. At small value of K (e.g.,

K ≤ 4), the benchmark myopic-design and separate-WPT-

MEC-design schemes are observed to achieve near-optimal

performance close to that achieved by the proposed design. It

is also observed that the separate-WPT-MEC-design performs

inferior to the myopic-design scheme at large K values. This

Task arrival per slot A
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Fig. 3. The average energy consumption per slot at the AP versus the
maximum number of task input-bits Amax.

validates the importance of the proposed joint design for en-

ergy saving in multiuser scenarios. Both the local-computing-

only and full-offloading schemes are observed to perform

inferior to the other two benchmark schemes. When K ≤ 8, the

full-offloading scheme outperforms the local-computing-only

scheme, and the reverse is true when K becomes larger. This

is due to the fact that the energy consumption for offloading

increases faster (exponentially) than that for local computing

(cubically).

Fig. 3 shows the average energy consumption at the AP

per slot versus the maximum number of task input-bits Amax,

where K = 6 and dk = 4 meters, ∀k ∈ K. It is observed

that the proposed design outperforms the other benchmark

schemes. As Amax increases, the performance gain achieved by

the proposed design becomes more substantial. The myopic-

design scheme is observed to achieve a near optimal perfor-

mance close to the proposed design at small Amax values (e.g.,

Amax = 8×105). Similar performance trends for the benchmark

schemes are observed as in Fig. 2.

V. CONCLUSION

This paper studied the optimal resource allocation for a

wireless powered multiuser MEC system to minimize the

energy consumption at the AP subject to the computation

latency and energy harvesting constraints at users, by jointly

optimizing the AP’s energy beamforming for WPT and remote

execution, as well as each user’s local computing/offloading.

Using the Lagrange duality method, we developed an efficient

algorithm to obtain a well-structured optimal solution, where

the optimal number of task input-bits at the AP and users is

monotonically increasing over time. Numerical results demon-

strated the merit of our proposed joint-WPT-MEC design

compared to other benchmark schemes without such joint

design. In future work, we will extend the results to other

setups when the energy/task arrival information and the CSI

are only causally known or even a-priori unknown at the

AP. For such cases, our offline optimization will serve as a

performance upper bound, and the obtained structured solution

may motivate online algorithms. In general, how to obtain

optimal solution for such new scenarios will be a challenging

problem that requires further investigation.
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APPENDIX

A. Proof of Lemma 3.1

First, we prove (13a). Suppose that the matrix H̄i is not

semi-definite positive for some i ∈ {0, . . . , N − 1}. In this

case, by letting Qi = τxx
H , τ →∞, where xHH̄ix < 0 and

x ∈ CM×1, it can be shown from (11) that L(·) → −∞. Thus

the matrix H̄i � 0 must hold for all i ∈ N for G(λ,µ,ν) to be

bounded from below. Next, we consider (13b). Suppose that∑N
j=i λj = 0 for some k ∈ K and i ∈ N . In this case, by letting

∑N
j=i µk, j < 0, Rk,i = 0, and Lk,i → ∞, it can be shown from

(11) that L(·) → −∞. Thus, the fact
∑N

j=i λk, j = 0 cannot be

true for G(λ,µ,ν) to be bounded from below. Lemma 3.1 is

now proved.

B. Proof of Lemma 3.3

Introducing the Lagrange multiplier θ ≥ 0 associated with

the constraint L0,i ≥ 0, the Lagrangian of problem (16) is

L0(L0,i, θ) =
ζ0C

3
0
L3

0, i

Nτ2 +

∑N
j=i νjL0,i−θL0,i and the dual problem

of problem (16) is then

max
θ≥0

min
L0, i ≥0

L0(L0,i, θ) (24)

Note that problem (16) is convex and satisfies Slater’s con-

dition. Therefore, the strong duality holds between problems

(16) and (24). Let L∗
0,i

and θ∗ be the optimal solutions for

problems (16) and (24), respectively. The Karush-Kuhn-Tucker

(KKT) optimal conditions are then given by

2ζ0C3
0
(L∗

0,i
)2

Nτ2
+

N∑

j=i

νj − θ
∗
= 0 (25a)

θ∗L∗0,i = 0, L∗0,i ≥ 0, θ∗ ≥ 0, (25b)

where (25a) denotes that the gradient of L0(L0,i, θ) must van-

ish at L∗
0,i

and the first equality in (25b) is the complementary

slackness condition. Note that θ∗ acts as a slack variable in

(25a) and it can then be eliminated. Together with L∗
0,i
≥ 0,

we obtain L∗
0,i
=

√
Nτ2

[
−

∑N
j=i νj

]
+

3ζ0C
3
0

, ∀i ∈ N .

C. Proof of Proposition 3.1

First, consider the case with k = 0. Based on Lemma 3.3,

∀i ∈ {1, . . . , N − 1}, we have

L
opt

0,i+1
=

√√√√
Nτ2

[
−

∑N
j=i+1 ν

opt

j

]
+

3ζ0C3
0

(26)

≥

√√√√
Nτ2

[
−

∑N
j=i ν

opt

j

]
+

3ζ0C3
0

= L
opt

0,i
, (27)

where the inequality follows from the fact that ν
opt

i
≥ 0 for

any i ∈ {1, . . . , N − 1}. It thus holds that L
opt

0,1
≤ . . . ≤ L

opt

0,N
.

Next, we consider the case with k ∈ K. Similarly, from

Lemma 3.4, ∀i ∈ {1, . . . , N − 1}, it follows that

L
opt

k,i+1
=

√√√√√τ2
[
−

∑N
j=i+1 µ

opt

k, j

]
+

3
∑N

j=i+1 λ
opt

k, j
ζkC3

k

(28)

≥

√√√√√τ2
[
−

∑N
j=i µ

opt

k, j

]
+

3
∑N

j=i λ
opt

k, j
ζkC3

k

= L
opt

k,i
, ∀k ∈ K, (29)

where the inequality follows from the fact that both µ
opt

k,i
≥ 0

and λ
opt

k,i
≥ 0 hold for any i ∈ {1, . . . , N − 1}. Therefore, we

have L
opt

k,1
≤ . . . ≤ L

opt

k,N
for all k ∈ K ∪ {0}.
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