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Abstract

In a wireless powered communication network (WPCN), an energy access point supplies the energy needs of the

network nodes through radio frequency wave transmission, and the nodes store the received energy in their batteries

for their future data transmission. In this paper, we propose an online stochastic policy that jointly controls energy

transmission from the EAP to the nodes and data transfer among the nodes. For this purpose, we first introduce a

novel perturbed Lyapunov function to address the limitations on the energy consumption of the nodes imposed by

their batteries. Then, using Lyapunov optimization method, we propose a policy which is adaptive to any arbitrary

channel statistics in the network. Finally, we provide theoretical analysis for the performance of the proposed policy

and show that it stabilizes the network, and the average power consumption of the network under this policy is within

a bounded gap of the minimum power level required for stabilizing the network.

I. INTRODUCTION

Nowadays, smart electronic devices are increasingly making their way into our daily life. It is predicted that

by 2021, there will be around 28 billion connected devices all over the world [1], a great number of which will

be portable and battery-powered. However, in some applications, replacing the batteries or recharging them by

cables is impossible, e.g. in biomedical implants inside human bodies [2] or distributed monitoring sensors in a

wide area of forest. Consequently, to ensure a better user experience for the next-generation networks, the problem

of providing the required power for the portable battery-operated devices has recently gained lots of attention,

both from academia and industry [2], [3]. Recently, the idea of charging batteries over the air is considered as

a solution which guarantees an uninterrupted connection and operates autonomously, while reduces the massive

battery disposal. Wireless Power Transfer (WPT) is the key enabling technology for charging over the air. There

are various WPT methods including Radio Frequency (RF) power transfer [3], resonant coupling [4] and inductive

coupling [5]. Compared to the two latter methods, RF power transfer provides a wider coverage range and is more

flexible for transmitter/receiver deployment and movement [2]. Therefore, it is considered as the most promising

WPT approach by the literature.

Adapting WPT technology in wireless communication networks introduces new research challenges, mostly

related to increasing coverage and efficiency. A prominent challenge is how to maintain power transfer efficiency

despite the transmission path loss [6]. There has been numerous studies on energy beamforming as a technique for

alleviating the high transmission path loss (e.g., see [6]–[9]). In [6] and [7], a wireless powered communication

network (WPCN) consisting of a hybrid data/energy access point with multiple antennas and several single-antenna

users is considered, in which the access point transmits energy toward the nodes in the down-link direction and

November 27, 2018 DRAFT

http://arxiv.org/abs/1811.10135v1


2

the nodes transmit data to the access point in the up-link direction. In these works, the minimum achievable rate

among users is maximized by optimizing the beamforming vector and some other controllable parameters. Energy

beamforming for the so-called simultaneous wireless information and power transfer (SWIPT) method is studied in

[8], [9]. Under SWIPT, both energy and data are jointly transmitted by an RF carrier in the down-link, the receiver

extracts data or harvests power through splitting the received signal in the time or power domain.

Cooperative wireless powered communication is another line of research that aims at increasing the network

coverage (e.g. see [10]–[13]). The intuition behind it is that in WPCNs, the users nearer to the access point harvest

more energy, while need to consume less energy for their data transmission. Hence, using cooperation, these nodes

can use some of their surplus energy to help relaying the data of the further nodes. In [10], a two user scenario is

considered in which the nearer user allocates a portion of its harvested energy to help relaying the farther user’s data

to the access point. The authors have maximized the sum rate of the users by optimizing the resource allocation. In

[11], the authors have derived the achievable rate of a two-hop relay network, in which the relay stores its harvested

energy in the battery for its future transmissions. While most works in the related literature have considered two

node cooperation there are very few works on multi-hop cooperation, e.g. [12] and [13]. In these works a general

multi-hop network with energy transfer capability has been considered, and the routing policy and energy allocation

are determined so as to maximize the sum rate and the lifetime of the network.

It should be noted that most of the existing works in the literature have focused on optimizing the network

parameters for a single time-slot. Clearly, this approach is not optimal when the users can store the harvested energy

in their batteries for their future use. There are very few works on the long-term network optimization [14]–[18].

The authors in [14] have studied the long-term network utility optimization through markov decision programming

(MDP) theory. The MDP method requires statistical knowledge of the channel variation, and the complexity of

its solutions grows fast as the network dimension increases [19]. However, the Lyapunov optimization technique

applied in [15]–[18], is independent of the channel statistics and the network dimension.

In this work, we consider the problem of designing an optimal WPT policy that schedules power allocation,

data routing and energy beamforming in a multi-hop WPCN. We consider a battery level constraint for each node,

which indicates that at each time-slot, the energy that can be consumed can not be greater than the energy stored

in the battery. Moreover, the average data backlog in the network should remain finite. The battery constraint

complicates the problem, since high energy consumption at a time may highly lower down the battery level and

cause energy outage in future. Therefore, the decision at one time-slot affects the optimal decision in future, as

well. This coupling makes finding the optimal policy highly challenging. A similar problem has been considered

in utility maximization for energy harvesting wireless sensor networks in [20], [21]. The authors have addressed

the battery constraint by a modified Lyapunov optimization method. However, their method is not applicable in our

energy optimization problem, as their objective function (and hence, their accordingly analysis) is totally different.

In this paper, we use Lyapunov optimization method with a novel Lyapunov function to avoid energy outage. We

propose an online policy that is independent of the channel statistics. Under this policy, at each time-slot, the

energy beam is focused toward the nodes with lower battery levels, greater queue backlogs and better energy link
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condition. Moreover, the data is routed through the nodes with less congested queues and greater battery level. We

then analyze the performance of the proposed policy and provide theoretical results that show the performance of

our policy is within O( 1
V
) of the optimal policy, for any V > 0, while the average backlogs of data queues are

upper bounded by O(V ). We would like to note that the most related work to our paper is [15], which studies

energy optimization in a single-hop WPCN. However, the authors in [15] have pursued a different approach to

address the energy outage problem, which imposes a minimum requirement on maximum transmission power of

the access point. This minimum requirement can be too high in practice and may not be satisfied in certain cases,

due to safety or implementation issues.

The contributions of this paper can be summarized as follows:

• We propose a power scheduling, energy beamforing and data routing policy for a general multi-hop WPCN.

• We show that our policy conforms to the battery level constraint.

• Using Lyapunov optimization method, we bound the optimality gap of the EAP average power consumption

and the average backlog of the queues.

The rest of the paper is organized as follows. Section II illustrates our system model and problem formulation.

Section III presents our proposed policy. The performance of the policy is analyzed in Section IV. Simulation

results are presented in Section V, and finally, Section VI concludes the paper.

Notation: We use boldface letters to denote matrices and vectors. (.)T denotes the transpose of a matrix. |.|
denotes the absolute value. If not mentioned, vectors are single row-matrices. E{.} represents the expectation. [x]+

denotes max{x, 0}. 1
(

Condition
)

equals 1 if the Condition is satisfied and equals 0, othewise.

II. SYSTEM MODEL

We consider a WPCN consisting of one energy access point (EAP) and N wireless nodes, where there exist

S streams of data between distinct endpoints in the network. The nodes are battery-powered, and the batteries

are recharged by the energy received from the EAP. There exist N energy links between the EAP and the nodes,

and L data links between the nodes. The topology of a sample network is depicted in Fig. 1. For each data link

l ∈ {1, . . . , L}, T (l) and R(l) denote the transmitter and receiver of the l-th link, respectively. Moreover, we define

In and On to be the sets of the ingoing and outgoing data links of node n, respectively. The time horizon is

divided into time-slots with fixed length1, indexed by t. At the beginning of each time-slot, a small portion of it is

devoted to channel estimation and control signaling. The rest of the time-slot is divided equally for energy and data

transmission, respectively. The EAP is equipped with M antennas to focus its transmission beam toward the nodes.

Moreover, we assume that the nodes use a single antenna for both energy reception and data transmission/reception.

The channels state information are assumed to be constant during a time-slot but vary randomly and independently

in successive time-slots. At each time-slot t, gl(t) and hm
n (t) represent the channel gain of the l-th data link and

the gain of the channel between m-th antenna of the EAP and the node n, respectively. Accordingly, we define

1Without loss of generality, we assume the slot duration is normalized to 1. Therefore, we sometimes use the terms “power” and “energy”

interchangeably.
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Fig. 1: A sample WPCN topology.

g(t) , (g1(t), . . . , gL(t)) and hn(t) , (h1
n(t), . . . , h

M
n (t)) as the channel vectors for data links and energy link of

node n, respectively.

A. Data and Energy Transmission

Let p(t) , (p1(t), . . . , pL(t)) denote the data link power vector, in which the l-th entry specifies the transmission

power over the l-th data link. Moreover, let Π denote the set of all feasible power vectors. We assume that setting

any element of a power vector in Π to zero results in a new power vector that also belongs to Π. Furthermore,

we assume that the peak transmission power is limited to Pm (i.e., pl(t) ∈ [0, Pm]). Let Cl(p(t), g(t)) denote the

data transmission capacity of link l under power vector p(t) and channel vector g(t). Some important properties

of Cl(p(t), g(t)) is presented in following remark.

Remark 1: Consider two power vectors p(t) and p′(t), where p′l′(t) = pl′(t), ∀l′ 6= l and p′l(t) = 0. The capacity

of link l under each of these two power vectors satisfies the following properties:

Cl(p
′(t), g(t)) = 0, (1)

Cl(p(t), g(t)) ≤ δpl(t), (2)

Cl′ (p(t), g(t)) ≤ Cl′(p
′(t), g(t)) ∀l′ 6= l, (3)

where (2) holds for some δ > 0.

Note that the above properties are satisfied under conventional rate-power functions. Equation (1) implies that for

any link l, no data can be passed through it if no power is assigned to this link. Inequality (2) states that the rate-

power function is upper bounded by a linear function, which is the case for differentiable functions with limited

first derivative. Finally, inequality (3) holds due to the interference effect among wireless links. Furthermore, we

assume that there exists a constant Cm > 0, such that C(p(t), g(t)) ≤ Cm, ∀p(t) ∈ Π, ∀g. For any link l, let Cs
l (t)

denote the transmission rate allocated to stream s, ∀s, over that link. Clearly, the sum allocated rate over each link

l should not exceed the capacity of that link. Therefore, a feasible rate allocation scheme should satisfy

S
∑

s=1

Cs
l (t) ≤ Cl(p(t), g(t)). (4)
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Fig. 2: Internal structure of an EAP.

Fig. 2 shows the considered structure of an EAP. The EAP performs energy beamforming to concentrate its

transmit energy towards the nodes. Vector w(t) , (w1(t), . . . , wM (t)) denotes the normalized beamforming vector

of the EAP, and accordingly, the received power at each node n is given by

Qn(t) = pAP (t)|w(t)hT
n (t)|2 ∀n, (5)

where pAP (t) is the EAP’s transmit power at time t, with its peak power equal to PAPm, i.e., pAP (t) ∈ [0, PAPm].

B. Wireless Nodes

As shown in Fig. 3, each node includes S data queues and is equipped with a battery. Let Us
n(t) denote the

backlog of the data queue allocated to stream s ∈ {1, . . . , S} in node n. The backlog evolves as follows

Us
n(t+ 1) =

[

Us
n(t)−

∑

l∈On

Cs
l (t)

]+

+
∑

l∈In

Cs
l (t) +As

n(t), (6)

where As
n(t) ∈ [0, Am] denotes the random arrival process of data stream s at node n. Note that As

n(t) is nonzero

only if node n is the source of stream s. Let λs
n , E {As

n(t)}, then clearly we have

λs
n =











λs, if node n is source of stream s,

0, otherwise,

where λs is the arrival rate for stream s.

The battery of each node is recharged by the energy received from the EAP and is discharged when the node

transmits data. Let En(t) denote the battery level of node n at beginning of time-slot t. Therefore, the battery level

at node n evolves according to following equation:

En(t+ 1) = En(t)−
∑

l∈On

pl(t) +Qn(t), (7)

where
∑

l∈On
pl(t) is the total transmit power of node n at time-slot t.

November 27, 2018 DRAFT



6

Fig. 3: The data flows and energy flow inside each node of the network.

C. Network Controller

There exists a network controller, located at the EAP that controls over both data and energy links, having access

to channel state information, data queue backlogs and the battery levels of all links and nodes in the network. It

controls the energy links by specifying the EAP transmission power pAP (t) and the beamforming vector w(t), and

the data links by determining their power vector p(t) and routing of the data streams. It routes the data through

allocating the capacity of the links to the existing data streams in the network.

As aforementioned, in this paper, we focus on designing a joint data routing and energy transfer control policy for

the network controller that minimizes the total transferred power of the EAP while guaranteeing all data queues in

the network to be stable. The intended policy can be explicitly formulated as the solution to the following problem2.

minimize
p(t),w(t), pAP (t), C

s
l (t)

p̄AP = lim
T→∞

1

T

T−1
∑

t=0

E {pAP (t)} (8a)

subject to
∑

l∈O(n)

pl(t) ≤ En(t), ∀n, t, (8b)

Ū = lim sup
T→∞

1

T

T−1
∑

t=0

∑

n,s

E {Us
n(t)} <∞ ∀n, s, (8c)

(4), (6), (7), (8d)

where Constraint (8b) guarantees that the sum power allocated to the outgoing links of a node is not greater than

what can be supported by the battery level of the node. Moreover, Constraint (8c) ensures stability of all queues.

Note that the formulated problen in (8) is a stochastic utility optimization problem. Although in general, these

problems can be tackled by the so-called min drift plus penalty (MDPP) algorithm [22], the battery constraint in

(8b) highly complicates our problem and makes it quite challenging. This is mainly due to the fact that in the

battery-operated case, consuming high power in a specific time-slot may drastically lower the battery level down

2Note that including both time average and expectation in this problem formulation is due to the fact that we seek the optimal policy among

both stationary and non-stationary policies. For a non-stationary policy, the expectations are time-dependent and hence, taking the time average

is required.
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TABLE I: Notation Summary

Symbol Meaning

Us
n(t) The backlog of data queue allocated to stream s in node n at time-slot t.

En(t) The battery level of node n at time-slot t.

N,S, L Number of nodes, streams and data links.

T (l) The transmitter index for link l.

R(l) The receiver index for link l.

On The set of outgoing links from node n.

In The set of ingoing links to node n.

No The maximum number of outgoing links from from a specific node.

Ni The maximum number of ingoing links to a specific node.

Qn(t) The harvested energy by node n at time-slot t.

w(t) The beamforming vector.

pAP (t) The transmission power of EAP at time-slot t.

As
n(t) The exogenous data arrival for stream s in node n.

λs
n The mean value of the exogenous data arrival for stream s in node n.

g(t) The vector of data link channel states at time-slot t.

h(t) The vector of energy link channel states at time-slot t.

p(t) The vector of power allocation to data links at time-slot t.

Π The set of valid power vectors.

Cl(p(t), g(t)) Capacity of link l at time-slot t.

Pm, PAPm Maximum transmission power of nodes and EAP.

and restrict future transmissions. Therefore, having the battery level constraint, policies with independent decisions

at each time-slot are not optimal any more, which is not acceptable in the MDPP problem formulation. In the

sequel, we propose a solution to handle the battery constraint in MDPP problem formulation. For convenience, all

the notations in the paper and their definitions are presented in Table I.

III. THE PROPOSED ONLINE CONTROL POLICY FOR JOINT DATA ROUTING AND POWER TRANSFER

SCHEDULING

In this section, we present an online control policy for the network controller. This policy is developed based on

the Lypunov optimization method [22]. We propose a novel perturbed Lyapunov function to push the battery level

up. The Lyapunov function is defined as

L(t) ,
N
∑

n=1

S
∑

s=1

Ls
n(t),

November 27, 2018 DRAFT
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where

Ls
n(t) ,

1

2

(

Us
n(t)

)2
+

1

2

(

Us
n(t)− CEn(t)

)2
1
(

Us
n(t) > CEn(t)

)

,

1

(

Us
n(t) > CEn(t)

)

=











1, Us
n(t) > CEn(t),

0, otherwise.

(9)

Note that constant C in (9), is an energy normalization factor and we set it to 2δ
1− 1

α

, where δ is the slope of the

linear upper bound for the rate-power function in (2) and α > 1 is a constant and will be discussed later. We also

define the Lypunov drift function,

∆(L(t)) , E {L(t+ 1)− L(t)|U(t),E(t)} ,

where U(t) and E(t) are the sets of all data queues and batteries in the network, respectively. Next we define the

drift-plus-penalty function, as follows

∆(L(t)) + V E{pAP (t)|U(t),E(t)}, (10)

where V > 0 is a control parameter. The following Lemma establishes an upper bound on the above drift-plus-

penalty function.

Lemma 1: For the defined drift-plus-penalty function, the following inequality always holds

∆(L(t)) + V E{pAP (t)|U(t),E(t)} ≤ B +
∑

(n,s)∈Ñ(t)

E

{

∑

l∈In

C
s
l (t)−

∑

l∈On

C
s
l (t)|U(t),E(t)

}

U
s
n(t)

+
∑

(n,s)∈
≈

N(t)

E

{

C
∑

l∈On

pl(t) +
∑

l∈In

C
s
l (t)−

∑

l∈On

C
s
l (t)|U(t),E(t)

}

(

U
s
n(t)− CEn(t)

)

+ E

{

V pAP (t)− C
∑

(n,s)∈
≈

N(t)

Qn(t)
(

U
s
n(t)− CEn(t)

)

|U(t),E(t)

}

+
∑

(n,s)∈Ñ(t)

λ
s
nU

s
n(t) +

∑

(n,s)∈
≈

N(t)

λ
s
n

(

U
s
n(t)− CEn(t)

)

,

(11)

where Ñ(t) , {(n, s)|Us
n(t) > U0},

≈

N(t) ,

{

(n, s)|Us
n(t) > max{U0, CEn(t)}

}

and U0 = Pm(C + αδ). The

constant B is defined in Appendix I.

Proof: see Appendix I.

The parameter U0 and the set Ñ(t) in the above Lemma are the the congestion threshold and the set of congested

queues, respectively. Moreover, we call the congested queues in the set
≈

N(t) the critically congested queues, since

the size of their backlog exceeds the normalized battery level of their corresponding node. Our policy tends to

decrease a queue backlog only if the queue is congested. Consequently, setting the congestion threshold to the

smallest possible value reduces the average queue backlog. The parameter α can be optimized to achieve the

minimum congestion threshold. Substituting C in the definition of U0 with 2δ
1− 1

α

, it can be verified that U0 is

minimized at α =
√
2 + 1.
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As will be shown in section IV, any policy that minimizes the right hand side of (11) at each time-slot stabilizes

the network and yields an average power consumption within a bounded gap to the optimal power consumption.

Consequently, we are interested in finding a policy that minimizes the upper bound in (11). For this purpose, we

first rearrange the right hand side in (11) and rewrite it as follows:

∆(L(t)) + V E {pAP (t)|U(t),E(t)} ≤ B + E

{

L
∑

l=1

JT (l)(t)pl(t)−
L
∑

l=1

S
∑

s=1

W s
l (t)C

s
l (t)|U(t),E(t)

}

+ E

{

V pAP (t)−
N
∑

n=1

QnJn(t)

}

+
∑

(n,s)∈Ñ(t)

λs
nU

s
n(t) +

∑

(n,s)∈
≈

N(t)

λs
n

(

Us
n(t)− CEn(t)

)

,

(12)

where W s
l (t) is called the data coefficient of stream s over link l and is defined as

W s
l (t) =

(

Us
T (l)(t)− CET (l)(t)

)

1
(

(T (l), s) ∈
≈

N(t)
)

−
(

Us
R(l)(t)− CER(l)(t)

)

1
(

(R(l), s) ∈
≈

N(t)
)

+ Us
T (l)(t) 1

(

(T (l), s) ∈ Ñ(t)
)

− Us
R(l)(t) 1

(

(R(l), s) ∈ Ñ(t)
)

.
(13)

Furthermore, Jn(t) is called the power coefficient for node n and is defined as

Jn(t) = C
∑

s

(

Us
n(t)− CEn(t)

)

1

(

(n, s) ∈
≈

N(t)
)

. (14)

In order to minimize the right hand side of (12), it suffices to minimize the inner terms of the two expectations

as the other terms are constant with respect to the control variables p(t), pAP (t),w(t) and Cs
l (t). To minimize the

first expectation, we first allocate the whole capacity of each link to the stream with greatest data coefficient over

that link, and then we select the minimizing power vector. Furthermore, minimization of the second expectation

can be decomposed into beamforming vector selection and the EAP transmission power selection. We rewrite the

term inside the expectation as

F (t) , pAP (t)

[

V −w(t)

(

L
∑

n=1

Jn(t)h
T
n (t)hn(t)

)

wT (t)

]

= pAP (t)
[

V −w(t)H(t)wT (t)
]

,

(15)

where

H(t) =

N
∑

n=1

Jn(t)h
T
n (t)hn(t). (16)

It can be verified that the term inside the brackets is minimized if we select the beamforming vector w∗(t) in

direction of the eigenvector of H(t) with maximum eigenvalue. Substituting w∗(t) in (15), F (t) is then minimized

by determining p∗AP (t) according to following rule

p∗AP (t) =











PAPm, V <
∑N

n=1 |w∗(t)hT
n (t)|2Jn(t),

0 otherwise.

(17)
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Algorithm 1 Data link control policy at each time-slot t (Data Routing)

1: Calculate W s
l (t), ∀l, s, and Jl(t), ∀l, according to (13) and (14).

2: Find Wl(t)← maxs {W s
l (t)}.

3: Find p∗(t)← argmin
p(t)∈Π

∑L

l=1

[

JT (l)(t)pl(t)−Wl(t)Cl(p(t), g(t))
]

.

4: Find s∗l ← argmaxs∈[1,S]W
s
l (t), and set C

s∗
l

l (t)← Cl(p
∗(t), g(t)), ∀l.

5: Update data queues according to (6).

Algorithm 2 Energy link control policy at each time-slot t (Power Transfer Scheduling)

1: Calculate Jn(t), ∀n, according to (14).

2: Calculate the sum channel matrix H according to (16).

3: Derive the eigenvalues and eigenvectors of H and set w∗ equal to the eigenvector with the largest eigenvalue.

4: if V <
∑N

n=1 |w∗(t)hT
n (t)|2Jn(t) then

5: Set pAP (t)← PAPm.

6: else

7: Set pAP (t)← 0.

8: end if

The data link control and energy link control polices are summarized in Algorithms 1 and 2, respectively.

It should be noted that finding the optimal power vector p∗(t) in the data link control policy requires solving

the max-weight problem

p∗(t) = argmin
p(t)∈Π

L
∑

l=1

[

JT (l)(t)pl(t)−Wl(t)Cl(p(t), g(t))
]

,

which can be NP-hard in general. However, in certain cases, e.g., in interference-free networks, closed-form solutions

can be found. Furthermore, approximate solutions for this problem results in a bounded optimality gap in the overall

performance. The approximate solutions have been extensively discussed in [22, Chapter 6].

IV. PERFORMANCE ANALYSIS OF THE PROPOSED CONTROL POLICIES

In this section, we first derive a lower bound on the minimum required power for stability. We then use Lyapunov

Optimization Theorem [22] to compare the proposed control policy to the derived lower bound.

A. Lower Bound on the Minimum Power for Stability

In order to obtain a lower bound on the minimum power that stabilizes the queue of each link, we substitute

the instantaneous battery constraint (8b) with a more relaxed constraint on the average power consumption. The

battery constraint along with (7) imply that

T−1
∑

t=0

∑

l∈On

pl(t) ≤ En(0) +

T−1
∑

t=0

Qn(t)⇒ lim sup
T→∞

1

T

T−1
∑

t=0

∑

l∈On

E {pl(t)} ≤ lim sup
T→∞

1

T

T−1
∑

t=0

E {Qn(t)} ∀n, (18)
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where a limited initial battery charge is assumed. The last inequality in (18) holds under any policy that conforms

to the battery constraint. We name (18) the average power constraint and use it as a substitute for the battery

constraint (8b).

Let λ = (λ1, . . . , λS) denote the data streams arrival rate vector. We define the capacity region Λ as the set of

all data arrival rate vectors that can be stabilized under the average power constraint (interested readers are referred

to [23] for more details on the network capacity region). The following theorem introduces a randomized policy

that achieves the minimum power consumption over all other polices with average power constraint.

Theorem 1: Suppose that channel states and data arrivals are i.i.d over different time-slots. Moreover, assume

that the arrival rates belong to the capacity region (i.e., λ ∈ Λ). The minimum power required for stability, P ∗
AP ,

can be obtained by a stationary and probably randomized policy. This policy is a pure function of H(t), g(t) and

As
n(t), ∀n, s, with the following properties

λs
n +

∑

l∈In

E {Cs
l (t)} ≤

∑

l∈On

E {Cs
l (t)} , ∀n, s, t, (19)

∑

l∈On

E {pl(t)} ≤ E {Qn(t)} , ∀n, t. (20)

Proof: The proof is similar to the proof of Theorem 4.5 in [22], and hence, is omitted for brevity.

Note that Theorem 1 only states that such stationary optimal policy with aforementioned properties exists, and

does not derive such policy. In sequel, we use these properties to compare the average power consumption under

our proposed policy to the lower bound on the minimum required power for stability, i.e., P ∗
AP .

B. Performance of the Proposed Policy

In this section, we derive the optimality gap of our proposed policy. Moreover, we show that the proposed policy

stabilizes the network and conforms to the battery constraint. The following theorem summarizes the performance

of the proposed policy,

Theorem 2: Suppose the channel states and data arrivals are i.i.d over time-slots, and the arrival rates are strictly

inside the capacity region, i.e., there is a scalar ǫmax such that ∀ǫ ∈ (0, ǫmax] : λ + ǫ ∈ Λ, where ǫ is a vector

with all entries equal to ǫ . Under the proposed policy,

1) At any time-slot t, the transmission power assigned to data links originated from node n are nonzero only if

its battery level is higher than the maximum data transmission power, i.e., En(t) > Pm.

2) The time average expected power consumption satisfies,

lim sup
T→∞

1

T

T−1
∑

t=0

E{pAP (t)} ≤ p∗AP +
B

V
. (21)

3) The queues are stable and time average expected sum backlog satisfies,

lim sup
T→∞

1

T

T−1
∑

t=0

∑

n,s

E{Us
n(t)} ≤

V p∗AP +B′

ǫmax

, (22)

where B′ = B + ǫmaxNSU0.
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It should be noted that part 1 in Theorem 2 guarantees that our proposed policy does not violate the battery level

constraint. Moreover, parts 2 and 3 show the optimality of the power consumption and stability of the network

under our proposed policy, respectively.

Remark 2: Note that the performance bounds in (21) and (22) introduce a trade-off between the optimality gap

and the average queue backlog. According to this trade-off, when the average power consumption is within O( 1
V
)

of the minimum required power, the average backlog could be upper bounded by a term of the order of O(V ).

Now we prove Theorem 2.

Proof: Part 1 is proven in Appendix II, optimality (part 2) and stability (part 3) are proven here. Suppose that

the arrival rate is λ+ ǫ. Since the arrivals are i.i.d, according to Theorem 1 there is a stationary randomized policy

with the following properties,

λs
n + ǫ+ E

{

∑

l∈In

Cs
l (t)

}

≤ E

{

∑

l∈On

Cs
l (t)

}

∀n, s,

E

{

∑

l∈On

pl(t)

}

≤ E {Qn(t)} ∀n,

E {pAP (t)} = p∗AP (ǫ),

(23)

where p∗AP (ǫ) is the minimum power required for stability when the arrival rate equals λ + ǫ. Let PS
ǫ denote

the above stationary policy. Our proposed policy minimizes the right hand side of (11) over any alternative policy

including PS
ǫ . Plugging the properties in (23) into right hand side of (11) yields,

∆(L(t)) + V E {pAP (t)|U(t),E(t)} ≤ B + V p∗AP (ǫ)− ǫ
∑

(n,s)∈Ñ(t)

Us
n(t).

Taking expectation with respect to U(t) and E(t) from both sides results in

E {L(t+ 1)} − E {L(t)}+ E {pAP (t)} ≤ B + V p∗AP (ǫ)− ǫ
∑

(n,s)∈Ñ(t)

Us
n(t).

Then, summing both sides over t = 0, . . . , T − 1 yields

E {L(T − 1)} − E {L(0)}+
T−1
∑

t=0

E {pAP (t)} ≤
(

B + V p∗AP (ǫ)
)

T − ǫ
T−1
∑

t=0

∑

(n,s)∈Ñ(t)

Us
n(t).

Now by rearranging the terms and dropping the negative terms when appropriate, we get the following inequalities:

1

T

T−1
∑

t=0

E {pAP (t)} ≤
B

V
+ p∗AP (ǫ) +

E {L(0)}
T

, (24)

1

T

T−1
∑

t=0

∑

(n,s)∈Ñ(t)

Us
n(t) ≤

B + V p∗AP (ǫ)

ǫ
+

E {L(0)}
T

, (25)

The bounds in (24) and (25) can be separately optimized over values of ǫ ∈ (0, ǫmax]. Since limǫ→0 p
∗
AP (ǫ) = 0,

letting ǫ→ 0 in (24) and taking limits as T →∞ concludes the second statement of Theorem 2. To prove the last

statement, we first substitute the inner summation in (25) with summation over all data queues and then add the
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EAP

N1 (source 1)

N2 (source 2)

N3

N4 (sink 1)

N5 (sink 2)

Fig. 4: The considered topology. The black and dashed red arrows represent the data links and energy links,

respectively.

term NSU0 to the right hand side as a compensation. Setting ǫ = ǫmax and taking limits as T → ∞ completes

the proof of the third statement of Theorem 2.

V. SIMULATION RESULTS

In this section, we consider a wireless network consisting of one EAP and five wireless nodes, as shown in Fig.

4. There are two streams of data, from node 1 to node 4 and from node 2 to node 5, with average arrival rates of

λ1 = 100 bit/slot and λ2 = 50 bit/slot, respectively. The data links and energy links channel states are generated

according to Rician fading model [24], with Rician factor equal to 1. The EAP is equipped with M = 50 antennas

that are configured as a half wavelength separated array. Moreover, similar to existing works in literature (e.g see

[13] ) we assume no interference across the data links and consider an AWGN model for their capacity, as follows

Cl(p(t), g(t)) = W log

(

1 +
pl(t)|gl(t)|2

WN0

)

,

where W = 10 kHz and N0 = −135 dBm/Hz are the channel bandwidth and the noise spectral density, respectively.

Finally, the maximum transmission power of the EAP and the nodes are considered to be Pm = 4 µW and PAPm =

4W, respectively. All numerical results have been obtained by running the simulation for 6× 106 time-slots using

Matlab 2015a on a simulation platform with 20 cores and 256 GB of RAM.

Fig. 5 shows the average power consumption of the EAP as well as the average backlog of the data queues in the

network, versus the trade off parameter V . As can be seen in Figures 5a and 5b, the average power consumption

decays very fast as V increases, while the average data queue backlog increases linearly with V . Such behavior

complies with our theoretical results derived in (21) and (22).

Next, Fig. 6 depicts a sample path for the data queue backlog process and the battery level process of node 1

(for V = 2 × 1012). It can be verified from this figure that the queue backlog is stabilized around 75 Megabits

while no energy outage has occurred.

Finally, Fig. 7 shows the average transmission pattern of the EAP (for V = 2× 1012). As can be clearly seen in

this figure, there are three distinguished peaks in the transmission patter of the EAP at the direction toward node 1,

2 and 3 which are the most congested nodes in this network. Note that the peak at 0◦ is due to the linear structure

of the EAP antenna (the gains at 0◦ and 180◦ for a linear array are reciprocal). Moreover, as can be clearly verified
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Fig. 5: Average EAP power consumption and queue backlog versus V .
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Fig. 6: A sample path for data queue backlog and battery process.

from this figure, the maximum value of the pattern is at the direction toward node 3. This is due to the fact that

all network traffic pass through this node.

VI. CONCLUSION

In this paper, we focused on a wireless powered communication network with battery-operated nodes and proposed

a joint power allocation, data routing and energy beamforming policy to minimize the average power consumption in

the network. The proposed policy adapts to general networks with arbitrary channel models, without any knowledge

of the channel statistics. By theoretical analysis, we proved that our proposed policy conforms to the battery

constraint and stabilizes the network. Moreover, we derived the optimality gap for the average power consumption

under this policy. Finally, various numerical results are provided to show the significant performance of the proposed

solution.
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Fig. 7: Average transmission pattern of the EAP.

APPENDIX I

UPPER BOUND FOR DRIFT PLUS PENALTY FUNCTION

Here we prove the inequality in (11) holds. We enumerate three different cases for Us
n(t) and En(t), and bound

the increment of Ls
n(t) in successive time-slots for each case:

• Us
n(t) ≤ U0:

According to (9) the increment of Ls
n(t) can be bounded as,

Ls
n(t+ 1)−Ls

n(t) ≤ Ls
n(t+ 1) ≤ 1

2
Us
n(t+ 1)2 +

1

2
Us
n(t+ 1)2 = Us

n(t+ 1)2. (26)

From Us
n(t) ≤ U0 and (6) we know Us

n(t+ 1) ≤ U0 +Am +NiCm, where Ni is the number of ingoing links

to the node with most ingoing links in the network, using this inequality in the above we get,

Ls
n(t+ 1)− Ls

n(t) ≤ (U0 +Am +NiCm)
2 , B0 (27)

• Us
n(t) > U0 and Us

n(t) ≤ CEn(t):

In this case we have,

Ls
n(t+ 1)− Ls

n(t) =
1

2

(

Us
n(t+ 1)2 − Us

n(t)
2
)

+
1

2

(

Us
n(t+ 1)− CEn(t+ 1)

)2
1(Us

n
(t+1)>CEn(t+1))

≤ 1

2

(

Us
n(t+ 1)2 − Us

n(t)
2
) 1

2

(

Us
n(t+ 1)− CEn(t+ 1)

)2

a

≤
[

As
n(t) +

∑

l∈In

Cs
l (t)−

∑

l∈On

Cs
l (t)

]

Us
n(t) +

1

2
(N2

o +N2
i )C

2
m +

1

2
A2

m +AmNiCm

+
1

2

(

Us
n(t+ 1)− CEn(t+ 1)

)2
,

where No is the number of outgoing links from the node with most outgoing links in the network. Inequality

a is achieved by substituting Us
n(t + 1) with the LHS of (6). Finally from Us

n(t) ≤ CEn(t), (6) and (7) it is

easy to verify that,

1

2

(

Us
n(t+ 1)−CEn(t+ 1)

)2 ≤ 1

2

(

Am +NiCm + CNoPm

)2
,
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and we conclude,

Ls
n(t+ 1)− Ls

n(t) ≤
[

As
n(t) +

∑

l∈In

Cs
l (t)−

∑

l∈On

Cs
l (t)

]

Us
n(t) +B1, (28)

where B1 , 1
2 (N

2
o +N2

i )C
2
m + 1

2A
2
m +AmNiCm + 1

2

(

Am +NiCm + CNoPm

)2
.

• Us
n(t) > U0 and Us

n(t) > CEn(t):

For this case we have:

Ls
n(t+ 1)− Ls

n(t) ≤
1

2
Us
n(t+ 1)2 − 1

2
Us
n(t)

2

+
1

2
(Us

n(t+ 1)− CEn(t+ 1))
2

− 1

2
(Us

n(t)− CEn(t))
2
.

Replacing Us
n(t+ 1) and En(t+ 1) from (6) and (7) in the above, after some algebraic manipulation we get,

Ls
n(t+ 1)− Ls

n(t) ≤
[

As
n(t) +

∑

l∈In

Cs
l (t)−

∑

l∈On

Cs
l (t)

]

Us
n(t)

+

[

As
n(t) +

∑

l∈In

Cs
l (t)−

∑

l∈On

Cs
l (t)

]

(

Us
n(t)− CEn(t)

)

− C
[

Qn(t)−
∑

l∈On

pl(t)

]

(

Us
n(t)− CEn(t)

)

+B2,

where B2 , (N2
o +N2

i )C
2
m +A2

m +2AmNiCm + 1
2C2N2

oP
2
m + 1

2C2P 2
APm + CPAPm + 1

2NoCm +NoNiPmCm +

AmNoPm

Considering the above three cases and taking summation over Ls
n(t+1)−Ls

n(t) for n = 1, . . . , N and s = 1, . . . , S

we would have,

∆L(t) =

N
∑

n=1

S
∑

s=1

Ls
n(t+ 1)− Ls

n(t) ≤ B +
∑

(n,s)∈Ñ(t)

[

As
n(t) +

∑

l∈In

Cs
l (t)−

∑

l∈On

Cs
l (t)

]

Us
n(t)

+
∑

(n,s)∈
≈

N(t)

[

As
n(t) +

∑

l∈In

Cs
l (t)−

∑

l∈On

Cs
l (t)

]

(

Us
n(t)− CEn(t)

)

− C
∑

(n,s)∈
≈

N(t)

[

Qn(t)−
∑

l∈On

pl(t)

]

(

Us
n(t)− CEn(t)

)

,

(29)

where B , N max{B0, B1, B2}. Adding V PA(t) to both sides of (29), taking expectation conditioned on U(t)

and E(t) and rearranging the terms proves the intended result.

APPENDIX II

THE PROPOSED POLICY CONFORMS TO BATTERY CONSTRAINT

Here we prove part 1 of Theorem 2. Let us assume En(t) < Pm for a specific node n. Consider data link l such

that T (l) = n and a power vector p(t). Let us define another power vector, p0(t), by setting the lth entry in p(t)
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to zeros. The transmission power for data links are determined by the solution of the minimization problem,

argmin
p(t)∈Π

G(p(t)) =

L
∑

l=1

[

JT (l)(t)pl(t)−Wl(t)Cl(p(t), g(t))
]

. (30)

To prove the intended result, it suffices to show G(p(t))−G(p0(t)) ≥ 0. The following always hold,

G(p(t))G(p0(t)) = pl(t)JT (l)(t)−Wl(t)
[

Cl(p(t), g(t)) − Cl(p0(t), g(t))
]

(31)

−
∑

l′ 6=l

Wl′ (t)
[

Cl′(p(t), g(t)) − Cl′ (p0(t), g(t))
]

(32)

≥ pl(t)JT (l)(t)−Wl(t)
[

Cl(p(t), g(t)) − Cl(p0(t), g(t))
]

(33)

≥ pl(t)JT (l)(t)− δpl(t)Wl(t), (34)

where (33) and (34) are due to the properties of the capacity function in (3) and (2). It can be verified that

En(t) < Pm together with Us
n ∈ Ñ(t) contradicts Us

n /∈
≈

N(t). Plugging this property into definition of Wl(t) and

neglecting negative terms yields,

Wl(t) <
∑

s:(T (l),s)∈
≈

N(t)

[2Us
T (l)(t)− CET (l)(t)].

Using this inequality in (34), we get (all summations are over {s : (T (l), s) ∈
≈

N(t)}),

G(p(t)) −G(p0(t)) ≥ Cpl(t)
∑

s

[Us
T (l)(t)− CET (l)(t)− δpl(t)

∑

s

[2Us
T (l)(t)− CET (l)(t)] (35)

= pl(t)
∑

s

[

Us
T (l)(t)− CET (l)(t)

]

[

C − δ

(

1 +

∑

s Us
T (l)(t)

∑

s [Us
T (l)(t)− CET (l)(t)]

)

]

(36)

≥ pl(t)
∑

s

[

Us
T (l)(t)− CET (l)(t)

]

[

C − δ

(

1 +
U0

U0 − CPm

)]

(37)

= pl(t)
∑

s

[

Us
T (l)(t)− CET (l)(t)

]

(

C
(

1− 1

α

)

− 2δ

)

= 0.

(38)

Inequality (37) is due to the fact that Us
T (l) > U0 and ET (l) < Pm. The equality in (38) can be verified by

plugging U0 = CPm + αδPm in (37). Finally, noting that C > 2δ

(1− 1

α )
the intended result is proved.

REFERENCES

[1] “Cellular networks for massive IoT: Enabling low power wide area applications,” Ericsson, Tech. Rep. Jan, 2016.

[2] Y. Zeng, B. Clerckx, and R. Zhang, “Communications and signals design for wireless power transmission,” IEEE Transactions on

Communications, vol. 65, no. 5, pp. 2264–2290, May 2017.

[3] K. Huang and X. Zhou, “Cutting the last wires for mobile communications by microwave power transfer,” IEEE Communications Magazine,

vol. 53, no. 6, pp. 86–93, June 2015.

[4] S. Valtchev, B. Borges, K. Brandisky, and J. B. Klaassens, “Resonant contactless energy transfer with improved efficiency,” IEEE

Transactions on Power Electronics, vol. 24, no. 3, pp. 685–699, March 2009.

[5] G. A. Covic and J. T. Boys, “Inductive power transfer,” Proceedings of the IEEE, vol. 101, no. 6, pp. 1276–1289, June 2013.

[6] G. Yang, C. K. Ho, R. Zhang, and Y. L. Guan, “Throughput optimization for massive mimo systems powered by wireless energy transfer,”

IEEE Journal on Selected Areas in Communications, vol. 33, no. 8, pp. 1640–1650, Aug 2015.

November 27, 2018 DRAFT



18

[7] L. Liu, R. Zhang, and K. Chua, “Multi-antenna wireless powered communication with energy beamforming,” IEEE Transactions on

Communications, vol. 62, no. 12, pp. 4349–4361, Dec 2014.

[8] K. Huang and E. Larsson, “Simultaneous information and power transfer for broadband wireless systems,” IEEE Transactions on Signal

Processing, vol. 61, no. 23, pp. 5972–5986, Dec 2013.

[9] A. A. Nasir, H. D. Tuan, D. T. Ngo, T. Q. Duong, and H. V. Poor, “Beamforming design for wireless information and power transfer

systems: Receive power-splitting versus transmit time-switching,” IEEE Transactions on Communications, vol. 65, no. 2, pp. 876–889,

Feb 2017.

[10] H. Ju and R. Zhang, “User cooperation in wireless powered communication networks,” in 2014 IEEE Global Communications Conference,

Dec 2014, pp. 1430–1435.

[11] A. H. A. Bafghi, M. Mirmohseni, and M. R. Aref, “Joint transfer of energy and information in a two-hop relay channel,” in 2017 Iran

Workshop on Communication and Information Theory (IWCIT), May 2017, pp. 1–6.

[12] W. Xu, W. Cheng, Y. Zhang, Q. Shi, and X. Wang, “On the optimization model for multi-hop information transmission and energy transfer

in tdma-based wireless sensor networks,” IEEE Communications Letters, vol. 21, no. 5, pp. 1095–1098, May 2017.

[13] B. Gurakan, O. Ozel, and S. Ulukus, “Optimal energy and data routing in networks with energy cooperation,” IEEE Transactions on

Wireless Communications, vol. 15, no. 2, pp. 857–870, Feb 2016.

[14] A. Biason, S. Dey, and M. Zorzi, “A decentralized optimization framework for energy harvesting devices,” IEEE Transactions on Mobile

Computing, vol. 17, no. 11, pp. 2483–2496, Nov 2018.

[15] K. W. Choi and D. I. Kim, “Stochastic optimal control for wireless powered communication networks,” IEEE Transactions on Wireless

Communications, vol. 15, no. 1, pp. 686–698, Jan 2016.

[16] R. Rezaei, M. Movahednasab, N. Omidvar, and M. R. Pakravan, “Stochastic power control policies for batteryoperated wireless power

transfer,” to appear in Proceedings of 29th IEEE Personal, Indoor and Mobile Radio Communications Conference (PIMRC) 2018.

[17] ——, “Optimal and near-optimal policies for wireless power transfer considering fairness,” to appear in proceedings of IEEE Global

Communications Conference (GLOBECOM), 2018.

[18] ——, “Optimal and near-optimal policies for wireless power transfer in energy-limited and power-limited scenarios,” arXiv preprint, arXiv:

1804.05569, Apr. 2018.

[19] D. Bertsekas, Dynamic programming and optimal control. Belmont, Massachusetts: Athena Scientific, 2005.

[20] L. Huang and M. J. Neely, “Utility optimal scheduling in energy-harvesting networks,” IEEE/ACM Transactions on Networking, vol. 21,

no. 4, pp. 1117–1130, Aug 2013.

[21] M. Gatzianas, L. Georgiadis, and L. Tassiulas, “Control of wireless networks with rechargeable batteries,” IEEE Transactions on Wireless

Communications, vol. 9, no. 2, pp. 581–593, February 2010.

[22] M. J. Neely, Stochastic Network Optimization with Application to Communication and Queueing Systems. Morgan & Claypool Publishers,

2010.

[23] ——, “Dynamic Power Allocation and Routing for Satellite and Wireless Networks with Time Varying Channels,” Ph.D. dissertation, MIT,

Nov 2003.

[24] Y. Zeng and R. Zhang, “Optimized training design for wireless energy transfer,” IEEE Transactions on Communications, vol. 63, no. 2,

pp. 536–550, Feb 2015.

November 27, 2018 DRAFT


	I Introduction
	II System Model
	II-A Data and Energy Transmission
	II-B Wireless Nodes 
	II-C Network Controller

	III The Proposed Online Control Policy for Joint Data Routing and Power Transfer Scheduling
	IV Performance Analysis of the Proposed Control Policies
	IV-A Lower Bound on the Minimum Power for Stability
	IV-B Performance of the Proposed Policy

	V Simulation Results
	VI Conclusion
	Appendix I: Upper Bound for Drift Plus Penalty Function 
	Appendix II: The Proposed Policy Conforms to Battery Constraint
	References

