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Abstract—In distributed software-defined networks (SDN), mul-
tiple physical SDN controllers, each managing a network domain,
are implemented to balance centralized control, scalability and
reliability requirements. In such networking paradigm, controllers
synchronize with each other to maintain a logically centralized
network view. Despite various proposals of distributed SDN
controller architectures, most existing works only assume that
such logically centralized network view can be achieved with
some synchronization designs, but the question of how exactly
controllers should synchronize with each other to maximize
the benefits of synchronization under the eventual consistency
assumptions is largely overlooked. To this end, we formulate
the controller synchronization problem as a Markov Decision
Process (MDP) and apply reinforcement learning techniques
combined with deep neural network to train a smart controller
synchronization policy, which we call the Deep-Q (DQ) Scheduler.
Evaluation results show that DQ Scheduler outperforms the anti-
entropy algorithm implemented in the ONOS controller by up to
95.2% for inter-domain routing tasks.

I. INTRODUCTION

Software-Defined Networking (SDN) [1], an emerging net-
working architecture, significantly improves the network per-
formance due to its programmable network management, easy
reconfiguration, and on-demand resource allocation, which has
therefore attracted considerable research interests. One key
attribute that differentiates SDN from classic networks is the
separation of the SDN’s data and control plane. Specifically, in
SDN, all control functionalities are implemented and abstracted
in the SDN controller, which sits in the control plane, for
operational decision making; while the data plane, consisting of
SDN switches, only passively executes the instructions received
from the control plane. Since the logically centralized SDN
controller has full knowledge of the network status, it is able to
make the global optimal decision. Yet, such centralized control
suffers from major scalability and reliability issues. In this
regard, distributed SDN is proposed to balance the centralized
and distributed control.

A distributed SDN network is composed of a set of
subnetworks, referred to as domains, each managed by
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a physically independent SDN controller. The controllers
synchronize with each other to maintain a logically centralized
network view. However, since complete synchronization
among controllers, i.e., all controllers always maintain the
same global view, will incur high costs especially in large
networks, practical distributed SDN networks can only afford
partial inter-controller synchronizations, which is known as
the eventual consistency model [2].

The eventual consistency model permits temporarily incon-
sistent network views among physical distributed controllers
in the hope that all controllers will eventually be mutually
updated. In the mean time, higher network availability, i.e., the
ability to provide network services, is realized at the cost of
temporary inconsistency according to the CAP theorem [2]. De-
spite the fact that existing works recognize the problems caused
by inconsistent network views [3], one crucial question that
has been largely overlooked is precisely how controllers should
synchronize with each other, under limited synchronization
budget, to minimize the performance degradation caused by
such inconsistency. For example, ONOS [4], which is a state-
of-the-art SDN controller, employs the anti-entropy protocol to
realize the eventual consistency [5]. The gist of the anti-entropy
protocol is that controllers use a simple gossip algorithm to
randomly synchronize with each other. Although this protocol
can achieve eventual consistency, is it a wise and efficient way?

Motivated by this question and inspired by recent success in
applying reinforcement learning (RL) techniques to solve com-
plicated problems, we approach this controller synchronization
problem by formulating it as a Markov Decision Process
(MDP) problem. Then, we design Deep-Q (DQ) Scheduler, an
RL based algorithm implemented using Deep Neural Networks
(DNN), to decide which controllers to synchronize under the
given network synchronization status. The goal of the DQ
Scheduler with respect to (w.r.t.) the MDP formulation is to
maximize the long-term benefits of controller synchronizations.
Evaluations show that DQ Scheduler outperforms the afore-
mentioned anti-entropy protocol by up to 95.2% for the inter-
domain routing task.

The rest of the paper is organized as follows. Section II
formulates the problem and states the objective. Section III
describes the design details of the DQ Scheduler. Section IV
presents the evaluation results of the DQ Scheduler. Section V
discusses related work. Finally, Section VI concludes the paper.
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II. PROBLEM FORMULATION

We formulate the controller synchronization problem with
inter-domain routing as an application of interest. We first
describe the generalized routing path construction mecha-
nism under distributed SDN with eventual consistency model
(Section II-A) and then introduce the performance metric
(Section II-B). Next, we discuss the synchronization of SDN
controllers and introduce its formal definition in Section II-C.
We then state in Section II-D the objective of the controller
synchronization problem. Finally, the problem is formulated as
an MDP in Section II-E.

A. Generalized Path Construction Mechanism in SDN

Under distributed SDN paradigm, inter-domain routing, like
any other network task, is carried out by matching the packet’s
header with entries in switches’ flow tables that store the for-
warding rules installed by the controllers. Due to the flexibility
and programmability of the SDN, there are potentially many
ways in which routing can be conducted. In this section, we
describe a simple routing path construction mechanism which
is generalized based on principles of BGP-like protocol [6]
in the Internet, and routing mechanisms employed by some
state-of-the-art controllers such as the ONOS controller. Note
that it is not our intention to design any routing mechanisms;
we use this simple and representative mechanism for the sake
of problem formulation. Specifically, the path construction
mechanism consists of the following steps.

Step 1: The controller of the domain where the source node
sits (source controller in the sequel) decides the sequence
of domains that the packet will traverse between the source
and the destination domains (called the domain-wise path),
according to certain control objectives of the controller;

Step 2: Based on its view of the topologies of the domains on
the domain-wise path, the source controller constructs the path
from the source node to the destination node that optimizes the
control objective;

Step 3: The source controller communicates the path con-
struction decision to the involving domains’ controllers and
they install the forwarding rule on switches in the form of
ingress and egress gateway IP addresses.

An illustrative example is presented in Fig.1a to demonstrate
how the routing mechanism works. The example shows the
selected domain-wise path between the source node v1 and the
destination node v2, in which domains A1–A4 are involved.
The topology of these domains are the views of the source
controller, which therefore constructs the path (red lines) that
minimizes the hop counts (other performance metrics can also
be used; see Section II-B for details) between v1 and v2. Then
the source controller instructs the controller of A2 and A3 that
the packet whose destination is v2 should egress their domains
at node b and c, respectively. Note that such constructed path
may be suboptimal, as the view is incomplete or out of date
(see Section II-C for further explanations).

domain A1

v2
v1

A2 A3 A4

a

b c

(a) Controller A1’s network view.

domain A1

v2
v1

A2 A3 A4

a

b c

!" #"

(b) Actual network topology.

Fig. 1: A path construction example.

B. Performance Metrics

To reach an optimized routing decision under distributed
SDN, controllers need to take into account traffic status,
load balancing, and other policy-related factors. To this end,
controllers can proactively assign a weight to each link to
indicate the link preference based on the collected network
information, i.e., the smaller the link weight, the better for path
construction, so that the end-to-end accumulated weight of any
path matches its corresponding path construction preference.
Moreover, such link weight assignment is generally adjusted
dynamically according to the current network condition. There-
fore, the goal for constructing an optimized end-to-end path
under a given network condition is reduced to finding the end-
to-end path with the minimum accumulated weight under the
given link weight assignment. We refer to such accumulated
path weight as the path cost.

To quantify the performance of the constructed routing
path in a selected domain-wise path under the given inter-
domain synchronization status, we employ the Average Path
Cost (APC), measured by the average cost of the constructed
paths, as the performance metric.

C. Synchronization Among SDN Controllers

Under the eventual consistency model in distributed SDN,
the quality of constructed routing paths is directly affected
by the controller synchronization levels. We use an example
to demonstrate the benefits of controller synchronization for
path construction. In Fig.1a and Fig.1b, suppose the source
node v1 in A1 sends packets to the destination node v2 in
A4. The topology in Fig.1a represents A1’s controller’s view
of the network, which was obtained during synchronizations
between A1 and A2–A4 in the past. However, due to the
dynamicity of the networks, the actual topology evolves into the
one in Fig.1b, which is not promptly synchronized to the source
controller. As a result, the source controller, with the outdated
view of the network, still uses the old flow table entries which
direct packets sent to v2 to gateways a, b, and c, respectively.
In comparison, the source controller will select a shorter
route (green lines) that involves b′ and c′ as egress gateways
in domains A2, and A3, should it obtain the most up-to-
date network topology through synchronizations. This example



highlights the important role of controller synchronization in
dynamic networks, which is formally defined below.

Definition 1. Domain Ai is synchronized with domain Aj if
and only if the SDN controller in Ai knows the minimum path
cost between any two nodes in Aj .

Furthermore, we also define the synchronization budget
which limits the amount of controller synchronizations.

Definition 2. The synchronization budget of an SDN controller
is defined as the maximum number of other controllers that it
can synchronize with at any time slot.

D. Objective

Two questions motivate our definition of problem objective.
First, how does the source controller make synchronization de-
cisions that most efficiently utilize the limited synchronization
budget? Second, how to maximize the benefit of synchroniza-
tion over time? With these questions in mind, we formally state
the objective of the controller synchronization problem.

Objective: In dynamic networks whose topologies evolve
over time, given the controller synchronization budget and for a
set of source and destination nodes located in different domains
that send/receive data packages, how does the source controller
synchronize with other controllers on the domain-wise path at
each time slot, to maximize the benefit of controller synchro-
nization (reductions in APC for delivering these packets) over
a period of time?

E. MDP Formulation

We formulate the controller synchronization problem as a
Markov Decision Process (MDP), in which 3-tuple (S,A, R)
is used to characterize it.
• S is the finite state space. In our problem, a state cor-

responds to the counts of time slots since the source
controller was last synchronized with other controllers on
the domain-wise path.

• A is the finite action space. An action w.r.t. a state is
defined as the decision to synchronize with the selected
domain(s), subject to the given synchronization budget.

• R represents the immediate reward associated with state-
action pairs, denoted by R(s, a), where s ∈ S and a ∈ A.
R(s, a) is calculated as the average reductions in APC
associated with an (s, a) tuple.

The MDP formulation is demonstrated in an example in
Fig. 2, where there are 6 domains on the domain-wise path
between the source and destination nodes. The first entry in
the state vector indicates that the last synchronization between
the source controller and the controller of A2 took place 5
time slots ago. The action vector consists of binary entries
where 1 indicates that the source controller will synchronize
with the corresponding domain at current time slot and 0 the
opposite. The action vector in the above example indicates that
under the synchronization budget of 1, the source controller
will synchronize with A5 only.

• State (s): the number of time slots since A1 last synchronized 
with the corresponding controllers

• Action (a): the domain to synchronize with

domain A1 A2 A3 A4 A5 A6

5 10 15 5 35

0 0 0 1 0 1

v1 v2

A2

A2

A3

A3

A4

A4

A5

A5

A6

A6

Fig. 2: A state-action example for the MDP formulation.

The optimal action at each state is defined as the action
that yields the maximum long-term reward, which is defined
as the discounted sum of the expected immediate reward of
all future state-action pairs from the current state. The reward
for the state-action pair ∆t steps ahead of the current state
is discounted by γ∆t, where γ is called the discount factor
and 0 < γ < 1. Here, γ trades off the importance between
the current and the future reward. Therefore, starting from an
initial state s0, the problem is formulated to maximize the long-
term accumulated reward expressed in the following Bellman
equation by selecting a sequence of actions {at}Tt=0:

V (s0) = E
[ T∑
t=0

γtR(st, at)|s0

]
, (1)

where st and at constitute the state-action pair at time t,
and T is the time horizon of the synchronization optimization
problem.

III. DEEP-Q (DQ) SCHEDULER

To solve the formulated MDP, we use RL techniques to find
the sequence of actions that maximize the Bellman equation
in (1). For RL, imagine an agent who jumps from state to
state in the formulated MDP by taking some actions associ-
ated with certain rewards. The agent’s goal is to discover a
sequence of state-action pairs, called a policy, that maximize
the accumulated time-discounted rewards. By interacting with
the MDP, the agent’s experiences build up which finally lead
to the discovery of the optimal policy. For this problem, one
important aspect is how the agent memorizes its experiences.
Traditionally, the storage of experiences in tabular fashion
is used. However, this approach is impractical in many RL
tasks because of the lack of generalization for large state-
action space. Indeed, the state-action space is enormous in
our controller synchronization problem. Consider the example
in Fig.2 assuming the time horizon is 300 time slots and
the synchronization budget is 1, there are as many as 3005

states and 5 actions associated with each state. In light of
this, function approximators [7] have been proposed, among
which Deep Neural Network (DNN) [8] is a suitable candidate
which finds its successes in many recent applications [9] [10].



Motivated by this, we therefore use DNN as the value function
approximator in our DQ Scheduler, see Section III-B for
details. Finally, we present the training algorithm for DQ
Scheduler in Section III-C.

A. Q-learning with Parameterized Value Function

Q-learning [11] is a classic RL algorithm with performance
guarantees under certain conditions [12]. Q- learning uses the
Q-function to estimate the quality of a state-action pair:

S ×A → R.

In particular, the optimal Q-function for a state-action pair in

Q-placement is defined as:

Q∗(s, a) = E[R(s, a) + γ max
a′∈As′

Q∗(s′, a′)], (2)

where s′ and a′ is the state-action pair at the next time slot, As′
is the set of actions available at the next state s′. Since we use
DNN as the function approximator of the agent’s Q-function
Q(s, a), it is parameterized by the set of adjustable parameters
θ representing the weights of the DNN. The parameterized Q-
function and optimal Q-function are denoted by Qθ(s, a) and
Q∗θ(s, a), respectively. The value iteration update [11] of the
Q-function is based on (2), which uses the best estimation of
the future reward of the next state to update current Q-function,
thus approximating the optimal Q∗θ(s, a). During the update, θ
is adjusted to reduce the gap between the estimated and the
optimal values. In particular, the following loss function using
the mean-squared error measurement is defined for adjusting θ:

L(θ) = E[
(
y −Qθ(s, a)

)2
], (3)

where
y = R(s, a) + γ max

a′∈As′
Qθ(s

′, a′) (4)

is the estimation of the maximum accumulated future reward.
Then, by differentiating L(θ) w.r.t. θ, we have the following

gradient:

∇θL(θ) = −2E[
(
R(s, a) + γ max

a′∈As′
Qθ(s

′, a′)

−Qθ(s, a)
)
∇θQθ(s, a)]. (5)

Then, weights of the DNN are updated for the next iteration:

θ ← θ − α∇θL(θ), (6)

where α is the step size. Note that the gradient descent update
iterations of θ is different from canonical supervised
learning because the training target y = R(s, a) +
γmaxa′∈As′ Qθ(s

′, a′) is generated by the same parameterized
Q-function Qθ(s, a) that is being trained. Therefore, to improve
stability and performance of the training process, we improve
the training algorithm in the following ways.

1). We maintain a delayed version of the Q-function,
Qθ′ (s, a), for the estimation of the maximum next state reward,
which was proposed [9] to improve the stability of their DQN

for playing Atari games. As such, the target function in (4) is
updated to

y = R(s, a) + γ max
a′∈As′

Qθ′ (s
′, a′). (7)

The delayed Q-function is updated with the newest weights
every C steps by setting θ

′
= θ.

2). To overcome the overestimation of action values, we
implement Double Q-learning [13] to address the positive bias
in estimation introduced when the maximum expected action
values are instead approximated by the maximum action values
in Q-learning. Specifically, we use the up-to-date Q-function
Qθ(s

′, a′) to determine a′∗ = arg maxa′ Qθ(s
′, a′), and the

accumulated reward of the returned action a′∗ is estimated by
the delayed Q-function using (7).

3). We implement the “replay memory” [14] in which some
of the agent’s past experiences in (s, a, r) tuples are stored and
maybe used more than once for training. In particular, a matrix
D is created that can store up to N (s, a, r) tuples. At each
training iteration where Q-learning update takes place, samples
of experiences are pulled randomly from D for training.

B. The Design of the Deep Neural Network (DDN)

The Parameterized Q-function is implemented by a
Multilayer Perceptron (MLP) [15] consisting of input/output
and three hidden layers. Let m denote the number of domains
on the domain-wise path. The input to the MLP is of
dimension 2(m− 1)× 1. The first m− 1 entries store the state
of the MDP, and the rest m− 1 binary entries store the action.
The output of the MLP is the maximum predicted accumulated
time-discounted reward given the state-action input. The three
hidden layers consist of 128, 64, and 32 hidden neurons,
respectively. The MLP is realized using Keras [16] model with
TensorFlow [17], in which Adam is chosen as the optimizer
and Rectified Linear Unit (ReLU) [18] is employed as
activation functions for all neurons except for the output layer.

C. The Training Algorithm

To train the DNN that represents the parameterized Q-
function, we need to first initialize the matrix D, i.e., the agent’s
“reply memory”. This is different from traditional online Q-
learning where the update of Q-matrix relies only on the current
(s, a, r) tuple. Instead, history data are used for the training of
the DNN for stability reasons. In particular, D is initially filled
up with several (s, a, r) tuples for training. As time proceeds,
more (s, a, r) tuples are generated and recorded in matrix D
for training. Since we limit the number of entries of D to N ,
old (s, a, r) tuples are gradually replaced by new entries; see
Section IV for the simulation settings that generate the training
data. There are many ways in which actions can be selected.
Traditionally, ε-greedy algorithm [19] is used in Q-learning;
there are also new exploration strategies proposed which are
tailored for the DNN settings, such as bootstrapped DQN [20]
and UCB [21]. According to [22], the exploration strategy
that generates all state-action pairs uniformly at random is
better for training. Therefore, our training algorithm takes in



Algorithm 1: Training algorithm for DQ Scheduler
input : DNN model settings; distributed SDN settings;

simulation program for generating rewards; delay C of
the delayed Q-function.

output: Trained parameterized Q-function.
1 Initialize the Q-function Qθ(s, a) by instantiating the DNN with

random initial weights and biases settings;
2 Initialize matrix D with history (s, a, r) tuples;
3 Initialize the delayed Q-function Qθ′ (s, a) = Qθ(s, a) ;
4 Set initial state s0; t = 0;
5 while t ≤ T do
6 foreach time instant t do
7 Select an action at randomly;
8 Pass on the (st, at) to the simulation program and get

return rt;
9 Store (st, at, rt) in D;

10 Pull random minibatch Dt of (si, ai, ri) from D;
11 foreach (s, a, r) in Dt do
12 a∗j+1 = argmaxaj+1 Qθ(sj+1, aj+1);
13 yj = rj + γQθ′ (sj+1, a

∗
j+1);

14 Calculate the gradient:
∇θL(θ) = −2(yj −Qθ(sj , aj))∇θQθ(sj , aj);

15 Update weights: θ ← θ − α∇θL(θ);
16 end
17 if t mod C = 0 then
18 Qθ′ (s, a) = Qθ(s, a).
19 end
20 end
21 end

data generated by random exploration. The training process is
summarized in Algorithm 1. After the training algorithm ter-
minates, the returned parameterized Q-function will be able to
estimate the best action to take at each state, thus approximating
the optimal.

IV. EVALUATION

In this section we present the performance evaluation of
the proposed DQ Scheduler comparing to other two default
controller synchronization schemes. Specifically, we first
introduce the network and its dynamicity model used for
building simulation networks in Section IV-A. Then, the set-
tings and datasets used are described in Section IV-B. Finally,
we present the evaluation results and analysis in Section IV-C.

A. Network and Dynamicty Model

Network Model: The topology of domain i with ni nodes is
modeled as an undirected graph, where ni nodes are connected
following a given intra-domain degree distribution, i.e., the dis-
tribution of the number of neighbouring nodes of an arbitrary
node. Then for any two neighbouring domains Ai and Aj , we
(i) randomly select two nodes w1 from Ai and w2 from Aj
and connect these two nodes if link w1w2 does not exist, and
(ii) repeat such link construction process between Ai and Aj
βi,j times. By this link construction process, network topology
G = (V,E) is therefore formed (V/E: set of nodes/links in G,
|V | =

∑q
i=1 ni, where q is the number of domains).

Dynamicity of the network: We model the dynamic pattern
of intra-domain topologies using a simple edge rewire model.

TABLE I: Evaluation Parameters

m Nm Em Bm

6
[100, 300, 550,
150, 210, 420]

[5, 1, 40, 60, 2, 120] [5, 20, 8, 20, 12]

10
[100, 300, 550, 150,

210, 420, 380,
520, 120, 340]

[5, 1, 160, 1, 180,
150, 40, 150, 1, 40]

[5, 30, 50, 20,
15, 20, 20, 30, 10]

12
[130, 50, 550, 150,
80, 420, 380, 330,
250, 150, 80, 100]

[10, 1, 100, 1, 1, 120,
1, 180, 130, 1, 1, 1]

[12, 30, 25, 5, 15,
10, 20, 5, 8, 15, 20]

Specifically, at each time slot, ei new edges are added ran-
domly between nodes in domain i before ei existing edges
are randomly selected and removed. If this random edge
rewire procedure results in a fragmented network topology,
we randomly add the minimum number of edges to connect
all components to make it a connected graph again. The edge
weights of all newly added edges are generated by the given
edge weight distribution. It should be noted that our DQ
Scheduler does not have any requirement on the dynamicity
model of the network, the rewire model we propose only serves
as a simple and representative example.

B. Network Settings

According to the path construction mechanism described
in Section II-A, the domain-wise paths extracted w.r.t.
source/destination node pairs are always in a linear fashion such
as the example in Fig. 2. Let m be the number of domains on
the domain-wise path with the indices of domains sequentially
labelled from 1 (source domain) to m (destination domain). Our
evaluation considers three scenarios where m = 6, m = 10,
and m = 12. The degree distributions used is extracted from
the RocketFuel Project [23], where we use data from“AS1239”.
The weights of edges are randomly drawn from the set
{1, 2, 5, 8, 10, 12} with the corresponding probability being
10%, 10%, 10%, 30%, 20%, and 20%, respectively. In addition,
the synchronization budget is set to 1 for all evaluations. Let
Nm = [n1, n2, . . . , nm], and Em = [e1, e2, . . . , em] be the
vectors of the number of nodes, and the number of edge rewires
at each time slot for the m domains on the domain-wise path,
respectively. In addition, Bm = [β1,2, β2,3, . . . , βm−1,m] is the
vector of the gateway connection parameters between all pairs
of directly connected domains on the domain-wise path with
m domains. The parameters used for three evaluation scenarios
are listed in Table I. Note that DQ Scheduler does not have
any requirements for aforementioned parameters.

The anti-entropy [5] and fixed-frequency synchronization
[24] schemes are employed as benchmarks for evaluating the
performance of DQ Scheduler. The core of anti-entropy pro-
tocol, which is implemented in the ONOS controller, is based
on a simple gossip algorithm that each controller randomly
chooses another controller to synchronize. In comparison,
the fixed-frequency algorithms synchronize controller pairs at
constant rates, which may vary for different controller pairs
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(a) Accumulated APC reduction, m = 6.
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(b) Accumulated APC reduction, m = 10.
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(c) Accumulated APC reduction, m = 12.
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Fig. 3: Evaluation results.

subject to various objectives. For this evaluation, all controllers
synchronize at the same rate.

C. Evaluation Results

The evaluation results of the DQ Scheduler for three sce-
narios are presented in Fig.3, where Fig.3a–Fig.3c show the
performance in terms of the objective stated in Section II-D.
Fig.3d–Fig.3f show the APC of packets delivered under three
controller synchronization schemes.

1) Superiority of DQ Scheduler for long-term routing
quality: Recall that our objective is aimed at overall rout-
ing quality over a period of time, i.e., to maximize V =

E
[∑T

t=0 γ
tR(st, at)

]
. The evaluation results in Fig.3a–Fig.3c

confirm the superiority of DQ Scheduler in achieving this
goal. In particular, during the testing period of 300 time
slots, DQ scheduler outperforms the anti-entropy algorithm
by 31.2%, 58.3%, and 95.2%; the algorithm with constant
synchronization rate by 90.9%, 90%, and 173.3%, for three
scenarios, respectively.

2) Superiority of DQ Scheduler for immediate routing qual-
ity: Although DQ Scheduler is trained to maximize the accumu-
lated APC reduction over time, surprisingly, its synchronization
decisions also lead to the lowest APC in real-time among three
algorithms tested, as shown in Fig.3d–Fig.3f. This means that
the DQ scheduler optimizes the accumulated APC reduction
in a way that the immediate and long-term performance are
balanced, since there is not a period in which the immedi-
ate performance is worsened for better future performance
according to these results. In these evaluations, the APCs

are also compared to the “optimal” case where the source
domain is always synchronized with all other domains on the
domain-wise path,s and to the “worst” case when there is no
synchronization (“no sync”) between any controllers.

3) Other findings: Compared to the other benchmark
algorithms, DQ Scheduler’s performance is more stable when
the domain-wise path involves more domains. In contrast,
two benchmark algorithms’ performance first improves and
then becomes worse when the number of domains on the
domain-wise path increases from 6 to 10, and then to 12. In
addition, we realize that the performance degradation of no
controller synchronization is more concerning when there are
more domains involved on the domain-wise path, as “no sync”
performance are worsened by 37.5%, 59.1%, and 61% in three
scenarios, comparing to the optimal cases. This highlights the
important role of controller synchronizations.

V. RELATED WORK

1) Distributed SDN: Many research efforts are directed to
the design of distributed SDN controller architecture. Specifi-
cally, OpenDaylight [25] and ONOS [4] are two state-of-the-art
SDN controllers proposed to realize logically centralized but
physically distributed SDN architecture. In addition, controllers
such as Devoflow [26] and Kandoo [27] are designed with their
specific aims. However, most of these controller architectures
do not emphasize or justify detailed controller synchronization
protocols they employ.

2) Controller Synchronizations: Most existing works on
controller synchronization assume either strong or eventual
consistency models [28], for which our work uses the latter.



The authors in [3] show that certain network applications can
rely on the eventual consistency to deliver acceptable perfor-
mance. This work [29] shows how to avoid network anomalies
such as forwarding loops and black holes under the eventual
consistency assumption. Similar to our approach, the works
[24] [30] propose dynamic adaptation of synchronization rate
among controllers. Compared to these works, DQ Scheduler
is much more versatile in that there is no assumptions on the
network and the policy learning process is automated given any
network conditions.

3) Reinforcement Learning in SDN: Some recent high-
profile successes [9] [10] attract enormous interests in applying
RL techniques to solve complicated decision making problems.
In the context of SDN, the authors in [31] apply RL-based algo-
rithms to solve service placement problem on SDN switches.
This work [32] also discusses the routing problem in SDN
using RL techniques. However, the discussion is only limited to
intra-domain routing under strong assumptions on the network
topology. In addition, tabular settings are used in this work
without generalizations.

VI. CONCLUSION

In this paper, we investigated the controller synchronization
problem with limited synchronization budget in distributed
SDN, for which our aim was to find the policy that maximizes
the benefits of controller synchronizations over a period of
time. We formulated the controller synchronization problem
as an MDP problem. An RL-based algorithm which uses the
DNN to represent its value function, called the DQ Scheduler,
was proposed to solve the formulated MDP. Evaluation results
showed that DQ Scheduler offers almost twofold performance
improvement comparing to the state-of-the-art SDN controller
synchronization solutions.
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