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Abstract—Minimizing total link cost in Information-Centric
Network (ICN) by optimizing content placement is challenging in
both effectiveness and practicality. To attain better performance,
upstream link cost caused by a cache miss should be considered
in addition to content popularity. To make it more practicable, a
content placement strategy is supposed to be distributed, adap-
tive, with low coordination overhead as well as low computational
complexity. In this paper, we present such a content placement
strategy, UtilCache, that is both effective and practicable. Util-
Cache is compatible with any cache replacement policy. When
the cache replacement policy tends to maintain popular contents,
UtilCache attains low link cost. In terms of practicality, UtilCache
introduces little coordination overhead because of piggybacked
collaborative messages, and its computational complexity depends
mainly on content replacement policy, which means it can be O(1)
when working with LRU. Evaluations prove the effectiveness of
UtilCache, as it saves nearly 40% link cost more than current
ICN design.

Index Terms—Information-Centric Network, Caching, Link
Cost Minimization

I. INTRODUCTION

Information-Centric Network (ICN) is a future Internet
architecture proposed to achieve efficient content retrieval and
distribution [1]. In ICN, caches are ubiquitous within routers,
a.k.a. in-network caching. Whenever a packet traverses a
link, there arises cost (propagation latency, money, bandwidth
occupation etc.). Once a content request is satisfied at an
intermediate cache on its path to content source, upstream
links will never be traversed during this session, and thus the
potential link cost are saved (Fig. 1). It is possible to minimize
total link cost by optimizing content placement, which we refer
to as Link Cost Minimization (LCM) problem .

Current ICN design adopts a content placement strategy
named Leave Copy Everywhere (LCE): contents are replicated
and cached in every intermediate router on the response
path to requester (e.g. from ”I” to ”R” in Fig. 1). Cache
replacement is done individually at each router with simple
policy such as LRU or LFU, which tends to cache locally
popular contents. Simple as it is, LCE works unsatisfactorily
in link cost reducing [2].

We believe that designing a content placement strategy to
reduce link cost faces two challenges:

Effectiveness: Most significantly, the strategy is supposed
to perform well in reducing link cost. Many works [2], [3],
including our previous work [4], have noticed that in order

Fig. 1. Link Cost Minimization in ICN: Caches are ubiquitous in ICN.
Requests for a specific content are forwarded to its designated source (”S”).
If a request from R is satisfied at I, the potential link cost (from ”I” to ”S”)
is saved.

to cut down link cost, in addition to popularity, upstream link
cost caused by a cache miss should also be taken into account.

Practicality: First, the strategy must be distributed, because
a centralized controller is very likely to overburden due to
network scale and content amount. Second, since user demand
is dynamic and not a priori known, the strategy should
be adaptive. Third, there may be extra communication and
storage overhead (collectively called coordination overhead)
introduced in order to attain higher performance, but overmuch
coordination overhead could possibly in turn damage the
performance. Last but not the least, computational complexity
of the strategy should be noticed as well. Computationally
expensive algorithm is not applicable in large network, for
which LRU is more commonly used than LFU.

Typically, LCE is a strategy well-practicable but ineffective.
In this paper, we present UtilCache, a distributed and adaptive
content placement strategy in ICN, which yields satisfactory
performance in reducing link cost, introduces little coordina-
tion overhead, and can be computationally efficient. Our main
contribution of this paper are summarized as:
• We present caching utility, which quantifies the caching

gain (i.e. saved link cost) of caching a content at a node
(Sec. IV). Caching contents by caching utility ensures the
effectiveness of this strategy. Similar things are done in
our previous work [4] roughly and intuitively. However,
in this paper, we elaborate its derivation. Theoretical
analysis begins with LCM problem formulation, and then
we give a 1/2-approximation offline algorithm to solve it,
from which we derive caching utility.
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• We propose a distributed and adaptive content placement
strategy, UtilCache, which can work with any cache
replacement policy to keep the contents with high caching
utility in the cache (Sec. V). UtilCache introduces little
storage overhead compared with LCE, and yields the
same computational complexity as LCE when they adopts
same content replacement policy.

II. RELATED WORK

The goal of optimizing content placement in ICN mainly
focus on: 1) reducing cache redundancy and keeping content
diversity, and 2) reducing total link cost. ProbCache [5],
together with [6], [7], are all instances of cache redundancy
reduction. In this paper, we focus on other works coping with
link cost reduction.

Simple and practicable as it is, LCE has great weakness
in its performance. [2] has proven LCE’s performance can be
arbitrarily suboptimal when with simple cache replacement
policies such as LRU, LFU. Both LFU and LRU in fact
concerns only the local popularity of contents. As shown in
Fig. 2, LCE neglects the upstream link cost that may be paid
due to a cache miss.

To improve effectiveness, proposed content placement
strategies in regard to link cost reduction claim to focus
on caching utility, which refers to the saved link cost on
account of a cached content. To our knowledge, [8] is the
first work concerning caching utility, yet without elaboration
of it. In 2014, Ren et al. present MAGIC [3], empirically
and intuitively giving the definition of caching utility. Our
previous work [4] roughly derives caching utility from a LCM
problem formulation. Ioannidis et al. [2] use Pipage Rounding
[9] method to solve LCM problem, and present an adaptive and
distributed content placement strategy, PGA, which performs
with optimality guarantees.

However, practicability becomes a drawback for these
strategies. For example, content popularity should be a priori
known in [4], [8]. Extra messages are disseminated in PGA,
which increase traffic cost. To address the practicability issues,
another strategy, GRD, is proposed in [2], where routers decide
content placement based on the estimation of a sub-gradient
and always keep the higher ones. The ”sub-gradient” is similar
to caching utility we refer to, but not exactly identical. The
estimation of such sub-gradient is to maintain an exponentially
weighted moving average (EWMA) of the upstream link cost
that is piggybacked by data packets. GRD keeps adaptive and
distributed yet cuts down coordination overhead. However, it
faces two problems. First, to maintain EWMA, each time a
data packet arrives, the estimation of all contents should be
modified which is computationally expensive. Second, locally
cached popular contents may be regarded as unpopular ones
because requests for cached contents are locally satisfied, and
thus there is not data packet from upstream, which indicates
that EWMA of upstream link cost may not a satisfactory
metric to measure caching utility.

Fig. 2. Weakness of LCE: Suppose content 1 and 2 has the same popularity.
Ideally it is better to cache content 1 at router i because a cache miss for
content 1 leads to more upstream link cost. In LCE, however, only popularity
is considered, for which content 1 is replaced by content 2.

III. BACKGROUND

The derivation of caching utility begins with a formulation
of LCM problem in ICN, which we present in this section.

A. Assumptions

Independent Reference Model. Contents fall into a fixed
catalogue of |C| objects, and requests for each content are
generated with constant probability, independent from any
past requests, a.k.a. Independent Reference Model (IRM) [10].
We refer to popularity as per-content request rate hereafter.
IRM ignores the temporal locality, a significant feature in real
content request traces. Although a Shot Noise Model (SNM) is
presented in [11] to capture the dynamics of content popularity,
Analytical models under SNM are shown to be challenging
[12]. Therefore, we still consider the IRM in our model.

Equal-sized Contents. Every content in the network
has unified size. Since the derivation is similar without this
assumption, we still keep it for simplicity considerations.

No Request Aggregation. We suppose there exists no
content request aggregation mechanism such as the well-
known PIT in Name-Data Network (NDN) [13], as [14] have
expounded PIT does not deliver substantial benefits but is
likely to cause problems counter-productively.

Symmetric Path. Content request and the corresponding
data packet traverse the same path, which is a common
assumption in the context of ICN, similarly to [2], [5], [6].

Instantaneous Data Response. Data packets are down-
loaded instantaneously, or at least in a small delay negligible
compared with the request arrival process, which results in the
equal arrival rate for both requests and contents.

B. Modeling Link Cost Minimization Problem

The whole cache network can be represented as an graph
G = 〈N,E〉, where N = {1, ..., n} is a set of nodes as the
routers and each edge (i, j) in the edge set E indicates packets
can be transmitted bidirectionally between node i and j. Link
cost, the most significant element in LCM problem, can thus
be formulated as the weight wij of each edge (i, j).

It can be generally assumed that each node i ∈ N is
equipped with a cache able to store any content c ∈ C. There-
after, we use ”node”, ”router” and ”cache” interchangeably.
The cache capacity of node i is Bi. Specifically, a set of nodes
Sc are source nodes for content c, which stores c permanently.

Cache decisions, the only independent variables of our for-
mulation, are denoted by a matrix X = [xci ] with xci ∈ {0, 1}.



xci is binary indicating whether content c is cached in node i
(xci = 1 if being cached).

Ioannidis et al. [2] presents an elegant way to formulate the
routing strategy in ICN. Let p = {p1, p2, ..., pK} be a simple
(i.e. without loops) path end with a source node, none of the
intermediate nodes in p source node. Thus, all the possible
requests can be defined as a set R. Each = (c, p) ∈ R refers
to the requests for c generated from p1, forwarded along p and
satisfied at pK , which indicates that pK is one of the source
nodes of content c, i.e. pK ∈ Sc.

Let λ(c,p) be arrival rate of requests falling into (c, p). Total
link cost of network L(X) can thus be defined as:

L(X) =
∑

(c,p)∈R

λ(c,p)

K−1∑
k=1

wpk+1pk

k∏
k′=1

(1− xcpk′ ) (1)

(1) shows that a request for content c on path p contributes
wpk+1pk to the total link cost when none of pk’s downstream
nodes cache the requested content. For simplicity, we only
calculate link cost caused by data packets. Now we can
formulate LCM problem as:

min L(X) (2a)

s.t.
∑
c∈C

xci ≤ Bi,∀i ∈ N (2b)

xci ∈ {0, 1} ,∀c ∈ C,∀i ∈ N (2c)

(2b) and (2c) are capacity and integrality constraints, re-
spectively.

When all the caches are empty, then total link cost is
constant, independent from X. Let L0 be the constant cost.
We have L0 =

∑
(c,p)∈R λ(c,p)

∑K−1
k=1 wpk+1pk .

The benefit of caching is to save total link cost. We refer
to the saved link cost as caching gain, similarly in [2], [3],
which is defined as G(X) = L0 − L(X). Then we have:

G(X) =
∑

(c,p)∈R

λ(c,p)

K−1∑
k=1

wpk+1pk(1−
k∏

k′=1

(1− xcpk′ )) (3)

To minimize total link cost is to maximize caching gain.
The LCM problem can be equivalently formulated as:

max G(X) (4a)
s.t. X ∈ D (4b)

D is the set of all the X satisfying (2b)-(2c). Shanmugam et
al. has proven (4) is NP-hard [15], for which an approximation
algorithm is needed.

IV. CACHING UTILITY

In this section, we present the our definition of caching
utility, which quantifies the caching gain (i.e. saved link cost
in LCM problem) of caching a content in a router. Caching
utility is derived from an offline 1/2-approximation algorithm
solving (4).

A. Offline Algorithm

Before presenting the offline algorithm, we transform (4)
into maximizing monotone submodular function subject to
matroid constraints:

Properties of (4) (abstract). The integrality constraint (2c)
enables that every cache decision X = {xci} can be written
as a set A ⊂ {f ci |c ∈ C, i ∈ N}, where xci = 1 ⇔ f ci ∈ A.
Thus, D can be written as matroid constraints, according to
the definition of partition matroids [16]. Moreover, G(X) can
be written as a set function [17] as well. It is proved by
[15] that the set function is a monotone submodular function,
which means (4) can be written as an optimization problem
that maximizing monotone submodular function subject to
matroid constraints. Due to space constraints, detailed proof
is in Appendix A.

Algorithm 1 Offline Algorithm
Input:

The network state;
Output:

The cache decisions, X;
1: X = {0};
2: while there is (c, i) s.t. xci = 0 and

∑
c′∈C x

c′

i < Bi do
3: (c, i) = argmaxxc

i=0 and
∑

c′∈C xc′
i <Bi

mc
i (X);

4: X = X|xci = 1;
5: end while
6: return {X};

Fisher et al. [18] presents a simple greedy algorithm to
solve the optimization problem that maximizing monotone
submodular function subject to matroid constraints, with spe-
cific optimality guarantees, based on which we present an
offline algorithm. Before introducing the algorithm, we define
the marginal value of caching content c at node i as

mc
i (X) = G(X|xci = 1)−G(X|xci = 0)

, where X|xci = 1 refers to the new matrix generated by
changing xci of X to 1.

Then the offline algorithm is discribed in Algorithm 1,
which keeps on choosing greedily a pair of content c and node
i with highest marginal value under capacity constraints (2b),
and then storing c in i. [18] has proven caching gain obtain
by Algorithm 1 is at least 1/2 of the optimal.

B. Derivation of Caching Utility

We find that the marginal value mc
i (X) indicates the gain

of caching a new content c at i. Therefore, we can use mc
i (X)

to quantify the aforementioned caching gain, which we called
it caching utility.

Theorem 1. we have

mc
i (X) = λci (X)w̄ci (X)

, where λci refers to request arrival rate for content c at i (i.e.
the popularity of c at i), w̄ci refers to average upstream link
cost per request generated when i doesn’t cache c.



Fig. 3. Cache Update: Every request for c at i becomes effective request with
probability w̄c

i /w̄max. Cache update is different for effective and noneffective
requests. Whenever an effective request arrives, cache is update accordingly,
while noneffective request will not affect cache state. The example use LRU
for content replacement.

Detailed proof of Theorem 1 is in Appendix B. Interestingly,
both λci (X) and w̄ci (X) are independent from the cache deci-
sions at node i, which means they can be regarded as constant
when we keep cache decisions of other nodes unchanged and
adjust only the cache of node i, due to which we define the
caching utility for content c at i as

U(c, i) = λci w̄
c
i (5)

V. UTILCACHE

Running Algorithm 1 in centralized way, however, encoun-
ters practical obstacles. In this section, we propose an adaptive,
distributed cache strategy, UtilCache, to solve LCM problem,
based on a simple idea of maximizing caching utility.

A. Reshaping ”Popularity”

The important idea implies in Algorithm 1 is that: to
maximizing the caching gain G(X), we should choose those
contents with highest caching utility to cache. In Algorithm 1,
(c, i) is chosen globally. However, in a distributed algorithm,
to avoid extra communication overhead, nodes are supposed
to decide content placement within their own cache.

An intuitive thought is that each node i maintains the
estimation of λci and w̄ci , prioritizes contents by their caching
utility, and always caches the top-Bi ones. However, on the
one hand, it is computational expensive. On the other hand, in
both our previous work [4] and recent papers [19], [20] we find
popularity estimation is a tough task and error of popularity
estimation makes great difference to cache performance.

Inspired by caching algorithm proposed in [21] for Web
Caching, we come up with UtilCache. UtilCache tackles the
two obstacles by separating procedures of content retrieval and
cache update. Content retrieval remains unchanged: when a
request arrives at a node and its designated content is cached,
the node responses with the content, otherwise the request is
forwarded upstream to next hop.

In UtilCache, each node i maintains an estimation of w̄ci ,
which will be described in Sec. V-B. Let w̄max be the maximal
per-request upstream link cost among all the contents at i.
Every request for c at i becomes an effective request with
probability w̄ci /w̄max.

Cache update differs between effective and noneffective re-
quests.Effective requests update cache state, while noneffective
requests do not, as if they have never arrived at the cache.
Fig. 3 exhibits an example. Suppose LRU is used. When an

TABLE I
COORDINATION OVERHEAD AND COMPLEXITY COMPARISION

Computational Complexity Coordination Overhead
Space Communication

GRD O(|C|) O(|C|) 0
U-LFU1 O(log|C|) O(|C|) 0
U-LRU O(1) O(|C|) 0

LCE-LFU O(log|C|)2 0 0
LCE-LRU O(1) 0 0
1 UtilCache with LFU.
2 In common implementation of LFU, O(log|C|) for eviction.

effective request for c results in a cache hit, c becomes the most
recently use content. Otherwise when a cache miss happens, c
is downloaded, cached and still the most recently use content.
However, for a noneffective request, access time of the content
remains unchanged. Even if the content is downloaded because
of cache miss, it will not be cached.

Thus, cache-perceived popularity for content c at node i is
equal to the popularity of effective requests, i.e.

λci
w̄ci
w̄max

=
U(c, i)

w̄max

. For a given node i, w̄max is constant. Therefore in UtilCache,
the most ”popular” content in the cache’s view, is the content
with highest caching utility. UtilCache is compatible with any
content replacement policy. Especially when working with
those who tends to keep ”popular” contents in cache (e.g.
LFU, LRU), UtilCache can attain less link cost.

B. Estimation of Per-request Upstream Link Cost

In practice of UtilCache, each node is supposed to maintain
the estimation of average upstream link cost w̄. It occurs to us
that the information of upstream link cost can be piggybacked
by the returned data packets. We add a field for Upstream Link
Cost estimation in the data packet, named ULC. If a request
from s is satisfied at t, ULC of the data packet generated at
t is initialized to 0. Whenever it is transferred from j to i
via link (j, i), ULC in it is added by wji. Intermediate nodes
can update their estimation by sniffing the ULC field of the
arriving data packets. To emphasize the importance of fresh
statistics, the average upstream link cost is calculated as a
moving average: w̄ci = αwci + (1− α)w̄ci .

C. Coordination Overhead and Computational Complexity

Coordination overhead and computational complexity are
summarized in Tab. I, with some baselines.

Computational complexity of UtilCache depends mainly
on the content replacement policy, because we introduce
only O(1) times of floating point computation. Compared
with LCE, UtilCache yields less link cost, and additionally
introduces little coordination overhead: O(|C|) space cost for
estimation of w̄ and no extra packet for communication. With
similar coordination overhead, UtilCache is more efficient than
GRD, because GRD modifies the estimation of all contents
each time a data packet arrives.
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Fig. 4. Scenario 1: There is only one cache, and link cost added by a miss
request for different content is different. When working with LFU, UtilCache
performs nearly as well as the optimal solution (which is to always keep the
contents with highest caching utility a prior).

Moreover, UtilCache’s compatibility with content replace-
ment policy indicates that any progress made in content
replacement policy to cache popular contents efficiently and
effectively also does good to UtilCache. For example, the
O(1) implementation of LFU [22] presented in 2010 can
be applied in UtilCache and thus make the algorithm more
computationally efficient while maintaining its effectiveness.

VI. PERFORMANCE EVALUATION

We conduct our evaluations on Icarus [23], a discrete-
event simulator offering flow-level simulations, to compare the
performance of UtilCache, with benchmark cache strategies.
All the evaluations are run multiple times.

Networks. We use two real network topologies: GEANT
[24] and TISCALI [25]. GEANT is a core network intercon-
necting several European research institutes and universities,
while TISCALI is from the RocketFuel dataset [26]. To show
the performance difference better, we randomly assign each
edge a link cost choosing from {10, 100, 1000}.

Workload. There is a catalog of 3 × 105 contents in the
network. Popularity of contents follows Zipf distribution, and
request arrival process is poisson with average rate of 12/sec.
We generate 3× 106 requests for cache warmup and another
6× 106 for measurement.

Parameters. We mainly consider the effect of: Zipf expo-
nent α, cache to population ratio and topology. Zipf exponent
α indicates the skewness of popularity distribution. When α

increases, popular items become further popular and unpopular
ones less. Cache to population ratio, introduced in [27], shows
the proportion of total cache size to total content size.

A. Scenario 1: Single Cache

Before evaluating the performance of UtilCache in a net-
work, we first focus on the performance gap between Util-
Cache and the ”intuitive thought” in Sec. V-A. Let there be
only one cache, and a miss request for c at the cache leads
to an average of w̄c link cost. The ”intuitive thought”, i.e. to
cache is top-B contents with highest caching utility λcwc, is
the optimal solution (refered to Optimal). Moreover, since
LFU is the content replacement policy which can indeed cache
the most popular contents, UtilCache is theoretically able to
keep the most utilitarian contents when working with LFU.

Fig. 4 shows the results. The gap between Optimal and
LFU indicates the necessity of considering upstream link cost
in addition to content popularity. UtilCache with LFU yields
nearly the same caching gain as the optimal solution, but
is more efficient. The gap between U-LFU and U-LRU is
similar with that between LFU and LRU. Although the total
caching gain attain by UtilCache with LRU is less, it has low
computational complexity and can be executed efficiently.

B. Scenario 2: Cache Network

Now we run evaluations in a cache network, and compare
UtilCache with LCE and GRD. Both LCE and UtilCache are
implemented with LFU and LRU.

Caching gain under different circumstances are shown in
Fig. 5. When the cache size increases, more contents are able
to be cached to save link cost, for which caching gain increases
correspondingly. When Zipf exponent α increases, it is more
likely to request for the popular contents that are cached, for
which the caching gain increases as well.

UtilCache performs much better when using same content
replacement policy as LCE, which indicates we should con-
sider the caching utility rather than merely popularity when
reducing link cost. When working with LFU, UtilCache yields
the best performance, which validates the efficacy of caching
utility. With similar coordination overhead and efficiency,
GRD performs worse than UtilCache (with LFU) because its
estimation of caching utility has some inaccuracy.

VII. CONCLUSION AND FUTURE WORK

Formulation of Link Cost Minimization problem in ICN
reveals the importance of upstream link cost. In this paper, we
present UtilCache, an adaptive, distributed content placement
strategy to reduce total link cost, which is both effective and
practicable. In UtilCache, each router tends to cache contents
with highest caching utility. Caching utility is defined consid-
ering both content popularity and upstream link cost, which
ensures the performance of UtilCache. Moreover, UtilCache
introduces little coordination overhead because of piggybacked
collaborative messages, and is compatible with any cache
replacement policy, which means its computational complexity
can be low when efficient content replacement policy is used.
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Fig. 5. Scenario 2: There is a cache network over specific topology, and cost of each link is assigned. UtilCache with LFU performs the best with most
caching gain.

Evaluations validates the effectiveness of UtilCache as well.
UtilCache can be further improved in terms of coordination
overhead by maintaining only the information of in-cache
contents, such as In-CacheLFU [28]. In addition to these
avenues, we are going to perform an extended evaluation of
UtilCache in a scenario with dynamic demand.
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APPENDIX

A. Transforming LCM Formulation

We define a Ground Set as:

E = {f ci | i ∈ N, c ∈ C}

. The integrality constraint (2c) enables that every cache
decision X = {xci} can be written as a set A ⊆ E, where

xci = 1⇔ f ci ∈ A (6)

Proposition 1. Let Gi = {f ci | c ∈ C}. The constraints of
(4) is equivalent to I = {A ⊆ E | |A ∩ Gi| ≤ Bi,∀i ∈ N},
while M = (E, I) is a partition matroid.

Proof. Suppose A and X are equivalent, which means (6) is
satisfied. |A ∩Gi| indicates how many elements in {f ci | c ∈
C} are in A as well. Notice that here router i is regarded as
constant. Thus |A∩Gi| also refers to how many xci = 1 when
i is fixed, which is exactly

∑
c∈C x

c
i . Therefore, we have∑

c∈C

xci ≤ Bi ⇔ |A ∩Gi| ≤ Bi

. Once X is a feasible solution to (4), the equivalent A must
satisfy: |A ∩ Gi| ≤ Bi,∀i ∈ N, for which constraints of (4)
can be represented by a set of feasible solutions as well, i.e.
I = {A ⊆ E | |A ∩Gi| ≤ Bi,∀i ∈ N}.

Partition matroid (E′, I ′)is a typical instance of matroids.
In a partition matroid, the ground set E′ is partitioned into
disjoint sets E′1, E′2,...,E′l and

I ′ = {A ⊆ E′ | |A ∩ E′i| ≤ βi,∀i = 1, ..., l}

, for constant parameters β1, β2, ..., βl [16]. Obviously, {Gi}
is a partition of E, for which M = (E, I) is a partition
matroid.

Proposition 2. The objective function of (4) can be written
as a monotone submodular function.

Proof. Although we model different problems, our objective
function (4a) is very similar with the objective function in
[15], which has been proven to be a monotone submodular
function by Shanmugam et al.

Now we can draw a conclusion from Proposition 1 and 2
that LCM problem formulation (4) can be written as maximiz-
ing a monotone submodular function with matroid constraints.

B. Proof of Theorem 1

From the definition of G(X) we know xci affects only the
caching gain of (c, p) where router i is in path p. Let Rci =
{(c, p) | i ∈ p, (c, p) ∈ R} and pi′ = i when i ∈ p. We define

Gci (X) =
∑

(c,p)∈Rc
i

λ(c,p)
K−1∑
k=1

wpk+1pk(1−
k∏

k′=1

(1− xcpk′ ))

=
∑

(c,p)∈Rc
i

λ(c,p)[
i′−1∑
k=1

wpk+1pk(1−
k∏

k′=1

(1− xcpk′ ))+

K−1∑
k=i′

wpk+1pk(1−
k∏

k′=1

(1− xcpk′ ))]

. Thus, we have

mc
i (X) = G(X|xci = 1)−G(X|xci = 0)

= Gci (X|xci = 1)−Gci (X|xci = 0)

=
∑

(c,p)∈Rc
i

λ(c,p)
K−1∑
k=i′

wpk+1pk

k∏
k′=1

(1− xcpk′ )

=
∑

(c,p)∈Rc
i

λ(c,p)
i′−1∏
k′=1

(1− xcpk′ )(wpi′+1pi′

+
K−1∑
k=i′+1

wpk+1pk

k∏
k′=i′+1

(1− xcpk′ ))

Let λ′(c,p) = λ(c,p)
∏i′−1
k′=1(1 − xcpk′ ), and w(c,p) =

wpi′+1pi′ +
∑K−1
k=i′+1 wpk+1pk

∏k
k′=i′+1(1 − xcpk′ ). We can

figure out that λ′(c,p) is the actual request arrival rate for
content c at router i through path p, and w(c,p) represents the
upstream link cost caused by a request for content c through
path p, and thus we have

mc
i (X) =

∑
(c,p)∈Rc

i

λ′(c,p)w(c,p)

=

∑
(c,p)∈Rc

i

λ′
(c,p)∑

(c,p)∈Rc
i

λ′
(c,p)

∑
(c,p)∈Rc

i

λ′(c,p)w(c,p)

=
∑

(c,p)∈Rc
i

λ′(c,p) · (
∑

(c,p)∈Rc
i

λ′
(c,p)∑

(c,p)∈Rc
i

λ′
(c,p)

w(c,p))

Let λci =
∑

(c,p)∈Rc
i
λ′(c,p) and w̄ci =∑

(c,p)∈Rc
i

λ′
(c,p)∑

(c,p)∈Rc
i
λ′
(c,p)

w(c,p). Thus, the former, λci ,

represents requests arrival rate for content c at router i, while
w̄ci represents the average per-request upstream link cost. In
conclusion, we have

mc
i (X) = λci w̄

c
i
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