
Mobility-Aware Joint Service Placement and
Routing in Space-Air-Ground Integrated Networks

Amir Varasteh∗, Sandra Hofmann†, Nemanja Deric∗, Mu He∗, Dominic Schupke†,
Wolfgang Kellerer∗, and Carmen Mas Machuca∗

∗Chair of Communication Networks, Department of Electrical and Computer Engineering,
Technical University of Munich, Germany

Email: {amir.varasteh, nemanja.deric, mu.he, wolfgang.kellerer, cmas}@tum.de
†Airbus, Munich, Germany

Email: {sandra.s.hofmann, dominic.schupke}@airbus.com

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—People desire to be connected, no matter where they
are. Recently, providing Internet access to on-board passengers
has received a lot of attention from both industry and academia.
However, in order to guarantee an acceptable Quality of Service
(QoS) for the passenger services with low incurred cost, the path
to route the services, as well as the datacenter (DC) to deploy the
services should be carefully determined. This problem is challeng-
ing, due to different types of Air-to-Ground (A2G) connections,
i.e., satellites and Direct Air-To-Ground (DA2G) links. These A2G
connection types differ in terms of cost, bandwidth, and latency.
Furthermore, due to the flights’ movements, it is important to
consider adapting the service location accordingly. In this work,
we formulate two Mixed Integer Linear Programs (MILPs) for
the problem of Joint Service Placement and Routing (JSPR):
i) Static (S-JSPR), and ii) Mobility-Aware (MA-JSPR) in Space-
Air-Ground Integrated Networks (SAGIN), with the objective of
minimizing the total cost. We compare S-JSPR and MA-JSPR
using comprehensive evaluations in a realistic European-based
SAGIN. The obtained results show that the MA-JSPR model,
by considering the future flight positions and using a service
migration control, reduces the long-term total cost notably. Also,
we show S-JSPR benefits from a low time-complexity and it
achieves lower end-to-end delays comparing to MA-JSPR model.

Index Terms—placement, location-routing, migration, space-
air-ground, mobility-aware, multi-period optimization

I. INTRODUCTION

Internet connectivity to the passengers of flights is being
offered by more and more airlines. It has been shown that
passengers consider connectivity as the third important pa-
rameter when choosing a specific flight [1]. Different services
can be delivered to passengers during the flight, such as Voice-
over-IP (VoIP) calls, video streaming, and web browsing. In
addition to passengers, flight’s operational services need to
communicate to the ground, such as sensor information for
monitoring the status of the flight. Hence, the services between
flights and ground locations (usually at datacenters (DCs)) are
increasing in terms of number of services as well as QoS
requirements. With the growing number of connected flights
as well as connected passengers, it becomes challenging to
guarantee the QoS requirements of each service.

As depicted in Fig. 1, a flight has different Air-To-
Ground (A2G) alternatives to connect to a particular DC
in the ground network: i) Satellites, ii) Direct Air-To-
Ground (DA2G) links. In this paper, we discuss two types
of satellites: Geostationary Earth Orbit (GEO) and Low Earth

GEO Satellite

LEO Satellite

Airplanes

Ground

Network

GEO

DA2G

Datacenter GEO/LEO Gateway

Airplane Movement

Ground Network Node DA2G Link

GEO Link

LEO LinkGround Link

LEO

DA2G Connection Point

Fig. 1: A high level view of the space-air-ground integrated network

Orbit (LEO). GEO satellites are designed to have an orbital
period equal to the Earth’s rotation period. However, due to
the high orbit altitude of these satellites, their Round Trip
Time (RTT) is over 600 ms [2], being too large for some
services. Besides, OneWeb, Telesat, and SpaceX have been
developing LEO satellite constellations, which are located at
lower altitude (less than 2, 000 km) [2]. Thus, LEO satellites
are able to offer network bandwidth with low latency (the
average RTT is 50 ms [3]). The satellites are connected to
their gateways, located in the ground network.

The second option to connect a flight to the ground network
is DA2G, which establishes a direct connection from a flight to
the DA2G base station. A DA2G link produces around 10 ms
of RTT [4]. It has to be mentioned, that the connection to
DA2G base stations change due to the mobility of flights over
time. Though, different A2G connection options differ in terms
of provided bandwidth, delay, and cost.

On the other hand, a wise mapping of service instances
(e.g., Virtual Machines (VMs)) to proper DCs can improve
QoS levels and reduce the long-term incurred costs [5], [6].
Additionally, by considering the mobility of flights, inter-
DC service migrations can improve the service placement
accordingly. Thus, different cost parameters can contribute
to the total cost of providing Internet services to a flight:
i) routing cost from the flight to the ground DC, ii) service
instance deployment cost, and iii) the cost of service migration

between DCs. Therefore, in such dynamic and heterogeneous
environment, providing cost-efficient and QoS-guaranteed ser-
vices to flights is still a quite challenging problem to overcome,
which to the best of our knowledge, has not been addressed
in the state-of-the-art.

This paper tackles the problem of Joint Service Placement
and Routing (JSPR) for on-board passenger services in a
European-based SAGIN by minimizing the total cost. We
formulated the JSPR problem in two cases: i) Static: it solves
the JSPR for a particular time-slot (e.g., position of the
flight, DC status), ii) Mobility-Aware (i.e., dynamic): This
approach takes future time-slots into account and hence, the
flight’s mobility to solve the JSPR problem. We also introduce
and model a service instance migration control approach to
improve the solution in terms of total cost.

The remainder of the paper is structured as follows: In Sec-
tion II, we highlight the related work. Section III presents the
system model and problem formulation. Further, in Section IV,
we evaluate and compare the performance of S-JSPR and MA-
JSPR optimization approaches in a European-based SAGIN
to identify their strengths and weaknesses. Finally, Section V
concludes the paper.

II. RELATED WORK

In a SAGIN architecture space, air and ground network
segments are integrated [7]. These integrated networks have
introduced novel insights and challenges to tackle [8]. Many
research works exist in the the area of SAGIN. Some studies
have focused on resource allocation [9], [10], mobility man-
agement [11], reliability [12], and energy-efficiency [13] in
these networks. Further, with the recent advances in Software-
Defined Networking (SDN), Zhang et. al. in [14] present
an SDN-based vehicular network utilizing SAGIN. Further-
more, in [15], [16], the SDN controller placement problem in
these integrated networks is explored. Comprehensive surveys
summarize studies on the SAGIN aforementioned challenges,
available in [8].

In addition to SAGIN, looking from the modeling as-
pect, some studies in the area of Vehicular Cloud Com-
puting (VCC) [17], [18] and Mobile Edge Comput-
ing (MEC) [19]–[23] have developed mobility-aware resource
management approaches. On the one hand, in the area of VCC,
authors in [18] present an SDN-based platform to guarantee
QoS requirements for 5G-enabled automotive systems. In their
approach, while the vehicles are moving, their QoS level is
being continuously monitored. In case of losing certain QoS
levels, the service migration is triggered for QoS improve-
ment. Moreover, Yao et. al. [17] assign a VM per vehicle
to deliver the required services, such as in-vehicle multimedia
entertainment and vehicular social networking. By minimizing
the network costs, they determine the necessity and the place
to migrate the VMs during vehicle movement. However, they
do not determine the routing from vehicles to their respective
VM instances. Also, in contrast to us, they solve the problem
for the next time-slot, instead of the full time horizon.

TABLE I: Comparison of the related work with our approach, all
considering mobility-awareness

Works Routing Placement Service Migration QoS Shared Instance
[17], [21] × (predefined) X X × ×

[18], [19], [22] × X X X ×
[20], [23] × X X × ×
Our work X X X X X

On the other hand, in the MEC area, authors in [19], [21]
propose an approach to dynamically place network functions
on MEC servers available in mobile base stations, according to
the handover probability of users for the next time-slot. They
formulate two optimization models with the objective of min-
imizing network function migrations and communication cost
(i.e., QoS/QoE) between users (UEs) and network functions.
In another work, Bahreini et. al. [20] formulate an optimization
model to map application graphs to network graphs according
to the user’s location. Their objective is to minimize the total
cost of running and migrating applications, and communica-
tion cost between users and applications. Finally, a dynamic
service placement approach is proposed by Wang et. al. [23].
They minimize the placement, routing, and migration costs
based on a specific look ahead window. However, they do not
determine the routing between users and instances. Also, they
do not guarantee the QoS of delivered services. A comparison
of our approach with others is summarized in Table I. Notably,
shared instance column in Table I indicates whether a service
instance is shared among several flights at the same time.

To the best of our knowledge, this is the first paper that
formulates and evaluates the JSPR problem in a European-
based SAGIN, by minimizing the total cost. Further, this work
provides a service migration control to adapt service placement
and routing according to the mobility of flights. We also
guarantee to meet the end-to-end delay, required by passenger
services.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Before presenting the JSPR problem formulation cases, let
us introduce the system model.

A. System Model

Let us define a finite time horizon T = {t0, t1, ..., |T |} com-
prising |T | time-slots, each with a duration of ω minutes. The
SAGIN considered in this work consists of three segments:

1) Ground Network: We denote the set of nodes and links of
the ground network as NG and LG, respectively. Further, we
consider a set of DCs as NDC ⊂ NG, which can host service
instances. We note that service instances can be deployed as
VMs in DCs. We consider each j ∈ NDC with a total resource
capacity of CapDCj (e.g., in terms of CPU cores).

2) DA2G Nodes/Links: Flights can communicate to the
ground via DA2G links and base stations. We define NDA2G

as the set of DA2G base stations in the ground network, such
that each NDA2G node is connected to the closest network
node NG. Also, we denote the set of links that connect flights
to the closest DA2G base station as LDA2G.

3) Satellite Nodes/Links: We denote the set of satellite nodes
and links by NSAT and LSAT , respectively. The satellite nodes

relay the flight’s traffic to the satellite gateways located in the
ground network, defined as NSG [3].

Thus, SAGIN is defined as a bidirectional connected graph
G = (N ,L), where N = NSAT ∪NDA2G∪NG∪NA and L =
LSAT ∪LDA2G ∪LG are the set of all nodes and links of G,
respectively. We note that, each link (u, v) ∈ L between nodes
u, v ∈ N is characterized by a constant cost value CostLuv ,
propagation delay Duv , and capacity Buv .

We consider K as the set of all service types offered to the
passengers. The service requests triggered by a passenger is
denoted as a ∈ A and is characterized by following 4-tuple:
(srca, ka, ba, da), where srca ∈ NA is the flight node of the
passenger, ka ∈ K is the service type of request a, ba is the
required bandwidth, and da is the maximum allowed end-to-
end delay of the service request a.

Let us denote F as the set of flights considered in the
problem (e.g., flights flying over Europe during the considered
time horizon T). Each flight Fi ∈ F has a different flight
route and thus, it is characterized by the different locations (in
terms of Latitude (lat) and Longitude (lon)) and the duration
of the flight. We define τi =| Fi | −1 as the number of time-
slots in which the ith flight is flying. Thus, the duration of
the flight i can be calculated as τi × ω. The flight locations
at any time-slot are considered as nodes in graph G, which
are denoted as NA where | NA |=

∑|F|
i=1 | Fi |. As an

example, suppose there is only one flight as F = {F1} where
τ1 = 2, and F1 = {(lat1, lon1), (lat2, lon2), (lat3, lon3)}. In
this example, NA would be the set of | F1 |= 3 flight nodes,
in the respective positions at each time-slot. Considering time-
slot duration of ω = 30 minutes, the duration of flight would
be τi × 30 = 60 minutes. We now introduce the two JSPR
formulations:

B. Static JSPR (S-JSPR) Formulation

The static case is defined as follows: given a SAGIN and
a set of service requests in each time-slot t ∈ T , place the
required service instances in the DCs and find the route to
the passengers, such that the network and service instance de-
ployment costs are minimized and all the service requirements
(bandwidth and maximum delay) are guaranteed. Inspired
by [24], we formulate S-JSPR by integrating the classical
multi-commodity flow and capacitated facility location-routing
problems into a MILP optimization. Therefore, we define four
types of decision variables: i) xaj ∈ {0, 1}: if service request
a ∈ A is assigned to DC j ∈ NDC . ii) luvaj ∈ {0, 1}: if link
(u, v) ∈ L is used to route the traffic for service request a ∈ A,
assigned to DC j ∈ NDC . iii) njk ≥ 0: The number of service
instances deployed in DC j ∈ NDC to provide service type
k ∈ K. iv) yuv ∈ {0, 1}: if link (u, v) ∈ L is active.

Therefore, we present the S-JSPR optimization formulation
as follows:

Min
(∑
j∈NDC

∑
k∈K

CostINk njk +
∑

(u,v)∈L

CostLuvyuv
)
, (1)

s.t.
∑

j∈NDC

xaj = 1, ∀a ∈ A, (1.1)

xaj ≤ njka , ∀a ∈ A,∀j ∈ NDC , (1.2)

∑
k∈K

SizeINk njk ≤ CapDC
j , ∀j ∈ NDC , (1.3)∑

a∈A

baxaj ≤ CapINnjka , ∀j ∈ NDC , (1.4)∑
a∈A

∑
j∈NDC

luvaj ba ≤ Buv, ∀(u, v) ∈ L, , (1.5)∑
(u,v)∈L

∑
j∈NDC

luvajDuv ≤ da, ∀a ∈ A, (1.6)∑
v∈Ψ+(u)

∑
j∈NDC

lsrcavaj = 1, ∀a ∈ A, (1.7)∑
v∈Ψ+(u)

∑
j∈NDC

lvuaj −
∑

v∈Ψ−(u)

∑
j∈NDC

luvaj ={
0 , ∀a ∈ A,∀u ∈ {N \NDC}, u 6= srca
xau , ∀a ∈ A,∀u ∈ NDC

, (1.8)

luvaj ≤ xaj , ∀(u, v) ∈ L,∀a ∈ A,∀j ∈ NDC , (1.9)
yuv ≤

∑
a∈A

∑
j∈NDC

luvaj , ∀(u, v) ∈ L, (1.10)

ρyuv ≥
∑
a∈A

∑
j∈NDC

luvaj , ∀(u, v) ∈ L. (1.11)

Eq. (1) forms the S-JSPR objective function, aiming at
minimizing the sum of service instance deployment costs
and routing costs (i.e., used links), where CostINk is the
deployment cost of a single service instance for service type
k ∈ K. Also, CostLuv is the cost of using link (u, v) ∈ L.
Constraint (1.1) ensures that each service request is assigned
to one DC. Constraint (1.2) states that a service request of
type k can be assigned to a DC, if and only if there is
a service instance with type k is deployed on the DC j.
Constraint (1.3) expresses the DC capacity limit (e.g., in terms
of CPU cores), where SizeINk is the resource requirement of
the service instance type k. Also, CapDCj is the maximum
capacity of DC node j ∈ NDC . Constraint (1.4) guarantees
that the amount of assigned requests to an instance does not
exceed the maximum capacity of the instance, in which ba
is the amount of bandwidth requested by service request a.
Constraint (1.5) expresses that the sum of assigned traffic
volume to a link cannot exceed its capacity. Constraint (1.6)
guarantees the QoS of each service request (in terms of end-
to-end delay). Constraint (1.7) generates the traffic from each
request source, where Ψ+(u) is the set of outgoing links
from node u. Constraint (1.8) represents the flow conservation
rule, where Ψ−(u) is the set of incoming links to node u.
In detail, this constraint states that the traffic should keep
flowing, except when a node is a DC node serving the service
request. Constraint (1.9) states that traffic routing must be done
for the service requests that are actually assigned to a DC.
Constraints (1.10)-(1.11) activate a link, if any service request
is routing through it (ρ� 0).

C. Mobility-Aware JSPR (MA-JSPR) Formulation

Out MA-JSPR model considers mobility of flights in order
to optimize the long-term total cost over time horizon T .
It also considers service instance migration control between
DCs. Therefore, MA-JSPR adds a new dimension to S-JSPR:
time. In this case, the questions addressed in this problem are:
i) Considering the mobility of flights (future positions), how

many service instances, and on which DC should be placed to
serve the passenger service requests over time horizon? (Place-
ment) ii) How to reach from the passenger’s flights to each
service instance during the flight given (T)? (Routing) iii) At
which point in time, a service instance should be reallocated
to another DC? (Service migration control).

MA-JSPR addresses these questions by minimizing the total
cost over the whole time horizon. In MA-JSPR, there is an
additional cost associated to the service instance migration
(referred as migration cost Costmig), which is added to the
service instance deployment CostIN , and routing costs CostL

of S-JSPR. To formulate MA-JSPR, we define At as the set of
service requests generated by passengers on all flights at time-
slot t. We extend the variables defined in S-JSPR to include
a per time-slot index t ∈ T . Therefore, by using the same
definition as in S-JSPR model, we convert the variables of
S-JSPR to multi-period variables as xij → xtij , l

uv
aj → luvtaj ,

njk → ntjk, and yuv → ytuv . Additionally, we define a new
variable mt

k ≥ 0 to include the service instance migration
control. mt

k ≥ 0 represents the number of service migrations
for service type k ∈ K at the time-slot t ∈ T .

Considering the above explanations, we present the MILP
formulation of MA-JSPR as follows:

Min
(∑
t∈T

∑
j∈NDC

∑
k∈K

CostINk nt
jk+∑

t∈T

∑
(u,v)∈L

CostLuvy
t
uv +

∑
t∈T

∑
k∈K

Costmig
k mt

k

)
, (2)

s.t.
∑

j∈NDC

xtaj = 1, ∀t ∈ T ,∀a ∈ At, (2.1)

xtaj ≤ nt
jka , ∀a ∈ A

t, ∀t ∈ T , ∀j ∈ NDC , (2.2)∑
k∈K

SizeINk nt
jk ≤ CapDC

j , ∀t ∈ T , ∀j ∈ NDC , (2.3)∑
a∈At

bax
t
aj ≤ CapINnt

jka , ∀t ∈ T , ∀j ∈ NDC , (2.4)∑
a∈At

∑
j∈NDC

luvtaj ba ≤ Buv, ∀t ∈ T , ∀(u, v) ∈ L, (2.5)∑
(u,v)∈L

∑
j∈NDC

luvtaj Duv ≤ da, ∀t ∈ T ,∀a ∈ At, (2.6)∑
v∈Ψ+(u)

∑
j∈NDC

lsrcavtaj = 1, ∀t ∈ T , ∀a ∈ At, (2.7)∑
v∈Ψ+(u)

∑
j∈NDC

lvutaj −
∑

v∈Ψ−(u)

∑
j∈NDC

luvtaj = (2.8){
0 , ∀t ∈ T ,∀a ∈ At, ∀u ∈ {N \NDC}, u 6= srca
xtau , ∀t ∈ T ,∀a ∈ At, ∀u ∈ NDC

,

ytuv ≤
∑
a∈At

∑
j∈NDC

luvtaj , ∀t ∈ T , ∀(u, v) ∈ L, (2.9)

luvtaj ≤ xtaj ,∀(u, v) ∈ L, ∀t ∈ T ,∀a ∈ At, ∀j ∈ NDC , (2.10)

ρytuv ≥
∑
a∈At

∑
j∈NDC

luvtaj ,∀t ∈ T , ∀(u, v) ∈ L. (2.11)

Eq. (2) represents the objective function for MA-JSPR, where
Costmigk (third term) is defined as the migration cost for
service type k. Constraints (2.1)-(2.11) express the Constraints
(1.1)-(1.11) in S-JSPR model, extended by time dimension,
respectively. For instance, constraint (2.5) makes sure that the
assigned bandwidth to each link (u, v) ∈ L does not exceed

𝑡 = 𝑡0

𝑡 = 𝑡0 − 1

Datacenter Service type 𝑘 instance

2

A B C

New instance

Instance to delete

Service migration

21

2 1 1

𝑘

Fig. 2: Example of the service migration computation for three DCs
A, B, and C, when two service migrations, one service deletion, and
one creation is performing.

the total bandwidth of the link at each time-slot t ∈ T .
In order to compute the number of migrations of service

type k ∈ K at the time-slot t ∈ T , we propose Eq. 3:
mt

k =
∑

j∈NDC

[nt
jk − nt−1

jk]+ − [
∑

j∈NDC

nt
jk −

∑
j∈NDC

nt−1
jk]+

, ∀k ∈ K, ∀t ∈ T +, (3)

where [a]+ is defined as max{0, a}. Let us note that m0
k = 0,

since service migration cannot happen at t = 0. Consider the
example in Fig. 2 with two services K = {1, 2} and three DCs
A, B, and C. Let us consider that at time-slot t0, one service
instance of k = 1 is required at DC A, and two instances of
k = 2 are required at DCs B, and C. However, at next time-
slot, due to some new flight locations, two service instances
of k = 1 are required at B and C, whereas only one service
instance for k = 2 is required at DC A. This new service
instance allocation requires a migration of service k = 1 from
A to B, a second migration of service k = 2 from B to A, and
a service instance creation and deletion at C for service types
k = 2 and k = 1, respectively. Applying Eq. 3 to calculate the
number of service migrations for each service type k (mk

t),
we obtain:

(k = 1) :mt0
1 = [(0− 1)+ + (1− 0)+ + (1− 0)+]

− [(2− 1)+] = 1,

(k = 2) :mt0
2 = [(1− 0)+ + (0− 1)+ + (0− 1)+]

− [(1− 2)+] = 1.

Thus, the total number of service instance migrations for all
k ∈ K is given by mt0

1 +mt0
2 = 2.

IV. PERFORMANCE EVALUATION

In this section, we firstly introduce our scenario and input
parameters. Then, we compare the performance of S-JSPR and
MA-JSPR models, in terms of total cost, number of service
migrations, average end-to-end delay, and runtime.

A. Scenario: Our study focuses on a European-based SA-
GIN. For the ground network topology, we extend the PAN
network topology [25] to cover DA2G base stations over
Europe. We set the bandwidth for LG to 2 Gbps and their
delays were determined according to the length of the optical
fiber transmissions. Further, to be able to serve any flight
over Europe, distributed DC locations have been selected [26]:
Athens (Greece), Helsinki (Finland), Liverpool (England),
Strasbourg (France), Madrid (Spain), and Lviv (Ukraine). The
locations of the DA2G base stations are estimated using [27]
which are distributed all over Europe (| NDA2G |= 295). Also,

the bandwidth and delay of LDA2G is considered as 75 Mbps
and 10 ms [4], respectively.

According to the results presented in [16], we observe that
the number of LEO satellites moving over Europe is rather
low (5 out of the 72 LEO satellites in Iridium constellation).
Compared to GEO, utilizing LEO satellites introduces lower
latency, which is more suitable for our use case. Therefore,
in this paper, we only consider the LEO constellation for
modeling the problem. For simplification purposes, we apply
an abstraction model, where the group of LEO satellites
occupying Europe is represented as a single satellite node
denoted as set NSAT ⊂ N , where | NSAT |= 1. Also,
the set of links that connects each flight to LEO node and
from LEO to the satellite gateway is denoted as LSAT . We
set the bandwidth of LSAT to 50 Mbps [3]. Moreover, to
avoid unrealistic assumptions, we set the latency of LSAT
to the worst-case achievable latency 50 ms (according to
LEO latency calculations provided in [28]). Also, two satellite
gateways NGS have been considered in Florence (Italy) and
Patras (Greece) [3]. The set of considered flights has been
exported from FlightRadar24 live air traffic for 24 hours on
9.11.2017. In our experiments, assuming ω = 30 minutes, we
consider two set of flights with different duration: i) Short
flight Fs, such that τs = 3, ∀F ∈ Fs; and ii) Long flight Fl,
where τl = 7, ∀F ∈ Fl. Without loss of generality, we set the
visibility distance from each flight to the closest DA2G base
station as 350 km as the absolute geometrical maximum [29],
although in reality it can vary based on e.g., antenna type and
weather conditions.

In order to reduce the time complexity of the optimization,
two aggregated service requests per flight per time-slot have
been considered. These two service types are defined as:
i) Video streaming with bandwidth and end-to-end delay
requirement of 1.5 Mbps [30] and 300 ms [31], respectively,
ii) VoIP with 64 Kbps bandwidth and 100 ms [32] delay
requirement. We assumed the flight types as Airbus A320
with 150 passengers [33], where 20% of the passengers use
the aforementioned network services [34]. We assume these
requests are divided between our two service types equally.

First of all, based on our data, let us consider the number
of flights associated to each DA2G base station in order to
calculate the probability that a DA2G link is congested. Fig. 3
shows the histogram summarizing all the flights over Europe
in 24 hours. According to our flight data, the DA2G capacity,
and the services required by a flight, every DA2G base station
can serve simultaneously only around 9 flights (see the vertical
line in Fig. 3). Based on this study, the probability of DA2G
congestion is 19.714%. This information is used to determine
the congestion of DA2G base stations at each time-slot as
input to the MILP models.

An important parameter in this study is cost, which has
been considered in dollars per month. According to Amazon
Web Services [35], Compute-Optimized instance types is sug-
gested for high performance purposes, e.g., video streaming.
Therefore, we assume all k ∈ K use the same c4.2xlarge

0 20 40
Number of Flights per DA2G Connection Point

0.0

1.0

2.0

3.0

4.0

N
u

m
b

er
of

O
cc

u
rr

en
ce

s
[1

04
]

Fig. 3: Number of flights in a DA2G base station coverage range,
based on the real data of flights for 24 hours over Europe.

instance type, which costs $229 per month [36]. On the other
hand, the link costs are associated to the bandwidth required
by our services (∼ 20 Mbps), which are LG = $60 [37] and
Lsat = $130 [38]. Regarding the cost of LDA2G, we assumed
two values between LG and Lsat, $83 and $107. According
to [39], service migration costs can be expressed as a function
(M) of bandwidth cost (i.e., CostLuv) and instance memory
size (i.e., ∝ CostINk). Therefore, to simplify the model, we
present a tunable instance migration cost as function M:

Costmig
k =δ ×M(CostLuv, Cost

IN
k), (u, v) ∈ LG, k ∈ K (4)

where 0 ≤ δ ≤ 1 is the weighting factor. To simplify our
model, we set the M as a sum of CostINk and CostLuv .
Nevertheless, more factors such as server CPU utilization and
application sensitivity against migration can be considered to
formulate the migration cost function [39].

We modelled the SAGIN graph G by using Networkx 2.1 as
the input of the MILP models. The proposed MILP models has
been implemented using Gurobipy Optimizer 8.0.1 with 5%
solution gap for scalability purposes. The simulations were
executed on a desktop computer, equipped with Intel Core
i7-6700 @3.40 GHz CPU, 16 GB of RAM, running Ubuntu
18.04 x64 OS. We note that, due to lack of space, we omit
the results for LDA2G cost of $107. Nevertheless, we observe
similar results by using this value.

B. Results: We compare MA-JSPR and S-JSPR for the
above scenario. In order to evaluate the impact of different
service migration costs with respect the network and service
instance deployment costs (Eq. (4)), we vary the δ value
between 0.1 and 1, with step size of 0.1. In our first study,
we compare the total cost (including migration, network and
service instance deployment costs) when applying MA-JSPR
and S-JSPR for the two different types of flights: short flights
with τs = 3 and long flights with τl = 7. The models have
been evaluated for 30 random flights; results are batched and
the mean and standard deviation is reported. Also, the impact
of having other flights flying in the same area have been
considered by the DA2G link congestion probability.

The total cost of the models is compared in Fig. 4a. It can
the observed that the costs of MA-JSPR are always lower
than S-JSPR and the difference increases with the increase
of migration cost. Also, it can be seen that the cost of flight
with longer duration (τl) is higher than the short flight (τs),
because the amount of required resources is higher for the
long flight. Also, the number of migrations is expected to be

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
δ Values

0.2

0.4

0.6

0.8

1.0

A
v
g.

T
ot

al
C

os
t

(N
or

m
al

iz
ed

)
∆τl

∆τs

MA-JSPR(τl)

S-JSPR(τl)

MA-JSPR(τs)

S-JSPR(τs)

(a) Average total cost

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
δ Values

0.0

2.0

4.0

6.0

A
v
g.

N
u

m
b

er
of

S
er

v
ic

e
M

ig
ra

ti
on

s

No Mig.

MA-JSPR(τl)

S-JSPR(τl)

MA-JSPR(τs)

S-JSPR(τs)

(b) Average number of service migrations

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
δ Values

0.4

0.6

0.8

1.0

A
v
g.

R
ou

ti
n

g
C

os
t

(N
or

m
al

iz
ed

)

MA-JSPR(τl)

S-JSPR(τl)

MA-JSPR(τs)

S-JSPR(τs)

(c) Average routing cost

Fig. 4: MA-JSPR and S-JSPR comparison

higher for the longer flights, which contributes to the total
cost. Moreover, it can be seen that the cost difference for long
flight is higher than the short flight (∆τl > ∆τs). Hence, it can
be concluded that the amount of cost savings is higher when
more information about the future is taken into account. It has
to be mentioned that in our use case, the future positions of the
flights are known, which makes the problem simpler to solve.
In other use cases, such as autonomous vehicles, the vehicle
mobility pattern and its future positions rely on models, which
are not easy to determine.

Secondly, Fig. 4b shows the comparison of the the number
of service migrations for MA-JSPR and S-JSPR. It can be
observed that the average number of service migrations in S-
JSPR is significantly higher than MA-JSPR since it does not
take the future flight locations into account. Moreover, it can
be seen that the number of service migrations for the long
flight τl is always higher than τs, since it is flying for a longer
distance and the probability of migration raises. The figure also
shows that the number of service migrations decreases with the
increase of migration cost (δ). However, this can form a trade-
off between the routing cost and migration cost (or number of
service migrations). For example, if the migration cost is high
and the flight is moving, in future flight positions more routing
cost needs to be paid to reach to the service instance. This
trade-off can be seen in Fig. 4c. As is reported, for the τs and
τl, MA-JSPR model triggers no service migrations at δ = 0.4
and δ = 0.7, respectively (see Fig. 4b). Accordingly, as Fig. 4c
presents, the routing cost in these cases increase from δ = 0.1
to δ = 0.4 and δ = 0.7. After δ = 0.4 and δ = 0.7, the routing
cost does not increase and shows fluctuations, since no service
migration is triggered anymore. Additionally, Fig. 4c shows

M
A
− J
SP
R
(τ l

)

S
− J
SP
R
(τ l

)

M
A
− J
SP
R
(τ s

)

S
− J
SP
R
(τ s

)
0

25

50

75

100

A
v
g.

E
n

d
-t

o-
E

n
d

D
el

ay
[m

s]

Fig. 5: Comparison of the average end-to-end delay

that S-JSPR model produces lower routing costs compared
to MA-JSPR because it neglects future flight positions and
hence, it places the service instance at the closest DC (i.e.,
low routing cost). We note that, MA-JSPR can control the
number of service migrations, while meeting the end-to-end
required delay of each service request.

Besides, the achieved average end-to-end delay of both
services for S-JSPR and MA-JSPR is compared in Fig. 5. It
can be observed that the service requirements are generally
met. Also, we see that the delay is mostly below 50 ms,
which means the DA2G is utilized most of the time to route
the services to the selected DC. Moreover, Fig. 5 shows that
in both τl and τs cases, S-JSPR can achieve lower average
end-to-end delay than MA-JSPR. This is due to the fact that
S-JSPR does not consider the future flight positions to solve
the problem. In our scenario, there is a local DC node close to
the satellite gateway nodes in the ground NSG. Consequently,
it can be seen that the average delay for MA-JSPR(τs) is
higher than MA-JSPR(τl). This is because the short flight τs is
passing by fewer DCs during the flight compared to the longer
τl one. Therefore, MA-JSPR(τs) would prefer to use the local
DC close to the satellite gateways to avoid the routing cost
to reach farther DCs through the DA2G links. Additionally, it
can be observed that the maximum achieved end-to-end delay
in MA-JSPR(τl) is higher than MA-JSPR(τs). The reason is
that in τl case, the paths would be longer than τs case to
improve the cost-efficiency (see Fig. 4c). Notably, the average
end-to-end delay can be affected significantly by the DA2G
link congestion.

Finally, we present the runtime comparison of MA-JSPR
and S-JSPR in Table II. It can be seen that the runtime for
long flight is higher than for the short ones. Moreover, Table II
indicates that the time complexity of S-JSPR is significantly
lower than MA-JSPR, since it does not consider the future
flight positions.

TABLE II: Average runtime for different MILP models [seconds]

δ Values 0.1 0.3 0.5 0.7 0.9
MA-JSPR(τl) 1997.45 1936.02 3310.87 2496.06 1697.35

S-JSPR(τl) 108.67 98.61 111.30 101.65 105.58
MA-JSPR(τs) 203.74 259.45 261.15 214.67 238.62

S-JSPR(τs) 52.35 52.32 52.41 53.35 48.51

V. CONCLUSION

In this paper, two Mixed Integer Linear Programs (MILPs)
have been presented for the Joint Service Placement and
Routing (JSPR) problem: i) Static JSPR (S-JSPR), and ii)
Mobility-Aware JSPR (MA-JSPR) in Space-Air-Ground In-
tegrated Networks (SAGIN). The former considers one sin-
gle time-slot, while the latter one considers a set of future
flight positions for solving the JSPR problem and minimizing
the total cost. To evaluate the proposed MILPs, we have
considered a European-based SAGIN, which includes the
satellite network, the Direct-Air-To-Ground (DA2G) network,
the ground network, as well as the flight and DC locations. We
demonstrated MA-JSPR is able to utilize DA2G and satellite
connections to satisfy the passenger service requests in a cost-
effective manner, compared to S-JSPR. In addition, we showed
a trade-off between routing and migration costs. Also, we
showed that a service migration model can avoid unnecessary
migrations and improve the long-term cost-efficiency of MA-
JSPR. Additionally, our evaluation results showed that S-JSPR
achieves higher QoS levels and lower runtime compared to
MA-JSPR. The models provided in this paper can help airlines
to improve the network planning to support the services of
their passengers. Yet, they can tune the inputs of the proposed
models (e.g., cost values and service requirements) to fit the
models to their particular use-case. Also, this paper can help
them to compare the impact of different service providers (e.g.,
network/satellite providers) on their long-term total cost.

VI. ACKNOWLEDGMENT

This work was supported under the Celtic-Plus sub-
project SEcure Networking for a DATacenter cloud in Eu-
rope (SENDATE)-PLANETS (Project ID 16KIS0261, Celtic-
Plus project ID C2015/3-1, Airbus project ID 16KIS0461)
funded by the German Federal Ministry of Education and
Research (BMBF). This work reects only the authors view and
the funding agency is not responsible for any use that may be
made of the information it contains. The authors would like
to thank Raphael Durner and Arled Papa for their comments.

REFERENCES

[1] Inflight Connectivity: Bringing Freedom to the Skies, Available:
https://goo.gl/puka91, 2014.

[2] Zh. Qu et. al. LEO satellite constellation for Internet of Things. IEEE
Access, 5:18391–18401, 2017.

[3] The Dream of Affordable Internet Access for Everyone is Getting Closer,
Available: https://goo.gl/eTkRnL, 2017.

[4] E. Dinc et. al. Multi-user Beamforming and Ground Station Deployment
for 5G Direct Air-to-Ground Communication. In Global Communica-
tions, IEEE International Conference on, pages 1–7, 2017.

[5] L. Gu et. al. Optimal task placement with QoS constraints in geo-
distributed data centers using DVFS. IEEE Transactions on Computers,
(1):1–1, 2015.

[6] A. Varasteh et. al. Server consolidation techniques in virtualized data
centers: A survey. IEEE Systems Journal, 11(2):772–783, 2017.

[7] B. Evans et. al. Integration of satellite and terrestrial systems in future
multimedia communications. IEEE Wireless Communications, 12(5):72–
80, 2005.

[8] J. Liu et. al. Space-Air-Ground Integrated Network: A Survey. IEEE
Communications Surveys and Tutorials, 2018.

[9] Y. Cao et. al. Optimal Satellite Gateway Placement in Space-Ground
Integrated Networks. IEEE Network, 32(5):32–37, 2018.

[10] N. Kato et. al. Optimizing Space-Air-Ground Integrated Networks by
Artificial Intelligence. arXiv preprint arXiv:1808.01053, 2018.

[11] X. Xu et. al. Study on mobility technologies of space-ground integrated
IP network toward GEO satellites. In Computer and Communications,
IEEE International Conference on, pages 1832–1836, 2016.

[12] Y. Cao. Optimal Satellite Gateway Placement in Space-Ground Inte-
grated Network for Latency Minimization With Reliability Guarantee.
IEEE Wireless Communications Letters, 7(2):174–177, 2018.

[13] Y. Shi. Inter-Segment Gateway Selection for Transmission Energy
Optimization in Space-Air-Ground Converged Network. In 2018 IEEE
International Conference on Communications, pages 1–6. IEEE, 2018.

[14] N. Zhang et. al. Software defined space-air-ground integrated vehicular
networks: Challenges and solutions. IEEE Communications Magazine,
55(7):101–109, 2017.

[15] Sh. Wu et. al. Dynamic and static controller placement in Software-
Defined Satellite Networking. Acta Astronautica, 2018.

[16] A. Papa et. al. Dynamic SDN Controller Placement in a LEO Constella-
tion Satellite Network. In Global Communications, IEEE International
Conference on, 2018.

[17] H. Yao et. al. Migrate or not? Exploring virtual machine migration in
roadside cloudlet-based vehicular cloud. Concurrency and Computation:
Practice and Experience, 27(18):5780–5792, 2015.

[18] A. Aissioui et. al. On Enabling 5G Automotive Systems Using Follow
Me edge-Cloud Concept. IEEE Transactions on Vehicular Technology,
pages 1–1, 2018.

[19] T. Taleb et. al. User mobility-aware virtual network function placement
for virtual 5G network infrastructure. In Communications, 2015 IEEE
International Conference on, pages 3879–3884, 2015.

[20] T. Bahreini et. al. Efficient placement of multi-component applications
in edge computing systems. In Proceedings of the Second ACM/IEEE
Symposium on Edge Computing, page 5. ACM, 2017.

[21] I. Farris et. al. Optimizing service replication for mobile delay-
sensitive applications in 5G edge network. In Communications, IEEE
International Conference on, pages 1–6, 2017.

[22] L. Wang et. al. Online resource allocation for arbitrary user mobility
in distributed edge clouds. In Distributed Computing Systems, IEEE
International Conference on, pages 1281–1290, 2017.

[23] Sh. Wang et. al. Dynamic service placement for mobile micro-
clouds with predicted future costs. IEEE Transactions on Parallel and
Distributed Systems, 28(4):1002–1016, 2017.

[24] D. Papadimitriou et. al. Mixed integer optimization for the combined
capacitated facility location-routing problem. Annals of Telecommuni-
cations, 73(1-2):37–62, 2018.

[25] A. Giorgetti et. al. Label preference schemes for lightpath provisioning
and restoration in distributed GMPLS networks. Journal of lightwave
technology, 27(6):688–697, 2009.

[26] Datacenter Map, Available: https://www.datacentermap.com/cloud.html.
[27] U. Mansmann. Fast Internet for aircraft in Europe, Available:

https://goo.gl/KUFGGL, 2018.
[28] M. McMahon et. al. Measuring latency in Iridium satellite constellation

data services. Technical report, NAVAL ACADEMY ANNAPOLIS MD
DEPT OF COMPUTER SCIENCE, 2005.

[29] F. Hoffmann. Routing and internet gateway selection in aeronautical Ad
Hoc networks. 2015.

[30] NetFlix Internet Connection Speed Recommendations, Available:
https://goo.gl/VNst2M, 2018.

[31] ETSI TS 123.203 V13.6.0, Available: https://goo.gl/KvekZM, 2016.
[32] A. Varasteh et. al. Power-Aware Virtual Network Function Placement

and Routing using an Abstraction Technique. Globel Communications,
IEEE International Conference on, 2018.

[33] Airbus A320 CEO, Available: https://goo.gl/p6ZT8k, 2018.
[34] NGMN Alliance. 5G white paper. Next generation mobile networks,

white paper, pages 1–125, 2015.
[35] J. Barr. Choosing the Right EC2 Instance Type for Your Application,

Available: https://goo.gl/V4CGjH, 2018.
[36] Amazon EC2 Reserved Instances Pricing, Available:

https://goo.gl/dWmqTg, 2018.
[37] B. Boudreau. Global Bandwidth & IP Pricing Trends, Available:

https://goo.gl/V4CGjH, 2017.
[38] HughesNet Internet, Available: https://goo.gl/VoLzci, 2018.
[39] Q. Wu et. al. Energy and migration cost-aware dynamic virtual machine

consolidation in heterogeneous cloud datacenters. IEEE Transactions on
Services Computing, (1):1–1, 2016.

	Introduction
	Related Work
	System Model and Problem Formulation
	System Model
	Static JSPR (S-JSPR) Formulation
	Mobility-Aware JSPR (MA-JSPR) Formulation

	Performance Evaluation
	Conclusion
	Acknowledgment
	References

