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Abstract—Aiming at the problem that the downlink channel
estimation performance is limited due to the fast time-varying
and non-stationary characteristics in the high-speed mobile
scenarios, we propose a channel estimation network based on
deep learning, called ChanEstNet. ChanEstNet uses the convolu-
tional neural network (CNN) to extract channel response feature
vectors and long short-term memory (LSTM) recurrent neural
network (RNN) for channel estimation. Through performing
offline training to the learning network, takes advantage of the
nonlinear mapping features of deep learning, the channel state
information (CSI) in the training samples can be effectively
utilized to adapt to the characteristics of fast time-varying and
non-stationary channels in the high-speed mobile scenarios.
The simulation results show that in the high-speed mobile
scenarios, compared with the traditional methods, the proposed
channel estimation method has low computational complexity
and significant performance improvement.

Index Terms—OFDM, channel estimation, high-speed chan-
nel, deep learning, fast time-varying channel, non-stationary
channel

I. INTRODUCTION

With the rapid development of the high-speed railways,

mobile communication systems in high-speed environments

has become a research hotspot. For orthogonal frequency

division multiplexing (OFDM) systems, downlink channel

estimation has received widespread attention [1]. The channel

frequency is not stationary with time due to the influences

of multipath and Doppler in high-speed environments, which

leads to time and frequency selective fading channels (doubly

selective fading) and the channels are not stationary [2]. The

performance of traditional channel estimation methods are

not suitable in this environment.

Traditional channel estimation methods are divided into

time-domain estimation and frequency-domain estimation,

which have different performances and complexities [3].

For the frequency-domain channel estimation, the channel

frequency response (CFR) at the pilot will be estimated

at first and then the CFR at the data symbol is estimated

by interpolation. The method of frequency-domain channel

estimation is relatively simple and frequently used, such

as the least squares (LS) [4], the linear minimum mean

square error (LMMSE) [3], whose both are assumed that the

channel changes linearly and channel information of the data

position is estimated by interpolation. The channel impulse

response (CIR) shall be assumed to be continuous in an

OFDM symbol in the frequency-domain channel estimation.

But this assumption is not true in high-speed environments,

so the traditional frequency-domain estimation is not suitable

for high-speed environments. As for time-domain channel

estimation, since it can directly estimate CIR, inter-carrier

interference (ICI) can be eliminated, which can be used to

estimate doubly selective channel. But CIR of each path need

be estimated in time-domain channel estimation method,

which will lead that the estimation parameters are too plen-

tiful. To solve the problem, [5] proposes the basis expansion

model (BEM)-based LS algorithm, which can reduce the

estimation parameters by using BEM. However, due to LS

estimation algorithm features lower estimation performance,

it is not suitable for high-speed scenarios. [6] proposes the

BEM-based extended kalman filter (EKF) and BEM-based

EKF-rauch-tung-striebel smoother (RTSS) algorithm, which

can reduce estimation parameters by using BEM, and the

data symbol channel information is obtained by EKF based

on iteration decoding. Although this method is suitable for

doubly selective channel, its estimation complexity is too

high. So it is a challenge to find a high-performance and

low-complexity channel estimation method.

Deep learning methods which have been developed in

recent years can map input data to output through non-linear

transformation [7], and it has been successfully applied in

wireless communications [8], [9]. To solve weaknesses of the

traditional channel estimation, this paper proposes a channel

estimation method based on recurrent neural network (RNN),

which can estimate channels through the non-linear mapping

of deep learning. The main contributions in this paper are

described as follows: Firstly, an offline training and online

channel prediction estimation network with convolutional

neural network (CNN) and long short-term memory (LSTM)

network is designed. The learning network can be trained

by using perfect offline channel data, so the network can

learn change features of high-speed channels. The trained

network is used to estimate channels and improve estimation

precision; Secondly, for the time-domain channel estimation,

the estimation parameters are too plentiful, so the maxpool-

ing network is used to reduce dimensions of the estimation

parameters to minimize estimation complexity to most extent

in this paper; Finally, the computing complexity of the

proposed algorithm and the traditional channel estimation

methods are analyzed and their estimation performance in

different environments is analyzed by the communication

system simulation.

II. SYSTEM MODEL

The channel estimation is divided into the blind estimation,

semi-blind estimation and pilot-aided channel estimation

(non-blind estimation), which depends on whether pilot is
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used or not. Since the CIR of channels is assumed as a

wide-sense stationary (WSS) process in the blind estimation

and semi-blind estimation [10], for non-stationary doubly

selective channels, the pilot-aided channel estimation method

is more suitable [3]. Some pilots pattern suitable for OFDM

have been extensively applied, such as comb pilot pattern,

block pilot pattern and grid pilot pattern, etc. [11]. The pilot

pattern used in a communication system is the foundation

for further research. For the block pilot pattern, the pilot

symbols are inserted into all subcarriers in an OFDM symbol,

namely the pilot symbols are fully inserted into the frequency

domain, so it can effectively overcome frequency-selective

fading. The block pilot pattern are used by some mobile

communication protocols, such as IEEE 802.11p [12], it

indicates that the channel estimation based on the block

pilot mode is applied extensively. We use block pilot channel

estimation in this paper. The block pilot pattern and frame

structure used in this paper is shown in Fig.1.
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Fig. 1. Frame structure and pilot pattern.

For an OFDM system with N subcarriers and LTE pilot

pattern, the pilot symbols sent in i-th OFDM symbol are

expressed as xi, so the system model can be obtained

yi = hi ⊗ xi + zi (1)

where xi= [xi (1) , · · ·, xi (N)]
T

, hi= [hi (1) , · · ·, hi (N)]
T

is the transmitted pilot symbols and the channel response

vector at i-th OFDM pilot symbol, respectively. yi is the

received i-th OFDM pilot symbol vector, zi is the zero-mean

additive complex Gauss noise and the covariance matrix is

Qz = σ2
zIN , where σ2

z is the variance of zi. ⊗ denotes

the circular convolution. After removing the cyclic prefix

(CP) and performing discrete fourier transform (DFT), the

received frequency signal is

Yi = Hi ∗ Xi + Zi (2)

where Yi, Hi, Xi and Zi are the DFT of yi, hi, xi and

zi, respectively. The channel estimation aims to make the

receiver estimate the channel matrix Hi through the known

Yi and Xi.

III. ChanEstNet CHANNEL ESTIMATION

For the issue in the traditional interpolation method, this

paper proposes a channel estimation method based on RNN.

Firstly, the channel state information (CSI) at the pilot is

initialized by LS, then the CSI at the data symbol can

be estimated through the non-linear mapping of the RNN

network.

A. ChanEstNet Structure

The ChanEstNet is divided into offline training and online

prediction. Its framework is shown in Fig.2.
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Fig. 2. The channel estimation framework for ChanEstNet.

As shown in Fig. 2, we use a learning network to train

and predict the CSI, and use perfect offline data to train

the learning network so that the learning network can learn

the characteristics of the channels changing. The learning

network includes the One Dimension (1D) CNN, the 1D

MaxPooling, the LSTM and fully connected neutral network.

The framework of learning network is shown in Fig. 3.
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Fig. 3. The learning framework.

The 1D CNN network is mainly used to initialize the input

data and extract the pilot sequence feature values, which

is composed of a series of parallel filters. These filters are

connected to the input signal through a set of weights, and the

convolution is calculated along the input frequency-domain.

The output is expressed as

y = f (x ∗w + b) (3)

where w is the weight vector, b is the offset vector and f (·)
is the activation function.

The 1D Maxpooling layer mainly reduces dimensions of

the estimation parameters. For the frequency-domain channel

estimation, its estimation parameters are less, so this layer

can be ignored. For the time-domain channel estimation, its

expression is

x∗ = max (x) (4)

The LSTM networks are used to predict the data. One

of the LSTM networks is used for forward data prediction

and another LSTM network is used for reverse prediction.

Each LSTM network is composed of several LSTM units.

Each unit is composed of the input gate, forget gate, output

gate and memory unit. This paper uses the bi-direction

RNN based on the current channel information not only

related to the previous moment but also related to the latter

moment, which can overcome the error propagation caused
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Fig. 4. Data flow of learning network. The Nc, No and L are the number of the subcarriers, OFDM symbols and multi-path,

respectively. In the frequency-domain channel estimation, L is set as 1.

by one-way prediction. The prediction precision is improved

through forward and backward prediction. The mathematic

description of the LSTM structure is shown as

i(t) = σ
(
bi +Uix

(t) +Wih
(t−1)

)
(5)

f (t) = σ
(
bf +Ufx

(t) +Wfh
(t−1)

)
(6)

c(t) = f (t) � c(t−1) + i(t) � σ
(
bc +Ucx

(t) +Wch
(t−1)

)
(7)

o(t) = σ
(
bo +Uox

(t) +Woh
(t−1)

)
(8)

h(t) = tanh
(
c(t)

)
� o(t) (9)

where i(t), f (t), o(t), c(t) and h(t) are the input gate, forget

gate, output gate, memory unit and hidden tier vector, respec-

tively. Ui, Wi, Uf , Wf , Uc, Wc, Uo and Wo∈ Rd×d are

the weight matrix of LSTM, bi, bf , bc and bo∈ Rd are

the offset of LSTM. The weights and offsets are learned by

training, σ is the sigmoid function, tanh is the double tangent

activation function, � is the element multiply and d is the

input sequence dimension, which is the number of OFDM

subcarriers in this paper, t is the number of input sequences,

which is the number of OFDM symbols, in another word, it

is the number of LSTM units.

The update equation of each LSTM unit can be simplified

as (10)

ht = LSTM (ht−1,xt,Θ) (10)

where LSTM (·) is the combination of (5)-(9) and Θ is all

parameters of the LSTM network.

B. Data Flow In ChanEstNet

The input data of ChanEstNet will vary for different

estimation method. Its data flow is shown in Fig. 4, where the

Nc, No and L are the number of the subcarriers, OFDM sym-

bols and multi-path, respectively. In the frequency-domain

channel estimation, L is set as 1.

In particular, original data will be pre-processed at first

because the LSTM network requires time sequences as input

data, so we extract the real part and imaginary part of the

input data as the third dimension and the real part and the

imaginary are synthesized as a dimension as the input data

of the 1D CNN network. The frequency feature vector is

extracted through the convolution network and this feature

vector is fed to the bi-direction LSTM network. The LSTM

network can predict the frequency vector at the data symbol.

Finally, the channel estimation vector is outputted through

the fully connected layer. For the time-domain channel esti-

mation, the CIR is directly estimated. Therefore, the original

data includes an additional time delay dimension compared to

the frequency-domain channel. Unlike the frequency-domain

estimation, a 1D Maxpooling layer is added to compress

the estimation parameters. The following part introduces the

input data, extraction of the frequency feature value and

channel estimation in details.

(1) Input data. The input data of the learning network is

CRM at the pilot symbols, which can be obtained through

the pilot estimation based on LS. The input data is expressed

as

HP=
[
h(1)
p , 0, · · ·,h(5)

p , 0 · ··,h(8)
p , 0 · ··,h(12)

p , 0, 0
]T

(11)

where h
(t)
p ∈ RNc×L is the CSI at the pilot and HP ∈

RNc×L×No , the CSI is set as 0 at the data symbols. The

channel data is the complex number, so the data shall be pre-

processed before the learning network is inputted. The real

part and imaginary part of the channel data are extracted as

the third dimension and the real part and imaginary part are

combined, so the input data is changed as H̃P ∈ RNo×2LNc

and h̃
(t)
p ∈ R1×2LNc .

(2) Extraction of frequency feature vector. The input data

is pre-processed and sent to the 1D CNN network. The main

task of CNN is to extract and select the frequency feature

vector.

Generally a CNN is composed of multiple convolutional

filters. Each filter can handle data in different time sequences

and calculate the convolutional sum of the frequency data

through the sliding window, the size of the sliding window

is the size of the filter. Based on (3), the signal output after

1D CNN is

ĥ(t)
p = f

(
h̃(t)
p ∗wi,t + bi,t

)
(12)

where bi is the offset, wi is the weight and f is the activation

function.

After data are processed by the convolutional network, the

output dimensions do not change, namely ĥ
(t)
p ∈ R1×2Nc .

In particular, for time-domain estimation, the output of the

CNN will be reduced by maxplooing, and its output is

H∗
P=

[
ĥ
∗(1)
p , 0, · · ·, ĥ∗(5)

p , 0 · ··, ĥ∗(8)
p , 0 · ··, ĥ∗(12)

p , 0, 0
]T

.

(3) Channel estimation. Our mentioned learning network
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aims to predict the current channel information based on the

past and current feedback and future data. Considering the

LSTM network is excellent in learning of the sequence task,

so the LSTM network is used to predict the current channel

information in this paper, because it can facilitate learning

of long-term dependence.

Based on (10), we can get the channel prediction sequence

as

h(t)
ST1

= LSTM
(
h(t−1)

ST1
, ĥ∗(t)

p ,Θ1

)
(13)

h(t)
ST2

= LSTM
(
h(t−1)

ST2
, ĥ∗†(t)

p ,Θ2

)
(14)

h(t)
ST

= Concat
(
h(t)

ST1
,h(t)

ST2

)
(15)

where h(t)
ST1

and h(t)
ST2

are the output of two LSTM network,

h(t)
ST

is the output of bi-direction LSTM network, ĥ
∗(t)
p and

ĥ
∗†(t)
p are the forward input and backward input of the LSTM

network, Concat (·) is the function which can combine two

vectors by specified dimensions.

The fully connected network is used to reduce output

dimensions of the LSTM network. It is expressed as

h(t)
f

= linear(Wf,th
(t)
ST

+ bf,t) (16)

where Wf,t and bf,t are the weight and offset of the full

connection layer, so the predicted loss of our model is

described as

loss =
1

T

T∑
t=0

(
h(t)

f
− h(t)

)2

(17)

C. The Algorithm Flow For ChanEstNet

The signal processing flows of the ChanEstNet is summa-

rized as the algorithm 1.

IV. COMPLEXITY ANALYSIS

Table I shows the comparison of the computational com-

plexity (the number of times) for several classical chan-

nel estimation methods, similar channel estimation methods

and the proposed F-ChanEstNet method and T-ChanEstNet
method in an OFDM symbol, where the F-ChanEstNet and

T-ChanEstNet are the frequency-domain estimation and time-

domain estimation, respectively,where the Q is the dimen-

sions of BEM base vector. Q is set as 16 in [6].

TABLE I: Comparison of computational complexity.

Algorithms Complexity

LS N
LMMSE N2

F-ChanEstNet N
T-ChanEstNet NL

BEM-based LS 2(QL)
3

BEM-based EKF 7(QL)
3
+ 5(QL)2

BEM-based EKF-RTSS 14(QL)
3
+ 7(QL)2

The LS, LMMSE and F-ChanEstNet are the frequency-

domain channel estimation methods in the table I and

have lower complexities. The T-ChanEstNet, BEM-based

LS, BEM-based EKF and BEM-based EKF-RTSS are the

Algorithm 1 ChanEstNet

Input: CSI at the pilot HP;

Output: Estimated values of CSI Ĥ;

Step 1: Initialization of CSI at the pilot, estimated by LS

estimation;

Step 2: Pre-process the input data, combine the real part

and imaginary part by using the Concat function and

represent it with H̃P ;

Step 3: After the data is pre-processed, the data is inputted

to the 1D CNN layer to extract the frequency-domain

feature values. The output of the convolution layer is

ĤP = f
(
H̃P ∗w + b

)
;

Step 4: For time-domain channel estimation, the output

of 1D CNN will reduce the dimension of the estimated

parameters by 1D Maxpooling, and its output is H∗
P =

max
(
ĤP

)
. For frequency-domain channel estimation,

H∗
P = ĤP and jump to Step 5;

Step 5: The output of the convolution layer or max-

poling layer is used as the input of the bi-directional

LSTM network. The CSI at the data symbols is es-

timated by the LSTM network. Each LSTM’s outputs

are H̃
(t)
st1 = LSTM

(
H̃

(t−1)
st1 , Ĥ

∗(t)
P ,Θ1

)
and H̃

(t)
st2 =

LSTM
(
H̃

(t−1)
st2 , Ĥ

∗†(t)
P ,Θ2

)
, the total network output is

H̃ = Concat
(
H̃st1, H̃st2

)
;

Step 6: The output dimensions of the bi-direction LSTM

network is reduced by the fully connected layer. The real

part and imaginary part of the channels can be obtained

via Reshape function, and the real part and imaginary part

are added to get the final output Ĥ.

time-domain channel estimation. The BEM-based LS method

could consider the ICI, but since the measurement matrix

is not a diagonal matrix as traditional LS method, which

would increase the complexity of matrix inversing. For the

BEM-based EKF and BEM-based EKF-RTSS algorithm, the

EKF is used to estimate channel response. Complexity is very

high due to some matrix inversion operations. For proposed

algorithm in this paper, the channel is estimated via the non-

linear mapping, so the complexity is low.

V. ANALYSIS ON SIMULATION RESULTS

In this section, we will evaluate the performance of time-

domain channel estimation and frequency-domain channel

estimation of the proposed methods in different environment.

We use the high-speed channel model WINNER-II D2a

[13] with fast time-varying and non-stationary features. The

MATLAB and Python simulation platform are used for

simulation analysis of the mentioned methods. The training,

validation, and testing sets contain 10000, 2000, and 1000

samples, respectively, and are obtained from the WINNER-

II D2a channel model [13]. The parameters of simulation

system are shown in Table II.

A. Normalized Mean Square Error

The Fig. 5 compares normalized mean squared error

(NMSE) performance of the frequency-domain estimation LS
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TABLE II: Parameters of simulation system.

Parameters Value

Frequency of carrier 2.8GHz

Bandwidth 5MHz

Number of subcarriers 300

Length of FFT 512

Length of CP 36

Modulation QPSK

Non-stationary channel WINNER-II D2a [13]

[4] method, LMMSE [3] method and the proposed frequency-

domain estimation F-ChanEstNet method, The Fig. 6 com-

pares the time-domain estimation BEM-based LS method

[5], BEM-based EKF [6] method, BEM-based EKF-RTSS

[6] method and the proposed time-domain estimation T-
ChanEstNet method in different speed environment.

4 7 10 13 16 19

SNR(dB)

10-4

10-3

10-2

10-1

100

N
M

SE

Frequency-domain Estimation

F-ChanEstNet 50km/h
LMMSE 50km/h
LS 50km/h
F-ChanEstNet 300km/h
LMMSE 300km/h
LS 300km/h

F-ChanEstNet

Fig. 5. NMSE comparison of frequency-domain estimation

method.

The simulation results show that NMSE of three

frequency-domain methods are very different. When the

speed is 50km/h, the signal-to-noise ratio (SNR) gain of the

LMMSE is about 16dB higher than that of LS and the SNR

gain of the F-ChanEstNet is about 9dB higher than that of

LMMSE. This is because the LS algorithm is simpler than

LMMSE algorithm, the estimation error is higher due to ig-

noring noise, the LMMSE can improve estimation precision

by using the channel statistics information. At a speed of

300 km/h, the NMSE of the three methods is on an upward

trend compared to 50 km/h, and the SNR gain of LMMSE

methods to LS method is 5dB averagely. At this time, the

SNR gain difference between of F-ChanEstNet and LMMSE

is large, the main reason is that the hypothesis of linear

interpolation that the change of CIR is linear is not applicable

for high speed channel. The proposed method first learns the

characteristics of channel variation through training, and then

estimates the response at the data symbol through nonlinear

mapping, so it is more suitable for high-speed scenario and

is also excellent in a low-speed environment.

For time-domain estimation, the NMSE performance of

various methods is very close at different speeds. Since the

4 7 10 13 16 19

SNR(dB)

10-3

10-2

10-1

N
M

SE

Time-domain Estimation

T-ChanEstNet 300km/h
BEM-based EKF 300km/h
BEM-based LS 300km/h
BEM-based EKF-RTSS 300km/h
T-ChanEstNet 50km/h
BEM-based EKF 50km/h
BEM-based LS 50km/h
BEM-based EKF-RTSS 50km/h

T-ChanEstNet

Fig. 6. NMSE comparison of time-domain estimation

method.

time-domain estimation estimates the channel gain for each

path, so the ICI caused by the Doppler shift can be estimated.

The Fig. 6 shows that the NMSE of BEM-based EKF and

BEM-based EKF-RTSS is approximate and its SNR gain is

about 3.5dB higher than that of BEM-based LS and the SNR

gain of T-ChanEstNet is 4dB higher than that of BEM-based

LS, because the CIR linear change theory is not suitable

for high-speed channel. Although the BEM-based EKF and

BEM-based EKF-RTSS methods are similar to T-ChanEstNet
at this time, the estimation time is too long due to higher

complexity. Therefore, the proposed method can also have

higher performance in time-domain estimation.

In a word, the non-linear mapping estimation method in

this paper shows higher NMSE performance both in time-

domain estimation and frequency-domain estimation. For the

low-speed scenarios, the SNR gain of the proposed method

will gradually reduce with the increase of SNR. For a

high-speed scenarios, the proposed method features excellent

NMSE performance.

B. Bit Error Rate

The bit error rate (BER) performance is the macro index

to measure the influences of the channel estimation method

on the whole system performance. The Fig. 7 and Fig. 8

compare the BER performance of different algorithms at

speeds of 50km/h and 300km/h.

For the frequency-domain channel estimation, it can be

seen from Fig. 7 that at 50 km/h, the LMMSE algorithm has

about 4.5dB SNR gain to the LS algorithm, the BER perfor-

mance of F-ChanEstNet algorithm and LMMSE algorithm

is equivalent at a low SNR (SNR≤10dB) and F-ChanEstNet
algorithm has about 6dB SNR gain compared to LS algo-

rithm. However, in the case of high SNR (SNR>10dB),

the BER of F-ChanEstNet method decreases rapidly and its

BER performance is significantly superior to that of LMSE

algorithm. At 300 km/h, the LMMSE algorithm has an SNR

gain of about 4 dB to the LS algorithm. Similarly, at a

low SNR, The F-ChanEstNet method has the same BER

performance as the LMMSE algorithm, and has an SNR gain
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4 7 10 13 16 19

SNR(dB)
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10-3

10-2

10-1

BE
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 Frequency-domain Estimation

F-ChanEstNet 50km/h
LS 50km/h
LMMSE 50km/h
F-ChanEstNet 300km/h
LS 300km/h
LMMSE 300km/h

F-ChanEstNet

Fig. 7. BER comparison of frequency-domain channel

method.

about 5dB to LS. In the case of high SNR, the F-ChanEstNet
method has about 4dB SNR gain to LMMSE algorithm.

4 7 10 13 16 19

SNR(dB)

10-5

10-4

10-3

10-2

10-1

BE
R

Time-domain Estimation

T-ChanEstNet 300km/h
BEM-based EKF 300km/h
BEM-based LS 300km/h
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Fig. 8. BER comparison of time-domain estimation method.

For the time-domain estimation, as shown in Fig. 8,

the BER performance of T-ChanEstNet are equivalent to

that of BEM-based EKF method and BEM-based EKF-

RTSS method at 50km/h, but the its BER performance is

significantly superior to that of BEM-based LS method,

because the CIR change tends to be stationary in a low-speed

environment and BEM-based EKF and BEM-based EKF-

RTSS algorithms are also suitable well, but the estimation

algorithm of the LS method is too simple, so the BER

performance is not better. The BER performance of different

channel estimation methods will tend to converge with the

growth of SNR at 300km/h due to influences of the channel

environment. The BER performance of BEM-based EKF and

BEM-based EKF-RTSS algorithm are nearly overlapped, its

SNR gain is about 6.5dB to BEM-based LS, at this time,

the SNR gain of the T-ChanEstNet algorithm is about 2dB

compared to BEM-based EKF and BEM-based EKF-RTSS

algorithm and its SNR gain reaches about 9.5dB to BEM-

based LS algorithm.

Overall, the BER performance of the proposed method is

superior to that of other algorithms both in the frequency-

domain estimation and time-domain estimation at a high-

speed scenarios, which reflects the overall performance that

is more adaptive to high-speed scenarios.

VI. CONCLUSIONS

In the paper, for the weakness of the traditional channel

methods in a high-speed scenarios, a channel estimation

method based on deep learning is proposed. The nonlinear

mapping characteristics of deep learning can better adapt to

the changing characteristics of high-speed channels, and the

channel information in the offline training sample can be

effectively used to improve the accuracy of channel estima-

tion. Finally the performoance of the ChanEstNet method

is analyzed in a high-speed scenarios through simulation

comparison of the time-domain estimation and frequency-

domain estimation. The simulation results show that in the

case of low estimation complexity, the channel estimateion

precision and whole system performance of the ChanEstNet
method is both superior to that of the traditional methods.
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