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Abstract—Considering that cities are typically divided in
residential and business districts, massive population migrations
between different areas introduce considerable discrepancies in
the traffic distribution. However, although novel technologies
are constantly introduced to fulfill the 5G requirements, the
current cellular networks raise some limitations due to their
static deployment. Aerial networks with unmanned aerial vehicles
(UAVs) that carry access points can flexibly overcome this issue
by controlling this traffic effectively in an ad hoc manner, but
their limited power storage is their major drawback. In this
paper, we propose the use of solar-powered charging stations
to satisfy the energy needs of UAVs and formulate a theoretic
matching problem to ensure the best performance in terms
of energy, communication, and safety. Then, we evaluate the
network performance by comparing the coverage and utilization
between the two scenarios: i) the static infrastructure, and ii)
the aerial network, and we present useful insights regarding the
benefits of aerial networks.

Index Terms—Aerial networks, Unmanned Aerial Vehicles,
Matching theory, Stochastic geometry, Charging stations, Tidal
traffic, Performance evaluation

I. INTRODUCTION

Fulfilling the requirements of the 5G wireless systems

has been a significant ambition for the Information and

Communications Technology (ICT) industry and academia

during the last few years. Novel concepts and technologies are

constantly introduced to achieve higher data rates and spectral

efficiency with significantly reduced latency [1]. In this way,

it is gradually becoming possible to handle the unprecedented

amount of traffic that is expected to appear in the next few

years [2]. However, all these technologies are still based on a

static infrastructure that introduces some major limitations in

the network performance, energy efficiency and deployment

cost [3]. More specifically, while some areas suffer from

traffic congestion during the day, other parts of the network

infrastructure are underutilized [4].

Regarding the aforementioned issue, some traffic patterns

have been observed in cities that divide the area into several

functional districts, like business and residential districts,

where the population massively migrates between them caus-

ing traffic discrepancies [4]. For instance, during the day the

business areas are more crowded, while the opposite happens

during the night with higher traffic in the residential areas. This

phenomenon, also known as tidal traffic effect, poses a crucial

issue to the network operation and management of large cities,

as the network traffic is no longer distributed uniformly. In

order to account for this rapidly growing issue, the network

designer can ensure higher coverage through small cell (SC)

densification [5]. Nevertheless, a dense SC network, is even

more poorly utilized in places where the “tide” is low, leading

to excessive energy and deployment costs for these places

without any additional benefit during the low traffic hours.

To account for these issues, recent studies proposed the

deployment of access points (APs) mounted on unmanned

aerial vehicles (UAVs) [3], [6]. This kind of APs is expected

to be a crucial part of the future communication systems as

they are flexible, fast, autonomous, and able to provide a

drastic solution to the aforementioned issues. Moreover, in

contrast to the underutilized SCs in the static infrastructure

scenario, UAVs can follow the actual traffic needs at a given

moment or even deploy proactively based on information

deducted by techniques such as crowdsensing [7]. Therefore,

by employing UAVs instead of SCs we can have a highly

utilized network that is able to follow the traffic and, thus, offer

higher coverage and reduced handover delays. However, in

order to take advantage of the aerial networks characteristics,

we should be able to cope with their energy needs, since the

limited amounted of power that can be stored on a UAV and

their high energy needs are a significant drawback that should

be addressed.

Recent studies on UAV networks have identified the power

issue in UAV networks [8], [9]. More specifically, the authors

in [8] investigate energy-efficient designs for UAV com-

munication through UAV trajectory optimization by jointly

considering the communication throughput and the propulsion

energy consumption of the UAVs. Although the paper provides

interesting and important results that increase the network

energy-efficiency, their proposal does not offer a complete

solution that will provide a sustainable UAV network. An

interesting proposal to cope with this issue could be the use

of specialized solar-powered charging stations (CSs). These

stations could be distributed in strategic places around the

city in the same manner that SCs are deployed, and offer

an unobstructed operation in which UAVs never pause their

operation. Instead, whenever a UAV is out of power it could

be recharged at its nearest CS, while maintaining its service.

Moreover, as a CS can provide charging docks to more than

one UAV, their intensity could be far lower than the SC

intensity, saving in infrastructure cost, as each CS could be

able to charge several UAVs at the same time and be re-

sponsible for even more. Furthermore, to increase the network



sustainability, energy harvesting can be employed at the CSs

to provide a cost-effective solution [10], [11]. Nevertheless,

as the tidal traffic patterns will force the UAVs to change

location often, there is a need to assign each UAV to a CS

optimally. The existence of multiple operators stress the need

for a distributed and self-organizing techniques. Towards this

direction, matching theory [12] has recently emerged as an

effective solution for such kind of problems, where some

resources have to be assigned appropriately to increase the

benefits for all participants. Matching theory is a powerful

tool to study the formation of mutually beneficial relations

among different types of rational and selfish agents, i.e., in our

case the aerial network and CS operator. Hence, a matching-

theoretic assignment problem has to be formulated to find a

solution to this practical problem of this complex network.

To that end, in this paper, we propose the use of UAV

networks to confront the tidal traffic issue that is deepened due

to the rapid urbanization, making it an important performance

issue for network operators. In order to avoid the inherent

power issues of the UAVs, we propose the use of a uniformly

distributed set of CSs that are able to charge UAVs in their area

of operation. For the allocation of the UAVs to the respective

CS, we employ matching theory to guarantee the highest

possible profit for all operators. Therefore, our contribution

can be summarized as follows:

• We provide a novel network architecture where UAVs

aided by solar-powered CSs can serve the entire area of

operation in a sustainable way.

• We introduce a matching theoretic algorithm to solve the

UAV allocation problem, based on the current network

traffic status and safety parameters.

• We provide a performance evaluation analysis on the cov-

erage and utilization and compare UAV and SC scenarios.

The rest of the paper is organized as follows. Section II

describes the system model. Section III presents the matching

theory analysis, while Section IV includes the performance

comparison. Finally, Section V concludes the paper.

II. SYSTEM MODEL

The system model of our work is introduced in this section

and it is presented from four different angles. First, we discuss

the network topology and the various entities that compose the

architecture of the two scenarios, i.e., SC and UAV. Then, we

provide the communication model and establish the channel

characteristics that define the data transmission and reception

between the UEs and the APs. Next, as the UAV recharging is

an essential part of our proposal, we provide the energy model

for the UAVs and the CSs, and, finally, we discuss about the

business model of this architecture.

A. Network Model

We consider a wireless network, deployed on the Euclidean

plane, that is divided into two districts, i.e., residential and

business. As seen in Fig. 1, we model this characteristic by

assuming a residential area in the north of the plane and a

business area in the south of it. Also, we assume two scenarios

(i.e., SC and UAV) involving four types of entities:

Time: 9:00 Time: 21:00

Residential area

Business area

Residential area

Business area

Fig. 1: UE distribution of the same area during the day (left)

and the night (right).

CS deploymentSC deployment

Fig. 2: Network topology for the two scenarios for the same

UE deployment: i) SC deployment (blue squares), and ii) CS

deployment (green circles).

• User Equipment devices (UEs): In both scenarios, there

are N UEs deployed in the network under investiga-

tion. Due to the tidal traffic characteristics, the UEs

are uniformly distributed in the horizontal dimension

and exponentially distributed in the vertical (across the

different districts from north to south). Depending on the

hour of the realization, the UE density in each district

changes accordingly, as seen in Fig. 1. Moreover, each

UE can have different types of traffic, i.e., Voice call,

Video streaming or HD Video streaming.

• Small cells (SCs): For the SC scenario, there are M uni-

formly distributed SCs on the same plane with the UEs.

The positions of the SCs define a Voronoi tessellation, and

we assume that each UE is associated to the SC of the

respective Voronoi cell in which it falls in. Also, each SC

is capable of providing coverage to a maximum number

of Nmax UEs, based on realistic SC characteristics. The

number of UEs in the area of an SC is denoted with NSC ,

while the number of the UEs that are served by an SC is

denoted by SSC .

• Unmanned Aerial Vehicles (UAVs): For the UAV sce-

nario, we assume that, instead of SCs, there are U UAVs

on the same three-dimensional space with the UEs. Their

purpose is identical with that of the SCs, but they have the

additional advantage of being able to relocate and hover

at a height H over certain areas, based on the current

network status. Each UAV carries an access point (UAV-

AP) that can serve a maximum number of Nmax UEs,

similarly to the SCs. Moreover, the UAVs are powered

through a limited capacity battery that needs to be safely

recharged during their operation. To that end, we employ

charging stations that recharge the UAVs whenever their

battery is nearly depleted. The UAVs are required to



operate in the vicinity of these stations to avoid power

outages.

• Charging stations (CSs): For the UAV scenario, we as-

sume that there are C CSs responsible for the UAV-

charging, that are deployed by following a uniform dis-

tribution. Similarly to the SC deployment, the positions

of the CSs define a Voronoi tessellation. Each CS has

the capacity to charge qCS UAVs simultaneously. To that

end, we assume that at most qCS UAVs will be associated

to a certain CS and will be deployed inside its Voronoi

cell. These UAVs will then serve the UEs that fall in the

same Voronoi cell defined by the CS. The number of UEs

in a CS cell is denoted with NCS , while the number of

the UEs that are served by the UAVs located in the cell

defined by the CS is denoted by SCS .

In Fig. 2, we demonstrate the network topology during the

day (09:00 AM). As it can be seen, in both scenarios, there is

low traffic in the top and high traffic in the bottom of the plane.

Therefore, the UAVs should be associated accordingly to the

CSs in order to handle the heterogeneous traffic distribution. In

this way, higher number of UAVs could cover the high traffic

area providing more efficient coverage. On the other hand, in

the SC deployment where the topology is fixed, the SCs on

the top might be underutilized, while the bottom SCs might

not be able to handle the excessive traffic.

B. Communication Model

We examine the ability of an AP (SC or UAV-AP) to provide

coverage at the UEs, based on the signal-to-interference-plus

noise at the UEs: SINR= r−αhPtG
I+W

, where Pt is the AP

transmission power, W is the thermal noise of the receiver,

r is the distance between the AP and a UE, α is the path loss

exponent, G is the directional gain of the AP antenna and

h is the fast fading power coefficient, which is independent

and identically distributed (i.i.d.). Depending on the requested

type of traffic, an AP allocates to the UE a corresponding

combination of subcarriers in the time-frequency domain in

the form of resource blocks (RBs). The value of the perceived

SINR at the receiver, determines the Channel Quality Indicator

(CQI) index and, thus, the modulation scheme and the coding

scheme (MCS) that will be used by the AP. As it is typical,

we assume that the antenna of the SCs is omnidirectional

and, thus, it has no directional gain, i.e., G = 1. On the

other hand, the UAV-APs can benefit from the fact that they

hover at a height H and employ directional antennas that point

directly downwards with antenna half beamwidth θ. Hence,

the antenna gain within the main lobe can be approximated

by G3dB = 29000

θ2 , while outside of the main lobe, it can be

considered zero [14].

C. UAV and CS Energy Model

In the UAV scenario, the UAVs are equipped with a battery

of limited capacity ECUAV and they are recharged by the

randomly distributed CSs. We assume that the initial bat-

tery energy of each UAV follows a uniform distribution in

{BUAVm
ECUAV , BUAVM

ECUAV } ⊆ {0, ECUAV }, where

BUAVm
and BUAVM

are the minimum and maximum battery

level percentage (i.e., 0% and 100%), respectively. For safety

reasons, each UAV must be positioned in the Voronoi cell

defined by its assigned CS during the networking operation.

Moreover, each CS is equipped with a battery of total

capacity ECCS . For the charging operation, CSs employ high-

power inductive chargers, similar to those used for electric

vehicles [13]. Furthermore, the CSs are connected to a solar

panel of size A m2 for energy harvesting. If the panel of a CS

has harvested enough solar energy, its assigned UAVs will be

charged through the battery. To avoid any risk and to increase

the UAV scenario reliability, the CSs are also connected to

the electricity grid in case there is not enough energy in the

battery. Consequently, if the battery cannot satisfy the energy

needs of the assigned UAVs, they will be charged through the

grid with a higher cost, as it will be explained in the following

section. It should be mentioned that the battery-level-status of

all CSs is shared in the network to inform the UAVs about the

status of each CS.

D. Business Model

In our model, we assume that there are two operators: i) the

network operator, and ii) the CS operator. More specifically,

• Mobile network operator (MNO): The network operator

is responsible for the cellular network connectivity and

for providing high quality service to its customers (i.e, the

UEs) using either SC or UAV deployments. For the SC

scenario, the goal of the MNO is to provide the highest

possible coverage to the UEs and have a profit from these

services. In many cases of this scenario, it is not always

possible to provide the best achievable service, as tidal

traffic might create unpredictable traffic patterns that a

static infrastructure cannot follow.

• CS operator (CSO): The CS operator exists only in the

UAV scenario and is the owner of the CS deployment.

The recharging cost depends on the amount of harvested

solar energy in the battery. Therefore, there are two

different prices for the UAV recharging: i) The MNO

will pay ps to the CSO if the energy originates from the

battery, and ii) The MNO will pay pg to the CS operator

if the energy originates from the electricity grid. Hence,

the main objective of the CSO is to maximize its profit

by charging the UAVs with the lowest battery level.

III. A COLLEGE ADMISSION GAME FOR CHARGING

STATION SELECTION

A. Game Formulation

In this section, we will describe the proposed matching

game in detail. As multiple UAVs will be assigned to each

CS, we will use the framework of college admission matching

games, also known as many-to-one matching games. In this

framework, a college is considering a set of n applicants,

among which admits a quota of merely q. Having evaluated

their qualifications, the admissions office must decide which

ones to admit based on the preferences of both sides. Hence,

this game assigns applicants (UAVs) to colleges (CSs) in the

most satisfactory way for both parties. This framework is



suitable for our proposed problem as it can provide a stable and

desirable association for the aerial network, while increasing

the profit and ensuring a more secure flight operation. To that

end, we formulate a college admissions game referred to as

the CS admissions game, defined by three components: i) the

set of UAVs acting as students, ii) the set of CSs acting as

colleges, and, iii) preference relations for the CSs and the

UAVs allowing them to form preferences over one another.

Definition 1. In a UAV network, the UAV-CS matching game

is defined by two finite sets of players, the set C of CSs and

the set U of UAVs, and a function φ : {C ∪ U} → {C ∪ U},

such that the following conditions are met:

(i) |φ(c)| ≤ qCS , ∀c ∈ C

(ii) |φ(u)| = 1, ∀u ∈ U

(iii) ∀c, u ∈ C ∪ U , c ∈ U if and only if u ∈ C.

The first condition of Definition 1 expresses that CSs do not

get associated with more UAVs than they can accommodate

(i.e., qCS) on their charging spot(s). Assuming a matching

φ(c) = (u1, c), . . . , (uX , c) of CS c with X UAVs, such that

X < qCS , a CS c can accommodate (qCS−X) more UAVs. In

the set C ∪ U , each CS appears as many times as the number

of the obtained UAVs. The second condition represents the

fact that each UAV is associated exclusively with one CS.

Moreover, the third condition expresses that the matching is

bilateral, namely a UAV is associated with a CS if and only

if the CS obtains this UAV.

The outcome of the proposed matching game is a matching

of CSs and UAVs that allows CSs to be associated with a

number of UAVs equal or lower than their quota qCS , while

each UAV can be matched with one CS at most in each

matching period t. In this UAV allocation problem, a stable

matching must be achieved. For this purpose, the concept of

pairwise stability is employed [15].

Definition 2. In a UAV network, the UAV-CS matching game

is characterized as pairwise stable if it is not blocked by any

player (UAV or CS) or any UAV-CS pair.

A pairwise stable UAV allocation is the state where there

exist no subset of the players (CSs or UAVs) that can select

sets of partners preferred by all players of the subset, by

establishing coalitions only among the players of the subset.

For pairwise stability, two conditions have to be met: i)

individual rationality and ii) responsiveness.

Out of all possible UAV allocations that may arise during

the matching process, only some of them are acceptable by

the involved players. The CSs accept the allocations that allow

them to serve the maximum possible number of UAVs. The

UAVs are interested in establishing partnerships with the CSs

until all of their resources are occupied. The matching that

produces acceptable outcomes holds the property of individual

rationality [16]:

Definition 3. A matching φ is individually rational if each

UAV and CS prefers its current match over being unmatched.

A matching is not individually rational, when either a UAV

is not accepted by a CS or a CS is not acceptable by a UAV.

The property of responsiveness is related to the way the

preferences of CSs over UAVs are formed [16]. Regarding the

responsive preferences of CS c we can define that:

Definition 4. For any set U ′ ⊂ U and any UAV u and u′ that

are not in U ′, CS c prefers U ′ ∪ u to U ′ ∪ u′ if and only if u

is preferred to u′, and prefers U ′ ∪ u to U ′ if and only if u is

acceptable.

The responsiveness of the CSs’ preferences denotes that the

CSs rank each UAV individually in order to obtain sets of

UAVs. Otherwise, they should express preferences over each

element of the set of the subsets of acceptable UAVs. A CS c

always prefers to add an acceptable UAV, until the quota qCS

is reached and prefers replacing a UAV with a better one, e.g.,

a UAV that is closer or has lower battery life.

B. UAV and CS Preferences

The goal of UAVs is to serve as many UEs as possible,

in order to maximize their profit. In this way, they will also

increase the network coverage and the QoS of the UEs. To

calculate the profit of a single UAV, we need to take into

account its relative position to each CS, the number of UEs in

the cell defined by each CS and the battery level of the UAV

and the CSs. Therefore, the objective OUAV of the matching

game is to maximize the profit for every UAV u in a given

CS c, defined as

OUAV (u, c) =
eUAV NUE(c)t

qCS

− gc(u, c), (1)

where NUE is the number of UEs located inside the cell

formed by CS c, eUAV is the profit that a UAV makes by

serving one UE, t is the time duration before the next matching

takes place, and gc is the distance-dependent charging cost,

which is given by

gc(u, c) =

(

1−
BUAV (u)

100
+

Btr(u, c)

ECUAV

)

pg, (2)

where Btr(u, c) = d(u, c)mt is the percentage of battery

consumed during the UAV transition, with d(u, c) being the

distance between a UAV u and a CS c, and mt being the

consumed energy per meter while the UAV transits from one

location to another. Also, BUAV and BCS denote the current

battery level of a UAV or a CS, respectively. In this way, (2)

takes into account the current battery levels of both the CS and

the UAV, to calculate accurately the potential cost to charge

UAV u at this specific CS, while taking into account the power

that it will consume during its transit to this CS.

Regarding CSs, their goal is to maximize their profit, while

ensuring safety and fast response. Thus, they prefer the UAV

located at the nearest point to them given that it is safe for this

UAV to reach the location of the CS. Therefore, the objective

OCS of their matching game is defined as

OCS(c, u) =
1(BUAV (u)−Btr(u, c) > Blimit)

d(u, c)
, (3)

where 1 is the indicator function, while Blimit is the lower

battery limit allowed to ensure safe transit and charging. Using
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the number of APs in the area, provides better coverage for

the UEs in both scenarios. However, in the UAV case, the

total network coverage is higher, as the UAVs can follow

the traffic and densify on-demand the APs to provide higher

number of RBs in congested areas. On the other hand, in a

static SC deployment, it is obviously not possible to predict

and satisfy congestions at certain locations, resulting in a

much lower coverage probability (20% less coverage for 100
SCs). It should be noted that some SCs located in low-traffic

districts will not be able to provide their resources, while in

other districts the traffic will be extensive with the SCs being

unable to serve it. Without doubt, this affects heavily the SC

utilization as it can be also seen in Fig. 3. From this figure, we

notice that the UAVs can have much higher utilization (up to

30% higher), because they are strategically located using our

matching algorithm in areas where they are most needed. The

decrease of utilization as the number of UAVs is rising happens

due to the fact that there are CS cells in which the UEs will

reasonably require less RBs than the maximum available from

one AP (i.e., 100 RBs) and, thus, the UAV will not utilize

all of its available RBs. Still, the UAV scenario presents a

remarkable performance in terms of utilization.

To demonstrate a more in-depth analysis of the network

performance in each scenario, we present in Fig. 4 the number

of requested RBs in each SC (green line) and CS (blue line),

assuming there are 30 SCs and 30 CSs in the area. The

number of requested RBs in the SC scenario is much higher

in many cases. This occurs due to the fact that the UAVs

can provide line-of-sight communication and their antennas

have directional gain that results in higher SINRs at the UE

receivers. Therefore, it is reasonable for the UEs to request

lower numbers of RBs as their coding rate is higher. Moreover,

in this figure, we present the max number of serviceable RBs

in a SC cell, which is 100 as there is only one SC per SC cell,

while for the UAV scenario it is 300, as we assume a quota of

maximum three UAVs in the cell defined by the CS. However,

due to the higher UAV connectivity, the maximum number of

requested RBs in a CS cell does not exceed 150, meaning that

there is no need in this certain case to have a quota of three

UAVs, as two UAVs can cover the UEs in all cells. Hence, even

with a quota of one UAV per CS, the coverage in most cases

would be much higher compared to the SC scenario as they

can offer higher SINRs at the UEs, while the SCs struggle to

satisfy the much higher demand. This result can be furthered

stressed in Fig. 5, in which we observe that as the number of

UEs in a SC/CS cell is increasing, the SC deployment requires

much higher capacity to satisfy the demand. It is interesting to

notice that for the CS deployment and 400 UEs the requested

RBs are less than the requested RBs in an SC cell when it is

occupied by 200 UEs.

V. CONCLUSION

So far, aerial networks have been praised by academia

and industry for their flexibility to provide coverage in any

given area. However, their power issue still hinders actual

research and development in great scale. In this paper, we

proposed the use of solar-powered charging stations that can

overcome the power issue and provide a safe UAV operation.

As UAVs change location often to cover traffic discrepancies

in the various districts, we employed matching theory to

ensure safety and energy efficiency. Then, we evaluated the

performance of the UAV scenario compared to a static network

with SCs and demonstrated that UAVs can provide a much

more flexible deployment with higher coverage and utilization.
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