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Abstract. The burgeoning technology of Mobile Edge Computing is 

attracting the traditional LBS and LS to deploy due to its nature characters 

such as low latency and location awareness. Although this transplant will 

avoid the location privacy threat from the central cloud provider, there still 

exists the privacy concerns in the LS of MEC scenario. Location privacy 

threat arises during the procedure of the fingerprint localization, and the 

previous studies on location privacy are ineffective because of the different 

threat model and information semantic. To address the location privacy in 

MEC environment, we designed LoPEC, a novel and effective scheme for 

protecting location privacy for the MEC devices. By the proper model of 

the RAN access points, we proposed the noise-addition method for the 

fingerprint data, and successfully induce the attacker from recognizing the 

real location. Our evaluation proves that LoPEC effectively prevents the 

attacker from obtaining the user's location precisely in both single-point 

and trajectory scenarios. 

 

Keywords: Location Privacy, Mobile Edge Computing, Location-based 

Service, Location Service, Noise addition 

 

1. Introduction 

Mobile Edge Computing (MEC) is a new technology which is currently being 

standardized in an ETSI Industry Specification Group (ISG) of the same name. Mobile 

Edge Computing provides an IT service environment and cloud-computing capabilities at 

the edge of the mobile network, within the Radio Access Network (RAN) and near mobile 



subscribers. The aim is to reduce latency, ensure highly efficient network operation and 

service delivery, and offer an improved user experience.The growth of mobile traffic and 

pressure on costs are driving a need to implement several changes in order to maintain 

quality of experience, the Internet of Things (IoT) is further congesting the network and 

network operators need to do local analysis to ease security and backhaul impacts [1]. 

Among all of the pervasive mobile and cloud-based services, the location-based 

service (LBS) and the localization service (LS) are the most suitable services for the 

decentralized deployment of the MEC scenario. On on hand, MEC is characterized by 

low latency, proximity and location awareness [2], these features of MEC are naturally fit 

with LBS and LS. On the other hand, in the vast majority of instances, the LBS and LS 

can be provided inside each subarea of MEC community independently, since most of the 

location-based information (e.g. the kNN queries, POI in proximity) are contained in the 

MEC scenario, data could be collected and processed based on location without being 

transported to cloud, this will block the LBS and LS provider from getting the location of 

user, which will preserve the location privacy better. 

However, from the view of privacy preservation, in MEC scenario, the concern on 

the location privacy still exists. Although the location is avoided from being sent to the 

centralized cloud, the different threat model in MEC scenario is, to some extent, 

threatening the location privacy. As shown in Fig.1, two main factors are involved in the 

MEC scenario. 

First, in the traditional threat model of centralized LBS service, the privacy concerns 

are originated from the geolocation information, and the preservation efforts are focusing 

on preventing the LBS providers from knowing the user's accurate locations while at the 

same time retaining the LBS functionality and service quality. However, in MEC scenario, 

such threat model is inapplicable, since the location awareness MEC is capable of 

generating location from the wireless signal space "fingerprint". In MEC scenario, this 

fingerprint is equivalent to the location from the view of privacy-preserving, and the 

fingerprint of user needs to be protected. 

Second, the basis of the MEC infrastructure is constructed by the edge smart devices 

with limited computational power and with well-known lacking of security. As a result, 

although the centralized LBS providers which are considered to be untrusted (or curious-

but-honest) are excluded, the privacy concerns due to the weak security of infrastructure 

is still severe. 

In conclusion, we argue that the location privacy preservation in the MEC scenario 

should be performed in the very beginning of the generation of locations. The fingerprint 

information needs to be protected since it is equivalent to the location in MEC scenario. 

However, most of the state-of-the-art research on location privacy protection focuses on 

solving the privacy threat against LBS providers by investigating how to use the location 

safely or in a privacy-preserving way, they are incapable for the MEC scenario since the 

semantic content of wireless signal space fingerprint is different from the geolocation 

coordinates. 

In this paper, we investigated the location privacy preservation in MEC scenario, and 

proposed a noise addition-based scheme named LoPEC to protect the fingerprint 

information of user. Specifically, we introduce the fundamental topology model of the 



MEC wireless infrastructures, based on this model, we designed a method to generate the 

"noise fingerprint". Then, the noise addition scheme was given to protect fingerprint of 

the user. We consider the trajectory privacy and propose an enhanced algorithm, which 

can further generate trajectory-like noise fingerprints when using continuous location 

updates. To realize our scheme on smart devices directly without any additional system 

architectures, we propose a mechanism for the daily collection of a noise fingerprint 

candidate set. This mechanism also greatly enlarges the selectable range of noise 

fingerprint and enables the user to generate noise fingerprint beyond his current sensing 

range in real time. 

 

Fig.1 LBS and LS in MEC scenario. 

Our approach has no negative impact on the functionality of the upper LBSs. The 

evaluation we implemented on Android device verified the effectiveness while 

maintaining a reasonable time cost for today's devices. 

This paper makes the following main contributions. 

(1) We propose a method for adding noise that can confuse the potential attackers 

and prevent it from recognizing the user's location in MEC scenario. The protection level 

can be adjusted according to the degree of the threat. With our method, the noise 

fingerprint does not reduce the usability of the real location and has no impact on the LBS 

functionality. 

(2) We use a light-weight and realistic system architecture for the MEC environment. 

No unrealistic assumption or multi-party cooperation is needed. Our scheme can be 

realized directly in modern smart devices and the mobile internet ecosystem. 

(3) We consider both single-spot positioning privacy and trajectory privacy and 

ensures, through the use of the noise fingerprint, that the attacker will generate trajectory-

like locations that are not easy to decipher by committing a homogeneity attack [3]. 

(4) LoPEC provides an optimization algorithm based on the raw noise-generating 

method and drastically reduces the computational costs. This feature is meaningful 

because energy use is an important concern with mobile devices. 

The rest of this paper is organized as follows. Section II briefly reviews the related 

work. Section III outlines the preliminaries of LoPEC. We describe the design details of 

LoPEC in Section IV. Section V and Section VI provide theoretical analyses and 

experimental evaluations. Finally, Section VII concludes the paper. 



2. Related work 

Approaches on location privacy can be divided into two categories: LBS scenarios and 

LS scenarios. 

2.1 Approaches to the LBS scenario (how to use safely) 

Much attention has been paid to this location privacy scenario in the past decade. Most 

approaches to this scenario were surveyed comprehensively in [3][4][5][6][7]. 

The threat models of these approaches are more or less similar. They prefer treating 

the LBS providers as the most untrusted adversaries with extensive background 

knowledge. Based on this framework, their primary purpose is to prevent the LBS 

providers from knowing the user's accurate locations while at the same time retaining the 

LBS functionality and service quality as much as possible. 

Many ingenious methods have been adopted successfully in these approaches, such 

as dummy adding, k-anonymity, obfuscation, region cloaking, caching and encryption-

based methods. Although they have different ideologies and realization details, these 

approaches share the same understanding of the scenario boundary; they do not care how 

a location is obtained. The mobile user first obtains a known and definite location, and 

then their approaches are applied. 

In MEC scenario, the LS providers (LP), who are as untrustworthy as the LBS 

providers, suffer from the same privacy threat concerns. The location privacy needs to be 

protected even before the location is generated. However, these approaches can neither 

protect location privacy against the LP because their threat model is incomplete, nor be 

applied to the MEC scenario directly because the communication contents as well as the 

semantics are different. 

2.2 Approaches to the MEC scenario (how to obtain 

safely) 

Compared to the LBS scenario, the situation in which the device requests the location 

from a LP is quite different. Several researchers have studied the problem in this scenario 

from different perspectives. 

Damiani and Cuijpers described this privacy issue in [9] and tried to solve this 

problem by designing a policy control mechanism to adjust the granularity of the location 

determined by the LP. This approach is not a computational technique but rather a policy 

suggestion. 

[10] Described a location privacy threat called a location spoofing attack, in which 

the attackers can counterfeit the device’s original fingerprint information and imitate the 

real user to request the user's location from the LP. Then, the method proposes a reliability 

determination algorithm to cope with this threat. However, their threat model regarded the 



LP as trusted, which is unrealistic in the MEC scenario. 

Some encryption-based method such as [11] are also proposed to protect location 

privacy against the LP. However, the encryption procedure is too time-consuming for the 

lightweight edge devices and key management [12][13][14] is also a challenge. 

3. PRELIMINARIES 

In this section, we first introduce the assumptions on the system adopted in this paper 

using some basic concepts and then present the motivation for and the basic idea of our 

solution. 

3.1 System assumptions 

Our threat model is concise. We concentrate our research on the LS procedure in the MEC 

scenario, and we do not consider the location privacy problems of the LBS scenario. The 

LS providers are the most direct and shrewdest adversaries in our work. They may record 

people’s locations or even daily trajectories without permission. Moreover, we consider 

the communication channel between device and LP to be trusted since this channel can be 

well protected by security protocols. Furthermore, attacks by exploiting the vulnerabilities 

of the device’s operating system and programming framework [15][16] are beyond the 

scope of this paper. 

Second, multiple dominant positioning technologies are being utilized by today’s 

mainstream edge computing-based localizations, but we do not assume on what specific 

technology may be adopted by LS providers because our scheme is designed based on the 

fundamental principles of the vast majority of those technologies. 

Finally, we treat the RAN access points (APs) as the only communication 

infrastructure adopted by the LP. This assumption is rational because state-of-the-art 

technologies mainly rely on the RAN APs (e.g. Wifi hotspots) to achieve meter-level 

positioning accuracy; other infrastructures such as cellular towers are only subsidiaries. 

However, our approach can be simply transplanted to other infrastructures such as cell 

towers because their basic positioning fundamentals are almost the same. 

3.2 Limitations 

Our goal is for our scheme to possess strong suitability for today's positioning 

technologies rather than apply to one specific positioning technology; we also want it to 

be realistic. This goal imposes the following limitations: 

1. LoPEC cannot rely on the technical details of any positioning technology; and 

2. LoPEC cannot perform any modification of existing positioning technologies. 

To accommodate these limitations, we implement LoPEC on the device side. This 

approach can also simplify the design complexity of LoPEC because no matter what 

positioning technology the LP adopts, the user's job during the positioning process 



remains almost the same: sense the APs in proximity and transmit them to the LP 

(Fig.2(a)). 

As we noted in Section 1, our basic idea is to use a noise-addition method to prevent 

the LP from knowing the user's accurate location. This idea is easy to implement in the 

LBS scenario because the location coordinate's semantic is uncomplicated and easy to 

simulate, even using the simplest randomization method, people can still ensure the 

equivalence between the real location and the noise one, all left people to do is to improve 

the noise fingerprint’s degree of similarity in other aspects. 

 

(a) initial way of LS without any  (b) using fabrication method to generate                    

protection                         noise fingerprint 

 

(c) using real world APs but with  (d) using cluster-like APs as noise fingerprint wrong 

spatial distribution as noise       (our basic idea) 

fingerprint 

Fig.2 Our basic idea of noise adding 

However, the same concept of noise addition is much more difficult to realize in the 

MEC scenario for the following two reasons: 

1. The noise fingerprint we need in the MEC scenario, i.e., the AP identifiers(Wi-Fi 

Mac addresses in this paper), must not only be homogeneous to real fingerprint but also 

should be understandable to the LP. As shown in Fig.2(b), if we use the fabrication method, 

which researchers used in the LBS scenario to manufacture dummies, the LPs can easily 

recognize the real fingerprint because the noise fingerprint does not exist in their databases. 

2. Even using real-world AP identifiers that can be handled by the LPs as our noise 

fingerprint, there is still an additional problem to be solved; Fig.2(c) illustrates this 

problem. According to the characteristics of smartphone sensing, the spatial distribution 



of the real APs should satisfy a special cluster-like pattern; more precisely, the coverage 

areas of APs in the actual fingerprint must overlap one another. The features of the 

distributions of the real fingerprint and the noise fingerprint ought to be the same, which 

makes adding the noise more difficult. 

3.3 Basic idea 

For the first problem, we will enable the user to possess a huge number of real-world AP 

identifiers as the candidate set of noise fingerprint. For practicability, we will not assume 

a third-party broker, which possess the entire region's AP identifiers, would handle this 

problem. This assumption is convenient for simplifying the problem but not realistic for 

the implementation. In this paper, based on the fact that a device can sense and record a 

considerable number of APs during daily activity and movement, we design a Self-Collect 

and Self-Organize Algorithm (SCSOA) for smartphones to collect APs as the candidate 

set of noise fingerprint (Section 4.2). 

For the second problem, we generate noise fingerprint with high similarity to the real 

fingerprint. Fig.2(d) shows this optimal case, when the noise fingerprint is difficult to 

distinguish. This process requires us to model the overlapping relations between APs in 

intuitive and predictable way and to make sure the smartphones can learn this model. 

We use an undigraph to characterize the spatial distribution and the overlapping 

relations between APs. We first simplify the irregular cover area of the APs to a circular 

area (Fig.3(a); this simplification does not affect our model's authenticity because it is 

only for convenience of the display). Then, we can model the APs’ spatial distribution as 

an undigraph G(V, E), in which Vertex(V) represents all APs in a region and Edge(E) 

represents the situation in which two APs in V have an overlapping relation in the spatial 

distribution. 

          

(a) Spatial distribution of APs with their "overlapping" (b)Modeling result based on our 

relations                                      rule 

Fig.3 Use undigraph to model APs spatial distribution 

Fig.3(b) illustrates the modeling result of the data shown in Fig.3(a). Note that G 

does not contain the geo-location coordinates of the APs; it only characterizes their spatial 

topology. Using this model, we see the overlapping spatial relations of the APs in real 

fingerprint can now be modeled as a complete subgraph in G. Then, with the help of G, 

we can generate noise fingerprint that has the same features as a real fingerprint; more 

specifically, we find some other complete subgraphs in G and use the corresponding APs 

as our noise fingerprint. 



Because the SCSOA can generate G for device iteratively while sensing and 

recording APs, whenever a user requests LS from the LP, we can calculate several 

complete subgraphs from G without assistance from another party. However, restricted by 

the high real-time performance and low energy consumption demands of the device, the 

raw graph traversal algorithm for complete subgraph discovery is too time-consuming to 

apply, especially when G is large. To overcome this problem, we propose a faster 

Complete Subgraph Discovery Algorithm (CSDA). CSDA is based on the notion of 

clustering coefficients. The clustering coefficient of a vertex in a graph quantifies how 

close its neighbors are to being a clique (complete graph). CSDA tends to find APs 

associated with high clustering coefficients and is an efficient method, as demonstrated in 

Section 4.3. 

Finally, we further consider the trajectory privacy in which the noise-addition 

method will suffer from the homogeneity attack. We protect against this threat by enabling 

the smartphones to generate noise fingerprint with continuous spatial distributions. Our 

basic idea is to find a complete subgraph adjacent to the previous one as best as we can 

(Section 4.4). 

4. OUR PROPOSED SCHEMES 

We first introduce an overview of our approach, and then we present our AP collection 

algorithm (SCSOA) and the noise fingerprint generation algorithm (CSDA) in detail. 

Finally, we present the enhanced CSDA (e-CSDA) for the trajectory scenario to defend 

against the homogeneity attack. 

4.1 System overview 

In our system, when a user requests LS in a fixed location, he first uses CSDA to generate 

several noise sets of APs as the noise fingerprint and then mixes them with the real sensed 

APs and sends them to the LP. CSDA runs on the undigraph G, which is created by 

SCSOA. SCSOA runs continuously in the background to collect APs and model G during 

the user's daily movements. It is evident that the longer this algorithm operates, the larger 

the undigraph G will be, which means a larger set of noise candidates and better privacy 

protection. 

When the user is in the trajectory scenario (e.g., using a navigation LBS), the system 

will activate the e-CSDA to generate noise fingerprint with continuous spatial distribution 

to further strengthen the privacy protection. 

4.2 SCSOA for APs collection 

Inspired by the relationship between the APs’ spatial distribution and their corresponding 

undigraph model, we can assert that given a set of APs with known spatial distribution 

and their undigraph G, if a user senses his surrounding APs, denoted as APreal, then the 



vertices in G corresponding to APreal must constitute a complete subgraph. 

 
Fig.4 Basic idea of SCSOA, user travels from T1 to T5 along the path shown as the 

black arrow and uses SCSOA to collect APs and generates G each time he senses 

some new APs 

Based on this feature, our main concept is to construct a complete subgraph and 

merge it with the existing undigraph each time the user senses and records his surrounding 

APs. By repeating this step, the user can construct a large enough undigraph for noise 

fingerprint generation; see Fig.4. Algorithm 1 details this process. 

 

In real-world situations, an AP’s signal strength may vary with time and environment 

and hence make its cover area unstable, especially in the boundary area. To improve G's 

authenticity, we use a thresholdτof signal strength to filter out those unstable overlapping 

relations. We first let V absorb the newly discovered APs, and then we add an edge into E 

selectively, according toτ: an edge will be in E if the signal strengths of both of its two 

vertices are greater thanτ. Note that largerτwill lead to a higher authenticity of G but a 

smaller number of candidates for noise fingerprint. 

SCSOA enables the user to construct an undigraph model of real-world APs as the 

candidate pool for noise generation. It also makes it possible for the user to implement 

LoPEC on his own, without any third-party participation. This capability further improves 

our system’s practicality. 



4.3 CSDA for noise-data generation 

Our goal is to find a complete subgraph from G. This problem can be classified as a Clique 

Problem. However, the brute-force algorithm for finding a clique in an undigraph is too 

time-consuming for the LS scenario. Although this brute-force search can be improved by 

using more efficient algorithms, all of these algorithms require exponential time to solve 

the problem [17]. This requirement limits the utilization of this technique in our system 

in cases where G is large. 

We solved this issue by dividing the whole problem into two phases. First, we 

determine the clustering coefficient c of each vertex in G and record the coefficients 

during the user's idle time (i.e., when the user is not in the LS scenario). As c can describe 

the closeness of a vertex's neighbors, the neighbors of a vertex with higher c are more 

likely to constitute a complete subgraph (with the edges between them); when ci, we can 

be sure that vi and all its neighbors would be perfect candidates for use as noise fingerprint. 

Based on this feature, in the second phase (LS scenario), we adopt a randomization 

method to select noise fingerprint near the vertices with very high c (approximately 1). 

Algorithm 2 describes the details of this method. 

 

We use those vertices with c higher than a threshold ϵ as the pointers to the dense 

areas of G. In this way, we avoid those time-consuming deterministic algorithms and 

perform a randomize method instead. We first randomly locate h dense areas in G and 

then randomly select several vertices as the noise fingerprint set in each area. Here, we 

further consider the fact that the number of APs in APreal may be different each time the 

user requests LS because of the unstable signal environment. Therefore, to reinforce the 

indistinguishability, the noise fingerprint must not only constitute a complete subgraph in 

G but must also contain the same number of vertexes as APreal. Thus, we will deprecate 

those vertices with fewer neighbors than the real fingerprint. 

Benefitting from the two-phase design and the randomization, CSDA can generate 

noise fingerprint far faster than deterministic algorithms. Furthermore, by randomly 

locating dense areas in G, CSDA can ensure the even distribution of the noise fingerprint 



selection from the probabilistic perspective, and randomly choosing vertices from the 

dense area will enrich the diversity of the noise candidates. 

Note that CSDA will sometimes generate a false noise fingerprint set (i.e., not a 

complete subgraph in G) due to the situation when the coefficient c of the pointer vertex 

(in Vh) is not 1. However, this situation occurs with very small probability, and, as we 

show in our evaluation, this probability can be quantifiably controlled by adjusting ϵ. 

Because the SCSOA functions continuously, this probability will be further reduced. 

4.4 e-CSDA for the trajectory scenario 

We take into consideration the trajectory privacy in which the attacker (LP) can carry out 

a homogeneity attack to identify the user's real location. The homogeneity attack is mainly 

based on the fact that in a continuous LS request process, the locations should be 

homogenous with each other in spatial distribution. The attacker can distinguish the real 

user from the low-homogeneity noise fingerprint. 

We enhance the CSDA and use noise fingerprint that possesses the trajectory-like 

spatial distribution to overcome this problem. Algorithm 3 illustrates this enhancement. 

 
We use the vertex adjacent to the last generated noise fingerprint as the start of our 

algorithm instead of using randomization every time. In this way, we can generate noise 

fingerprint neighboring the previous noise fingerprint. This process is rational because, 

although G does not contain the spatial information of the APs, two adjacent APs in G are 

very likely to be close to each other in the general case. 

5. ANALYSIS 

We provide our privacy metric to measure how much privacy our system can offer during 

an LS process. Then, we discuss several security issues. 



5.1 Privacy metric 

The number of noise fingerprint has been widely adopted as the privacy metric in noise 

addition-based approaches that are not restricted to location privacy protection. In our 

system, the number of noise fingerprint represents how many APs we use to mix with the 

real APs. These noise fingerprint are used to generate fake locations for the LP; therefore, 

we use the number of locations that can be determined using the noise fingerprints as our 

privacy metric, which can be defined as 

k
H

n
  

Here, H denotes our privacy metric, k denotes the total number of noise APs, and n is the 

number of APs in the real fingerprint. According to our noise-generation algorithms, H 

will always be an integer, and higher H provides a higher privacy degree. 

5.2 Security discussion 

As we noted in Section 3.1, the LP can determine the user's location during the LS process. 

In our system, the noise-addition method generates high-similarity noises, which means 

that (1) these noise APs are all obtained from the real-world collection and (2) the LP can 

use these noises to calculate locations in the same way that it uses the real fingerprint. 

Thus, ideally, given the privacy metric h, the LP cannot distinguish the real location from 

the other h locations generated by our noise fingerprint sets, and the probability of a “luck 

guess” is 
1

h 1
. 

However, the LP may perform a distribution attack [3] based on his knowledge of 

the query probability of each AP in the whole area. The query probability of an AP 

indicates how frequently this AP was used as the search condition (real fingerprint), and 

this number is different for each AP because of the diversity of their spatial distributions 

(e.g., a public Wi-Fi-router in a mall will be used more frequently than a private home-

edition router). The LP could use this information to narrow the guessing range. In our 

system, this disturbing knowledge will be gradually degraded because of our randomized 

algorithms for choosing APs. After a period of system implementation, the query 

probability of each AP will lead to equalization and the LP will lose this weapon against 

the user. 

Finally, when in the trajectory scenario, the LP could carry out a homogeneity attack 

to infer the user's location from a continuous positioning request. In Algorithm 3, we have 

ensured that the location generated by our noise fingerprint has the same spatial continuity 

as the real fingerprint. It must be pointed out that we did not take the direction and velocity 

features of real location data into consideration because G cannot offer any spatial 

information for us to perform such an optimization. Thus, our noise trajectories may not 

have the same high-level features as the real trajectory. However, we still successfully 

strengthen the discrete noise locations and organize them in a trajectory-like spatial 

distribution. As a result, it is still difficult for the LP to recognize the real trajectory. 



6. EVALUATIONS 

LoPEC was evaluated by implementation on a smartphone with the Android 5.0 system, 

and the associated LP and LS were realized by simulation on our server. We simulate the 

MEC location service and the AP information used to calculate the location by the LP was 

collected from an urban area in the city Harbin China. We considered four aspects in our 

evaluations. 

6.1 Simulation and implementation 

As the fundamental data of our evaluation, we gathered the AP data (Wi-Fi Mac address 

and signal strength) from the real world by installing a simple program on a smartphone 

and using it to sense the surrounding Wi-Fi information. Fig.5 shows the area and the 

coordinates we gathered with Google Earth. 

 

Fig.5 Area and the coordinates we gathered APs from 

 

We chose a Wi-Fi-rich downtown business district to gather our data to obtain a better 

experimental result. For each coordinate in Fig.5, we recorded its geographic coordinate 

(in the latitude-longitude frame) and the surrounding Wi-Fi Mac addresses with their 

signal strengths (mean of 10 times for each), and we gathered 2016 Wi-Fi routers. For the 

convenience of data analysis and evaluation, we transformed the geographic coordinates 

into the Cartesian coordinate system using the Gauss-Kruger projection. 

Based on the above data, we simulated the LP on our server to provide LS for user. 

To verify the universality of LoPEC, we realized two different positioning technologies, 

introduced in [18] (RADAR) and [19] (PBL), on the server side. These two classic 

approaches outlined the fundamentals of today's third-party RF-based positioning services. 

We realized and implemented LoPEC on a Samsung smartphone with the Android 

5.0 system . LoPEC runs in the background of the OS and protects the user's location 

privacy when an LS is used. 

6.2 Quality of generated G 

We invited volunteers to collect Wi-Fi information for us by using the SCSOA. SCSOA 



ran in the background of their smartphones and generated G gradually as they shopped in 

the area shown in Fig.5. To evaluate the quality of G, we compared G with Gt to observe 

the change in quality as the number of volunteer trips increased. Here, Gt is the global 

undigraph of the area shown in Fig.5. We obtained this value using all the Wi-Fi 

information gathered in this area as the input of SCSOA. Obviously, a higher similarity 

between G and Gt means that G is of higher quality. Fig.6 shows the influence of the travel 

time t on the quality of G. 

 

Fig. 6 Quality of generated G vs. travel times 
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and the number of incorrect vertices (vertices that do 

not belong in G) as the travel time increased from 1 to 8. The result shows that SCSOA 

can generate G efficiently over time. Both the Wi-Fi-routers (vertices) and their 

overlapping relations (edges) can be well modeled in G. Moreover, the ratio of incorrect 

vertices in G is fairly small, and these incorrect vertices are probably due to  the unfixed 

Wi-Fi-routers (e.g., the portable smartphone hotspots) and the Wi-Fi-routers beyond our 

measured boundary. 

6.3 Success rate of clique noise 

We evaluated the impact of the following four parameters on the success rate of our CSDA: 

privacy metric h, clustering coefficient threshold ϵ, the scale of G and different positioning 

technologies. Fig.7 shows the evaluation results. 

 

(a) x vs. h with ϵ = 0.95 
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(b) x vs. ϵ with h = 1 

 

(c) x vs. scale of G with ϵ = 0.95, h = 1 

Fig.7 Effects on success rate 

The success rate x is independent of the privacy metric h (Fig.7(a)) because each 

noise fingerprint is generated independently from the others in CSDA. This feature is 

inspiring when the user needs to promote his privacy metric. x increases when the 

clustering coefficient threshold is tightened (Fig.7(b)), as higher ϵ means more strict and 

dense area filtration. In addition, x will increase as G enlarges due to the rise in G's density 

and clique number (Fig.7(c)). Furthermore, we find that x can remain at a high level (85% 

of RADAR in our experiment) even on the smallest G in our evaluation. This result 

confirmed that LoPEC could function quite well for various types of users. 

The x on RADAR outperforms x on PBL. This result is caused by the differences 

between these two positioning technologies in their data format requirements. More 

specifically, RADAR tends to use a fixed number (usually less than 5) of APs to calculate 

the coordinate; in contrast, PBL will utilize as many APs as it can. This leads to the fact 

that CSDA always has to generate a larger complete subgraph for PBL than for RADAR, 

and this will influence x. In general, CSDA can obtain a considerably high success rate in 

various conditions. 

6.4 Computational cost 

As SCSOA runs in the background in the user's smartphone and does not affect the LS 

experience, we focus our attention on CSDA and e-CSDA due to their extra time delays. 

Before our evaluation, we first introduce the brute-force algorithm for comparison. 

The brute-force algorithm will find an m-clique in an n-vertex graph by checking all Cn
m 

m-subgraphs for completeness. Fig.8 shows the effects of h and different scales of G on 



the CPU time of each algorithm. 

 

(a) t vs. scale of G with h = 5 on PBL 

 

(b) t vs. h on PBL 

Fig.8 Computational cost 

In Fig.8(a), we set the privacy metric h to 5 and select 8 incremental subgraphs from 

the previous evaluation. The brute-force algorithm takes a considerably longer and very 

unstable amount of CPU time. In contrast, the computational costs of our CSDA and e-

CSDA are lower by more than an order of magnitude than that of the brute-force algorithm 

and increase linearly with the size of G. The same result is shown in Fig.8(b), where we 

perform these algorithms on a certain G and increase the privacy metric h from 3 to 20. 

In addition, our algorithms perform better on RADAR than PBL for the same reason as 

described in the above subsection. The result shows that LoPEC utilizes the randomization 

method successfully, and its computational cost is acceptable for the smartphone LS 

scenario. 

6.5 Trajectory feature of noise fingerprint 

We evaluated the trajectory feature of the noise fingerprint by performing a positioning 

experiment. We walked through the area shown in Fig.9 in a casual path (green) and sent 

a series of RF data, which was protected by our e-CSDA, and we used RADAR to 

calculate the location of each dataset. Fig.9 shows the result of this evaluation, and we 

can see clearly that our noise fingerprint (blue) has a trajectory-like spatial distribution, 

just like the real fingerprint. 



 

Fig.9 Spatial distribution of Trajectory-like noise fingerprint generated by e-CSDA 

7. Conclusion 

This paper proposes LoPEC, a location privacy-preserving scheme for the mobile edge 

computing scenario. We argue that the preservation of location privacy in MEC is 

equivalent to the protection of the wireless fingerprint. Based on the good modeling of 

the AP spatial distribution, we found a way to generate high-quality noise fingerprint. 

SCOSA provides the user with a self-sufficient way to apply LoPEC without the 

assistance of a broker. Then, we proposed two randomization-based noise-addition 

algorithms: CSDA and e-CSDA. CSDA greatly reduces the computational cost of the raw 

noise generation method by utilizing the notion of the clustering coefficient and still 

retains a high success rate. The e-CSDA further protects the location privacy in the 

trajectory scenario. Evaluation results indicate that LoPEC can protect the user's location 

privacy in MEC environment. 
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