
Neural Belief Propagation Decoding of
CRC-Polar Concatenated Codes

Nghia Doan, Seyyed Ali Hashemi, Elie Ngomseu Mambou, Thibaud Tonnellier, Warren J. Gross
Department of Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada

Email: {nghia.doan, seyyed.hashemi, elie.ngomseumambou}@mail.mcgill.ca, {thibaud.tonnellier, warren.gross}@mcgill.ca

Abstract—Polar codes are the first class of error correcting
codes that provably achieve the channel capacity at infinite
code length. They were selected for use in the fifth generation
of cellular mobile communications (5G). In practical scenarios
such as 5G, a cyclic redundancy check (CRC) is concatenated
with polar codes to improve their finite length performance.
This is mostly beneficial for sequential successive-cancellation
list decoders. However, for parallel iterative belief propagation
(BP) decoders, CRC is only used as an early stopping criterion
with incremental error-correction performance improvement. In
this paper, we first propose a CRC-polar BP (CPBP) decoder by
exchanging the extrinsic information between the factor graph of
the polar code and that of the CRC. We then propose a neural
CPBP (NCPBP) algorithm which improves the CPBP decoder by
introducing trainable normalizing weights on the concatenated
factor graph. Our results on a 5G polar code of length 128
show that at the frame error rate of 10−5 and with a maximum
of 30 iterations, the error-correction performance of CPBP and
NCPBP are approximately 0.25 dB and 0.5 dB better than that
of the conventional CRC-aided BP decoder, respectively, while
introducing almost no latency overhead.

Index Terms—polar codes, 5G, neural belief propagation
decoding, code concatenation, cyclic redundancy check.

I. INTRODUCTION

Polar codes are a breakthrough in the field of channel coding
as they were proved to achieve channel capacity with efficient
encoding and decoding algorithms [1]. Successive cancellation
(SC) and belief propagation (BP) decoding algorithms are
introduced in [1] to decode polar codes. Although SC decoding
can provide a low-complexity implementation, its serial nature
prevents the decoder to reach a high decoding throughput. In
addition, the error-correction performance of SC decoding for
short to moderate polar codes does not satisfy the requirements
of the fifth generation of cellular mobile communications (5G).
To improve the performance of SC decoding, SC list (SCL)
decoding was introduced in [2] and it was shown that SCL
can provide a vast error-correction performance improvement
if it is aided by a cyclic redundancy check (CRC). Based on
this observation, polar codes have been selected to be used in
the enhanced mobile broadband (eMBB) control channel of
5G together with a CRC [3].

Unlike SC-based decoders, the iterative message passing
process of BP decoding can be executed in parallel, hence
enabling the decoder to reach high decoding throughput.
However, with limited number of iterations BP decoding suf-
fers from poor error-correction performance. Furthermore, 5G
standard requires polar codes to be concatenated with an outer

CRC code. Thus, several attempts have been carried out to
improve the performance of BP decoding for polar codes using
a CRC. In [4], CRC is used as an early termination criterion to
prevent the BP decoder from processing unnecessary iterations
when the correct codeword is found. In [5], a post-processing
algorithm is presented which uses a CRC to detect false-
converged errors. In addition, it is observed in [6], [7] that BP
decoding on a list of factor graph permutations of polar codes
can benefit from CRC to achieve lower error probabilities than
when no CRC is used. However, BP decoding in all of the
aforementioned works is only applied on the factor graph of
polar codes and the CRC is only used to verify the result
of BP at each iteration, without exploiting the inherent factor
graph of CRC. Note that BP decoding is used in [8]–[10] on
the concatenated factor graphs of a low-density parity-check
(LDPC) code and a polar code. However, this scheme is not
selected for use in the eMBB control channel of 5G.

In this paper, we first show that by running BP decod-
ing on the CRC-polar concatenated factor graph, significant
error-correction performance improvement can be achieved in
comparison with the conventional CRC-aided BP decoder. We
call the proposed decoding method CRC-polar BP (CPBP).
We then propose a neural CPBP (NCPBP) decoder to further
improve the error-correction performance of CPBP with lim-
ited number of BP iterations. We devise an efficient weight-
assignment scheme for NCPBP and show that the proposed
scheme has fewer weights than the state-of-the-art neural
BP decoder of [11] while providing a better error-correction
performance. The proposed decoders are evaluated on a 5G
polar code of length 128. At the frame error rate (FER) of
10−5 and with a maximum number of 30 iterations, we show
that the error-correction performance of the CPBP and NCPBP
decoders are approximately 0.25 dB and 0.5 dB better than
that of the conventional CRC-aided BP decoder, respectively,
with negligible latency overhead.

The rest of this paper is organized as follows. Section II
briefly introduces polar codes and its BP-based decoders.
Section III and IV describe the proposed CPBP and NCPBP
decoders, respectively. Finally, concluding remarks are drawn
in Section V.

II. PRELIMINARIES

A. Polar Codes

A polar code P(N,K) of length N with K information
bits is constructed by applying a linear transformation to the

ar
X

iv
:1

81
1.

00
12

4v
1

 [
cs

.I
T

]
 3

1
O

ct
 2

01
8

(a)

(b) (c) (d)

Fig. 1: (a) BP decoding on the factor graph of P(8, 5) with
{u0, u1, u2} ∈ Ac, (b) a PE, (c) a right-to-left message update
of a PE on an unrolled factor graph, and (d) a left-to-right
message update of a PE on an unrolled factor graph.

message word u = {u0, u1, . . . , uN−1} as x = uG⊗n where
x = {x0, x1, . . . , xN−1} is the codeword, G⊗n is the n-th
Kronecker power of the polarizing matrix G =

[
1 0
1 1

]
, and

n = log2N . The vector u contains a set A of K information
bits and a set Ac of N −K frozen bits. The positions of the
frozen bits are known to the encoder and the decoder and their
values are known to be 0. The codeword x is then modulated
and sent through the channel. In this paper, binary phase-shift
keying (BPSK) modulation and additive white Gaussian noise
(AWGN) channel model are considered, therefore, the soft
vector of the transmitted codeword received by the decoder
is written as

y = (1− 2x) + z, (1)

where 1 is an all-one vector of size N , and z ∈ RN is
the AWGN noise vector with variance σ2 and zero mean. In
the log-likelihood ratio (LLR) domain, the LLR vector of the
transmitted codeword is

LLRx = ln
Pr(x = 0|y)
Pr(x = 1|y)

=
2y

σ2
. (2)

B. Belief Propagation Decoding of Polar Codes

Fig. 1a illustrates BP decoding on a factor graph repre-
sentation of P(8, 5). The messages are iteratively propagated
through the processing elements (PEs) [12] located in each
stage. An update iteration starts with a right-to-left mes-
sage pass that propagates the LLR values from the channel
(rightmost) stage, to the information bit (leftmost) stage, and
ends with the left-to-right message pass which occurs in the
reverse order. Fig. 1b shows a PE with its corresponding
messages, where rt,s denotes a left-to-right message, and
lt,s denotes a right-to-left message of the t-th bit index at
stage s. Equivalently, BP decoding of polar codes can be

represented on an unrolled factor graph, in which BP iterations
are performed sequentially. Fig. 1c and Fig. 1d illustrate the
input and output messages of a PE for the right-to-left and left-
to-right message updates on an unrolled factor graph, where
the superscript i denotes the iteration number. The update rule
[12] for the right-to-left messages of a PE is{

lit,s = f(lit,k, r
i−1
j,s + lij,k),

lij,s = f(lit,k, r
i−1
t,s) + lij,k,

(3)

and for the left-to-right messages is{
rit,k = f(rit,s, l

i
j,k + rij,s),

rij,k = f(rit,s, l
i
t,k) + rij,s,

(4)

where j = t+ 2s, k = s+ 1, and

f(x, y) = 2 arctanh
(
tanh

(x
2

)
tanh

(y
2

))
, (5)

for any x, y ∈ R. Note that implementing (5) is costly in
practice, instead the following approximation of (5) is used in
this paper:

f(x, y) ≈ f̃(x, y) = sgn(x) sgn(y)min(|x|, |y|). (6)

The BP decoding performs a predetermined Imax update
iterations where the messages are propagated through all PEs
in accordance with (3) and (4). Initially, for 0 ≤ t < N and
∀i ≤ Imax, lit,n are set to the received channel LLR values
LLRx, rit,0 are set to the LLR values of the information and
frozen bits as

LLRA∪Ac =

{
0, if t ∈ A,
+∞, if t ∈ Ac.

(7)

All the other left-to-right and right-to-left messages of the PEs
at the first iteration are set to 0. After running Imax iterations,
the decoder makes a hard decision on the LLR values of the
t-th bit at the information bit stage to obtain the estimated
message word as

ût =

{
0, if rImax

t,0 + lImax
t,0 ≥ 0,

1, otherwise.
(8)

In the following sections the vector forms of the left-to-
right and right-to-left messages at the s-th stage and the i-th
iteration are denoted as lis and ris, respectively, while that of
the estimated message word is denoted as û.

A CRC is used for BP decoding to either early terminate the
BP process [4], or to help select the correct codeword among
a list of candidates [6], [7]. However, these CRC utilizations
do not take into account the factor graph realization of CRC,
on which the BP decoder can be applied.

C. Neural BP Decoding

Neural BP decoding was introduced in [11], [13] to improve
the error-correction performance of BP decoding on Bose-
Chaudhuri-Hocquenghem (BCH) codes by assigning trainable
weights to the conventional BP decoding. Neural normalized
min-sum recurrent neural network (NNMS-RNN) is a pow-
erful variant of neural BP [11] with the following weight

Fig. 2: Factor graph representation of a CRC-polar concate-
nated code. The polar code is P(8, 3) and a 2-bit CRC is
used.

assignment scheme for the message update rule of a PE in
(3) and (4):{

lit,s = w0f̃(l
i
t,k, w1r

i−1
j,s + w2l

i
j,k),

lij,s = w4(w3f̃(l
i
t,k, r

i−1
t,s)) + w5l

i
j,k,

(9)

{
rit,k = w6f̃(r

i
t,s, w7l

i
j,k + w8r

i
j,s),

rij,k = w10(w9f̃(r
i
t,s, l

i
t,k)) + w11r

i
j,s,

(10)

where wm ∈ R (0 ≤ m ≤ 11) are the trainable weights.
The NNMS-RNN BP decoder suffers from a large number

of weights which adversely affects its implementation cost.
A neural normalized min-sum (NNMS) decoder was used
to decode polar codes by only enabling the training for
w0, w3, w6 and w9, while setting the other weights in (9)
and (10) to 1 [14]. However, the error-correction performance
improvement of [14] with respect to the conventional BP is
incremental.

III. CRC-POLAR BP DECODING

In this section, we present the CPBP decoding algorithm
which exploits the concatenated factor graph of a polar code
and a CRC. Fig. 2 shows the concatenated factor graph of
P(8, 3) and a CRC of length 2. We run BP decoding algorithm
on the concatenated factor graph to exploit the extrinsic
information of the two constituent factor graphs. A similar
approach was performed in [8] for a LDPC-polar concatenated
code by passing the BP messages between the factor graphs
of LDPC and polar code at each iteration. A direct application
of the BP decoder in [8] to the CRC-polar concatenated code
is not beneficial. This is due to the fact that the LDPC code
is only connected to a few pre-selected information bits of
polar codes which ensures the extrinsic information received
by polar code is reliable enough, even in the initial iterations of
BP decoding where the LLR values are not evolved yet. This
is not the case for CRC-polar concatenated code since CRC
is connected to all the information bits of polar code, some of
which are highly unreliable during the early iterations of BP
decoding.

In order to address the above issue, we first run BP
decoding on the polar code factor graph for a maximum of
Ithr iterations and if the BP decoding is not successful after

Ithr iterations, we then continue the BP decoder on the CRC-
polar concatenated factor graph. In order to determine if the
decoder has succeeded, we use the CRC at each iteration as
an early stopping criterion. The proposed decoding algorithm
is summarized in Algorithm 1. The LLR vectors lis and ris at
all stages and iterations are initialized as explained in Section
II-B. The BP_PolarLeft and BP_PolarRight functions
compute (3) and (4) at all the bit indices to perform the polar
right-to-left and left-to-right LLR updates, respectively. The
estimated message word û is obtained at every iteration by
making a hard decision based on li0 and ri0, which is done
by executing (8) in the HardDecision function. A CRC is
then applied on û and the decoding can be early terminated
if the CRC is satisfied. After Ithr iterations, if the decoding is
not terminated, BP decoding on the CRC-polar factor graph
is carried out in the BP_CRC function. It is worth mentioning
that BP decoding after Ithr iterations runs on the concatenated
CRC-polar factor graph at every iteration.

Algorithm 1: CPBP Decoding Algorithm
Input : Imax, Ithr, n
Output: û

1 Initialize lis, r
i
s (1 ≤ i ≤ Imax, 0 ≤ s ≤ n)

2 for i← 1 to Imax do
3 for s← n− 1 to 0 do
4 lis ← BP_PolarLeft(lis+1, r

i−1
s)

5 if i > Ithr then
6 ri0 ← BP_CRC(li0)

7 û← HardDecision(ri0 + li0)
8 if û satisfies CRC then
9 Terminate

10 if i ≤ Imax − 1 then
11 for s← 1 to n− 1 do
12 ris ← BP_PolarRight(lis, r

i
s−1)

13 return û

Fig. 3 shows the FER performance of the proposed CPBP
algorithm in comparison with the CRC-aided BP decoder of
[4], for the P(128, 80) concatenated with the 16-bit CRC,
which is selected for 5G [3]. In this figure, we set Imax ∈
{30, 200} and we set Ithr ∈ {15, 30} when Imax = 30 and
Ithr ∈ {0, 50, 100, 150, 200} when Imax = 200. We denote
CPBP decoding with parameters Imax and Ithr as CPBP-
(Imax,Ithr). Note that CPBP-(Imax,Imax) is equivalent to the
decoder in [4] and CPBP-(Imax,0) is the direct application
of the approach in [8]. It can be seen that, CPBP-(30,15)
provides a gain of almost 0.25 dB in comparison with the
CRC-aided BP decoder of [4] at the target FER of 10−5. In
addition, among the selected Ithr for Imax = 200, CPBP-
(200,50) provides the best error-correction performance at
the target FER of 10−5. Furthermore, CPBP-(200, 50) has
an error-correction performance gain of about 0.75 dB at
FER = 10−5 in comparison with the CRC-aided BP decoder

5.5 6 6.5 7 7.5

10−6

10−5

10−4

10−3

Eb/N0 [dB]

FE
R

CPBP-(30,15) [4] (Imax = 30) CPBP-(200,0)

CPBP-(200,50) CPBP-(200,100) CPBP-(200,150)

[4] (Imax = 200)

Fig. 3: FER performance of CPBP decoding for P(128, 80)
and a 16-bit CRC used in 5G.

of [4]. It is worth mentioning that increasing Imax does not
improve the error probabilities of the conventional BP decoder
in [4] at high Eb/N0 regime. On the contrary, the FER of the
proposed CPBP decoder is greatly benefited from a high value
of Imax as observed from Fig. 3.

We now evaluate the latency of the proposed CPBP decod-
ing scheme and compare it with state-of-the-art. The latency
of a BP-based decoder can be measured using the number
of time steps required to finish the decoding process [12].
Let us consider the decoding process terminates at iteration
IET (1 ≤ IET ≤ Imax). Then the decoding latency of a
conventional BP decoder with early stopping criterion can be
represented as

TBP = (2n− 1)(IET − 1) + n. (11)

The latency of the proposed CPBP decoder depends on when
the decoding process terminates and can be represented as

TCPBP=

{
(2n−1)(IET−1)+n, if IET≤Ithr,

(2n−1)(IET−1)+n+2(IET−Ithr), otherwise.
(12)

In fact, if IET ≤ Ithr, (12) reverts to (11) since the CPBP
decoder terminates without traversing the CRC factor graph.
It should be noted that the worst case latency of the BP decoder
and the proposed CPBP decoder can be calculated using (11)
and (12) respectively, by setting IET = Imax.

Fig. 4 illustrates the average latency of the proposed CPBP
decoding algorithm in comparison with a conventional CRC-
aided BP decoder of [4] for the same code as in Fig. 3. For
the proposed decoders, we set Ithr ∈ {15, 30} for Imax = 30,
and Ithr ∈ {50, 100, 150, 200} for Imax = 200. It can be seen
that the proposed CPBP algorithm incurs negligible latency
overhead in comparison with [4], while providing significant
performance gain. Moreover, the average latency of the CPBP
decoder when Imax = 30 is always smaller than that of the
CPBP decoder when Imax = 200. This average latency saving
is more significant for lower Eb/N0 values. Furthermore, the

5.5 6 6.5 7 7.5
10

15

20

25

Eb/N0 [dB]

L
at

en
cy

[T
im

e
St

ep
s]

5.5 6 6.5 7 7.5
10

15

20

25

Eb/N0 [dB]

L
at

en
cy

[T
im

e
St

ep
s]

5.5 6 6.5 7 7.5
10

15

20

25

Eb/N0 [dB]

L
at

en
cy

[T
im

e
St

ep
s]

TCPBP-(30,15) T [4] (Imax = 30) TCPBP-(200,50)

TCPBP-(200,100) TCPBP-(200,150) T [4] (Imax = 200)

Fig. 4: Average decoding latency of CPBP decoding for
P(128, 80) and a 16-bit CRC used in 5G.

worst case latency of CPBP(200,50) is 2887 time steps, and
that of CPBP(30,15) is 407 time steps which is only 14%
of the worst case latency of CPBP(200,50). For applications
with stringent latency requirements, a small Imax is needed.
However, the latency saving as a result of a small Imax comes
at the cost of error-correction performance loss as shown in
Fig. 3. In the next section, we propose a method to improve
the error-correction performance of CPBP decoding for small
values of Imax, by using trainable weights.

IV. NEURAL CRC-POLAR BP DECODING

In this section, we propose the NCPBP decoder to im-
prove the error-correction performance of CPBP decoding.
The NCPBP decoder assigns trainable weights to the edges
of the CRC-polar concatenated factor graph. Therefore, the
NCPBP decoder resembles a neural network architecture by
mapping the message updates of CPBP decoding to different
computational layers in the neural network. In other words,
each computational layer of the neural network is represented
either as a set of PEs for BP decoding on the factor graph of
polar codes, or as a set of operations required to perform BP
decoding on the CRC factor graph. This network architecture
greatly simplifies the training process since it can be adapted
to recent deep learning frameworks, e.g. Tensorflow [15].

Fig. 5 depicts the architecture of the proposed NCPBP
decoder for P(8, 3), with Imax = 2 and Ithr = 0. The
architecture contains the unrolled CRC-polar concatenated
factor graph. Therefore, the message updates of BP decoding
on polar codes at a computational layer is represented as the
ones in Fig. 1c and Fig. 1d. In order to assign the weights
to the N

2 parallel PEs at polar code computational layers, we
represent the product of the weights w3 and w4 in (9), and the
product of the weights w9 and w10 in (10), as single trainable
weights w3,4 and w9,10, respectively. This is due to the fact
that the product of two trainable weights can be merged into
one as the new weight can also be optimized during training.
In addition, we merge the weights w1 and w2 in (9) into w1,2,
and the weights w7 and w8 in (10) into w7,8, to further reduce
the number of trainable weights. As a result, we define the

Fig. 5: NCPBP architecture with Imax = 2 and Ithr = 0 for P(8, 3) concatenated with a 2-bit CRC.

weight assignment scheme of a PE in NCPBP decoding as{
lit,s = w0f̃(l

i
t,k, w1,2(r

i
j,s + lij,k)),

lij,s = w3,4f̃(l
i
t,k, r

i
t,s) + w5l

i
j,k,

(13)

{
rit,k = w6f̃(r

i
t,s, w7,8(l

i−1
j,k + rij,s)),

rij,k = w9,10f̃(r
i
t,s, l

i−1
t,k) + w11r

i
j,s.

(14)

For the BP decoding on the CRC factor graph of the proposed
NCPBP decoder, we adopt the weight assignment scheme of
the NNMS-RNN decoder in [11]. It should be noted that the
polar code computational layers share the same set of weights
in each iteration of the proposed NCPBP decoding, while
this set of weights is different for different iterations. This
is illustrated in Fig. 5, in which the layers depicted in the
same color indicate that they use the same set of weights.
On the contrary, the weights used in all the CRC layers are
shared among all the decoding iterations of NCPBP. This is
particularly useful in order to limit the number of required
weights for NCPBP.

The NCPBP decoding algorithm starts by a right-to-left
message update at iteration 1. At the i-th iteration and the
s-th stage of the NCPBP decoder, lis and ris denote the LLR
vectors of the right-to-left and left-to-right message updates
computed by a polar code PE layer, respectively. Furthermore,
the output LLR vector of the CRC layer is denoted as ri+1

0 .
The hard estimated values of all the stages in the polar code
factor graph are obtained at the right-to-left message updates,
denoted as ĥi

s, while the hard estimated values derived from
the CRC layer is denoted as ûi

CRC.
The weights of all the polar code and CRC computational

layers are trained using a multiloss function defined as

L =

Imax∑
i=1

n−1∑
s=0

HCE(ĥ
i
s,hs) +

Imax∑
i′=Ithr+1

HCE(û
i′

CRC,u), (15)

where HCE is the cross-entropy function, and hs is the correct
hard value vector at stage s of the polar code factor graph
which is obtained from the training samples. Note that in the

testing phase, only the hard estimated values at stage 0 of
the polar code factor graph, i.e. ĥi

0 (1 ≤ i ≤ Imax), and the
hard estimated values at the CRC layer, i.e. ûi

CRC, (Ithr < i ≤
Imax), are required to obtain the decoded message bits.

We evaluate the proposed NCPBP decoder for P(128, 80)
concatenated with a 16-bit CRC which is also used in Sec-
tion III, and we compare the error-correction performance
and latency of NCPBP with those of [4], [11], [14]. All the
neural BP-based decoders in this section are trained using
stochastic gradient descent with RMSPROP optimizer [16] and
the learning rate is set to 0.001. We use Tensorflow [15] as
our deep learning framework. Since all the considered neural
BP-based decoders satisfy the symmetry conditions [17], we
collect 100, 000 zero codewords at each Eb/N0 value for
training, where Eb/N0 ∈ {4, 4.5, 5, 5.5} dB. All the weights
of all the neural BP-based decoders are initialized to one and
all the LLR values are clipped to be in the interval of [−20, 20].
The mini-batch size is set to 64 and each neural decoder
is trained for 40 epochs. To evaluate the error-correction
performance, randomly generated codewords are used during
the testing phase and each decoder simulates at least 10, 000
codewords until it obtains at least 50 frames in error.

Fig. 6 compares the error-correction performance of the pro-
posed NCPBP decoder with state-of-the-art BP-based decoders
in [4], [11], [14]. We use the NNMS-Imax decoder of [14] and
the NNMS-RNN-Imax decoder of [11] for our comparisons.
In all the decoders, we set Imax = 30. At a target FER of
10−5, the proposed NCPBP decoder provides about 0.5 dB
gain with respect to [4], 0.4 dB gain with respect to [14],
and 0.2 dB gain with respect to [11]. Compared to the CPBP
decoder of Section III, the proposed NCPBP provides 0.25 dB
FER performance improvement.

Fig. 7 illustrates the average latency requirements of the
NCPBP decoder compared to the state-of-the-art decoders in
[4], [11], [14]. It can be seen that while the average latency
of the NCPBP decoder is similar to that of the decoders in
[4], [14], it is always better than that of [11]. In addition,
NCPBP incurs almost no latency overhead with respect to the

6 6.5 7 7.5

10−5

10−4

10−3

Eb/N0 [dB]

FE
R

[4] (Imax = 30) NNMS-30 [14] NNMS-RNN-30 [11]

CPBP-(30,15) NCPBP-(30,15)

Fig. 6: FER performance of NCPBP decoding for P(128, 80)
and a 16-bit CRC used in 5G.

5.5 6 6.5 7 7.5

10

20

30

Eb/N0 [dB]

L
at

en
cy

[T
im

e
St

ep
s]

T [4] (Imax = 30) TNNMS-30 [14] TNNMS-RNN-30 [11]

TCPBP-(30,15) TNCPBP-(30,15)

Fig. 7: Average decoding latency of NCPBP decoding for
P(128, 80) and a 16-bit CRC used in 5G.

proposed CPBP decoder while having a notably smaller error
probability.

Table I shows the number of weights required for the
proposed NCPBP decoder in comparison with the neural
BP decoders of [11], [14]. The proposed NCPBP decoder
requires 28% fewer weights with respect to the decoder in
[11]. The decoder in [14] requires 46% of the weights that
is required by the proposed NCPBP decoder. However, the
smaller number of weights in [14] results in significant error-
correction performance loss as shown in Fig. 6.

V. CONCLUSION

In this paper, we first proposed a cyclic redundancy check
(CRC)-polar belief propagation (BP) (CPBP) decoding algo-
rithm which exploits concatenated factor graphs of polar codes
and CRC, by passing the extrinsic information between the two
factor graphs. We showed that the proposed CPBP decoding
brings significant error-correction performance improvements
in comparison with a conventional BP decoder when a large
maximum number of BP iterations is used. We further pro-
posed a neural CPBP (NCPBP) decoding algorithm which
further improves the error probabilities of CPBP by assigning
trainable weights to the edges of the CRC-polar concatenated
factor graph. We showed that the NCPBP decoding algorithm
can be used in applications which require stringent latency

TABLE I: Number of weights required by different neural BP
decoders.

Decoder Number of weights

NNMS-30 [14] 3840

NNMS-RNN-30 [11] 11520

NCPBP-(30,15) 8288

requirements and that it can benefit from the CRC which is
present in 5G. Our results for a polar code of length 128 with
80 information bits concatenated with a CRC of length 16
show that the proposed NCPBP decoding algorithm obtains
up to 0.4 dB error-correction performance improvement with
respect to the state of the art, at a target frame error rate of
10−5, while incurring negligible latency overhead.

REFERENCES

[1] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.

[2] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf.
Theory, vol. 61, no. 5, pp. 2213–2226, March 2015.

[3] 3GPP, “Multiplexing and channel coding (Release 10) 3GPP TS
21.101 v10.4.0.” Oct. 2018. [Online]. Available: http://www.3gpp.org/
ftp/Specs/2018-09/Rel-10/21 series/21101-a40.zip

[4] Y. Ren, C. Zhang, X. Liu, and X. You, “Efficient early termination
schemes for belief-propagation decoding of polar codes,” in IEEE 11th
Int. Conf. on ASIC, Nov 2015, pp. 1–4.

[5] S. Sun, S. Cho, and Z. Zhang, “Post-processing methods for improving
coding gain in belief propagation decoding of polar codes,” in 2017
IEEE Glob. Commun. Conf., Dec 2017, pp. 1–6.

[6] A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “Belief prop-
agation decoding of polar codes on permuted factor graphs,” in IEEE
Wireless Commun. and Net. Conf., April 2018, pp. 1–6.

[7] N. Doan, S. A. Hashemi, M. Mondelli, and W. J. Gross, “On the
Decoding of Polar Codes on Permuted Factor Graphs,” ArXiv e-prints,
Jun. 2018. [Online]. Available: https://arxiv.org/abs/1806.11195

[8] J. Guo, M. Qin, A. G. i Fbregas, and P. H. Siegel, “Enhanced belief
propagation decoding of polar codes through concatenation,” in IEEE
Int. Symp. on Inf. Theory, June 2014, pp. 2987–2991.

[9] S. M. Abbas, Y. Fan, J. Chen, and C. Tsui, “Concatenated LDPC-
polar codes decoding through belief propagation,” in IEEE Int. Symp.
on Circuits and Systems, May 2017, pp. 1–4.

[10] A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “Improving
belief propagation decoding of polar codes using scattered exit charts,”
in IEEE Inf. Theory Workshop, Sept 2016, pp. 91–95.

[11] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein,
and Y. Beery, “Deep learning methods for improved decoding of linear
codes,” IEEE J. of Sel. Topics in Signal Process., vol. 12, no. 1, pp.
119–131, February 2018.

[12] E. Arıkan, “Polar codes: A pipelined implementation,” in Proc. 4th Int.
Symp. on Broad. Commun., 2010, pp. 11–14.

[13] L. Lugosch and W. J. Gross, “Neural offset min-sum decoding,” in IEEE
Int Symp. on Inf. Theory, August 2017, pp. 1361–1365.

[14] W. Xu, Z. Wu, Y.-L. Ueng, X. You, and C. Zhang, “Improved polar
decoder based on deep learning,” in IEEE Int. Workshop on Signal
Process. Syst., November 2017, pp. 1–6.

[15] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis et al., “Tensorflow: A
system for large-scale machine learning,” in Proc. 12th USENIX Conf.
on Operating Systems Design and Impl., ser. OSDI’16. USENIX
Association, 2016, pp. 265–283.

[16] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine
learning lecture 6a overview of mini-batch gradient descent.” [Online].
Available: https://cs.toronto.edu/csc321/slides/lecture slides lec6.pdf

[17] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Trans. Inf. Theory,
vol. 47, no. 2, pp. 599–618, Feb 2001.

http://www.3gpp.org/ftp/Specs/2018-09/Rel-10/21_series/21101-a40.zip
http://www.3gpp.org/ftp/Specs/2018-09/Rel-10/21_series/21101-a40.zip
https://arxiv.org/abs/1806.11195
https://cs.toronto.edu/csc321/slides/lecture_slides_lec6.pdf

	I Introduction
	II Preliminaries
	II-A Polar Codes
	II-B Belief Propagation Decoding of Polar Codes
	II-C Neural BP Decoding

	III CRC-Polar BP Decoding
	IV Neural CRC-Polar BP Decoding
	V Conclusion
	References

