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Abstract—

The cell range extension (CRE) has been successfully
implemented to bias the user to base station (BS) association
policy in a way that achieves load balancing and increases the
capacity of heterogeneous networks. The user-centric backhaul
(UCB) scheme is a CRE evolution that is both backhaul-aware
and user-context-aware —two constraints that are shaping the
5G network development. In this work, we formulate and solve
the multi-objective optimisation problem of the UCB user-BS
association. We derive analytical expressions of the ergodic
throughput resulting from the UCB and, accordingly, identify
the optimum association policy. The study demonstrates the
gain margins that can be realised with pertinent user-cell as-
sociation which is aware of the end-to-end network limitations
and users requirements.

I. INTRODUCTION

The network evolution towards 5G is expected to rely on
ultra-dense heterogeneous networks with multiple radio access
technologies, radio access network (RAN) architectures (e.g.,
Cloud-RAN [1] and Fog-RAN [2]) and a hybrid backhaul
(BH) network [3]. The 5G usage and service portfolio is also
characterised with the diversification of network users and
applications. As such, the user-BS association process in 5G
is more complex and challenging than any other incumbent
cellular generation. Traditionally, in mono-layer (referred to
as macro-cell) networks, users select cells with the highest
received signal. Lower cell layers are slowly growing beneath
the macro-cell layer with the spread of small cells (SCs).
These have lower transmitting power than macro-cells and
their antennae are often situated at lower heights. The purpose
of inserting SCs is generally to absorb traffic in hotspots or
to extend the coverage to a blackspot (e.g., indoor). As the
received signal from macro-cells is likely to be higher than
that from SCs (due to the difference in transmitting power),
a bias factor is used to influence users to select SCs. This
feature is called the cell range extension (CRE) or expansion
and is a mere bias on the cell ranking that does not entail any
change in transmitting powers. The CRE has been proved to
address the load balancing issues in a heterogenous network
and to increase its holistic capacity. Authors in [4], assume that
cells within one tier have common radio characteristics, such
as, total transmit power, allocated spectrum; consequently, the
optimum CRE-based user-tier association is derived.

Although the CRE succeeds in pushing the traffic to low
network layers, and as such, in enhancing the radio resource
efficiency, it is blind to the status of the BH and to users’
distinctive requirements. The BH may be a bottleneck in
emerging networks which are connected through a multi-hop
and hybrid BH. Since the fast spread of SCs dictates fast
solutions for backhauling, this often results in sub-optimal
BH links. Consequently, although cells may have similar
radio access capabilities to offer to potential users, their BH
characteristics are likely to differ greatly. To this end, BH-
aware cell selection schemes have become a focal point in
joint radio access and BH optimisation. Specifically, different
approaches of BH-aware implementation of CRE have been
proposed in recent literature, such as, [5S] and [6] which use
an altered CRE scheme that is BH-delay-aware. However,
accounting for the BH delay in the user-BS association does
not suffice in 5G, knowing that the network users (devices
and applications) have very different quality needs. The key
concept in unlocking the constrained BH lies in a judicious
and pertinent approach for resource allocation that is context-
aware and considers the users’ quality needs. Indeed, authors
in [7] say that: “5G needs to be a chameleon technology that
can adapt to differing demands of wireless services whether
to support high bandwidth, low latency, bursty traffic, ultra-
reliable services, or a combination of these capabilities”. The
user-centric-backhaul (UCB) is the first scheme to address
the disparate needs of users and to adapt the cell selection
accordingly, as detailed in [8].

In this work, we propose an analytical solution to the UCB
scheme which, based on the network topology and BH char-
acteristics, would yield the optimum association scheme. We
use elements of stochastic geometry to represent the network
topology. Accordingly, analytical expressions are derived and
employed to identify the multi-objective optimum association
policy when two BH technologies are randomly allocated to
base stations in a mono-layer network. A recent work [9]
proposes an analytical formulation to address the optimal
biasing for maximising the user throughput in a heterogeneous
network with constrained BH. The analytical work based on
stochastic geometry is important as it demonstrates the benefits
of dynamic biasing in terms of capacity gain. Similarly,
authors in [10] apply the analytical performance modelling
of wireless BH to a use-case based on the UCB with a single
constraint based on holistic network capacity. Nonetheless, in



this paper, we present the first work to jointly address the
context-aware and BH-aware multi-constraints in an analytical
formulation.

II. SYSTEM MODEL

User association strategies can be categorised as either
channel borrowing or traffic transfer [11]. The UCB adopts
the latter type of strategy through the usage of BH-aware
and context-aware biasing. The UCB scheme proposes a
multiple-attribute CRE approach in which each cell identifies
a set of bias factors, each representative of its capabilities or
constraints with respect to a given attribute. At the same time,
users associate different weights to different attributes, hence
are attracted differently by the candidate cells. The objective
of the UCB is to maximise the throughput on each BH link
without exceeding its limit and while satisfying the users’
quality needs.

In this paper, the wireless network consists of one tier of
SCs. The following system model is adopted to replicate and
test the UCB scheme. The location of SCs is modeled as a
two-dimensional homogeneous Poisson Point Process (PPP)
®;, with intensity A,. The location of users in the network
is modeled as another independent homogeneous PPP &,
with intensity \,. The adoption of PPP in the representation
of SCs’ locations is justified since such randomness may
be expected in SCs’ deployment. All SCs have identical
radio characteristics (transmit power P) and have a purposely
over-dimensioned radio access (bandwidth W). The downlink
desired and interference signals from any SC are assumed
to experience propagation loss with a path loss exponent
a. A user receives a power P - H - z7° from a SC at
a distance x, where H is the random channel power gain
(assumed to be Rayleigh distributed with average unit power,
i.e., H ~ exp(1)). The noise is assumed additive with power
g 2.

In this paper, the adopted notation is as follows: Pr{z} in-
dicates the probability of an event x, E;{h(x,y)} indicates the
expected value of h(x,y) conditioned on the value y, fx () is
the probability distribution function of the variable X, Fx ()
is the cumulative distribution function of the variable X, and
Fx(x) is the complementary cumulative distribution function
of the variable X. The notation X is used to denote the rate
of difference, for example the load of a link with capacity
X’ Mbps that carries X Mbps is X = (X — X')/X.

A. Heterogeneous backhaul and disparate user types

In this work, the last mile connecting any of the SCs to
the gateway could employ any of the two technologies in
B = {B;, By}. For instance, By and By may denote copper-
based VDSL2! and wireless technologies, respectively. Let
K = {Ki,... Kk} be the set of quality attributes that are
considered in the multi-objective UCB optimisation problem.
Such attributes may be throughput, latency, resilience, etc.
In this work, let K; and K> indicate the throughput-related
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and the resilience-related attributes, respectively. As such, the
constraints of the BH links are defined according to these
quality attributes, where )1 1 indicates the capability of a SC
with a last mile of type B; with respect to quality k and Q1 1
represents its BH available capacity. A SC with a last mile of
type By is characterised by ()2, where (21 represents its
available capacity. Such a network can be modelled, using a
stationary mixed PPP ®; with a randomised intensity function
L having a two-point distribution such that:

Pr(L=X)=pp1, Pr(L=Xo)=pp2=1—pp1, (1)

where, 0 < pp 1 < 1 is the probability of having a SC with
last mile of type B;, and pp 2 is the probability of having a
SC with last mile of type Bs. Hence, the intensity of ®; is
A = Db1A1 + (1 — pp,1) A2, where A; > 0 is the intensity of
SC with last mile link of type By and Ao > 0 is the intensity
of SC with last mile link of type Bs.

Let U be the set of total users in the network. We distinguish
K types of users based on their quality targets with respect to
the attributes in K. A user u is thus characterised by two sets.
The first represents the quality targets of user u with respect
to each of the attributes in K, My = {My1,..., My x}.
The second set represents the weight associated by user u to
the attributes in K, wy = {wy1,. .., wy k }- In this work, we
assume that a user prioritises a single attribute by associating
a full weight with the defined attribute and null weights to
all other attributes, i.e., the user-SC association is based on a
single attribute. To this end, the set U can be divided into K
non-overlapping subsets Uy, as shown below:

e Set U1 with Wy = {wml = 1,w1),2 = O7

0}, Voed{l,...|U|}
o Set Uy with wy, = {wy1=0,...,wy ks =1,...,wy x =
0}, Vve{l,...|U|}
e Set Ug with w, = {wv,l = 0,...,(,«)1,7[( = 1}, Voe
{1,...|U|}
Each of the sets Uy, is disjoint because a user in U can belong
to exactly one of them. Let p, , be the average fraction of
users belonging to the sets Uy. Since the actual locations of
users with respect to each other do not matter for the purpose
of this work, each of ®,, can be equivalently modelled as
independent PPPs with densities p,, . - Ay,. In other words, they
can be modeled as thinned versions of the original process ®,,
with retention probabilities p,, ,, independent of the locations
of the users.

Wy K =

)

B. User-centric metrics

The metric we propose to measure the users’ satisfaction
gauges the gaps between each of the target and delivered
quality of service (QoS) values, and is affected by the
corresponding weight. Let M{L x represent the measured k-
related QoS value delivered by the network to user w. For
instance, M, ; £ W - logy(1 + ), where W is the channel
bandwidth and v is the signal-over-interference-and-noise-
ratio (SINR). For the resilience-related attribute, the achieved
QoS is M), 5, = Q1 2, if the user u is served by a SC with a
last mile of type By and M{L,Q = (2,2, otherwise. We define



the level of dissatisfaction (]\qu,k) of a user u with respect to
the quality attribute k& as follows:

R M{L e — Mk
My i £ W,k (JWu,k) )

Consequently, optimising the association process between
users and candidate SCs is constrained by K conditions
ka < 0 Vk={1,.., K} where 6, is the maximum
allowed QoS gap for attribute k.

C. UCB optimisation problem

The UCB optimisation problem consists of finding
the optimum association policy A(Oq,0O2) =
[A1(01,032), A3(01, 02)] that would maximise the ergodic
throughput without exceeding the capacity limits of the BH
links which are 11 and Q)21 for By and Bs, respectively.
The factors A; and As represent the proportion of users
associated to SCs with last mile of type B; and B,
respectively. The association policy is a function of the bias
(or offset) settings in both SC types (Op,03) such that
Os; ={0;.1,...,04 k|05 > 1}, for s = {1,2} and where
O; i, reflects the capability/constraint with respect to attribute
k of the SC with type B, last mile. In other words, if a
lightly loaded SC has also a lightly loaded last mile, it would
have a high O, ; value; if either the radio interface or the last
mile are loaded, it would have a low value instead. On the
other hand, if a SC has a robust last mile BH, it would have
a high O; 5 value; whereas an unreliable last mile would lead
to a low O, o value.

The optimisation problem can, thus, be formulated as
follows:

max T(A)=A1-Ti(A) + A2 - To(A)  (3)
subject to

Qr1—-TixG1 >0 “4)

Q21 -T2 x Gy >0 o)

Mur <6 VE={l,....,K} (6

where 77 and T, are the average throughput of SCs with
last mile of type B; and B, respectively. The BH capacity
constraints are (4) and (5), which dictate that the average
throughput (77 and 7T5) affected by the overhead G; and
G, should not exceed the BH nominal capacities (1,1 and
Q2,1, respectively. The user-centric constraints are expressed
in (6), where Mu,k is obtained using the expression (2). These
conditions ensure that the user-centric QoS gaps are within a
user defined maximum that correspond to each attribute.

III. ANALYTICAL SOLUTION

In order to solve the optimisation problem, we need to first
derive the analytical expression for the system throughput.
The ergodic throughput pertaining to the traditional user-SC
association policy, is derived in many works that employ
elements of stochastic geometry to capture the network topol-
ogy (e.g., [12]). Similarly, biased user association policy is
addressed in [4]. However, the UCB association policy is

the only one that employs multiple bias factors per SC and
that distinguishes between different users’ priorities. To this
end, we first formulate the association policy in Section III-A.
Next, we determine the distribution of the distance between
a typical user and corresponding serving SC (based on the
association policy) in Section III-B. Finally, we derive the
ergodic throughput in Section III-C.

We denote the variable = as the distance separating the
typical user located at the origin, without loss of generality,
from the closest SC in ®;. First, we find the complimen-
tary cumulative distribution function (ccdf) of x, Fx(x) =
Pr[X > z] = exp(—Amz?) which may be derived using the
null probability of a 2-D Poisson process, where 72 is the
area of the circle drawn by x. The probability distribution
function (pdf) of = can then be obtained as the derivative of
Fx(z): fx(x) =27\ -2 - exp(—7wAz?).

A. Basic UCB association policy

A typical user u located at the centre ranks the candidate
SCs according to the maximum biased average received power
from all SCs with type B, last mile, where s € {1,2} (i.e., the
fading component is averaged out). The rank R, . attributed
by the user u to a SC with type Bj last mile is:

Ru7s =P ms_a X ZOSJC * Wy ks (7)
k

and the UCB association policy identifies the highest rank:
R, = max, R, .. The probability of a typical user associating
with a SC with type B, last mile is thus equivalent to the
probability of R, s > R, for all SCs with type B,, last mile.
Based on our system model, a typical user either connects to
SC with a last mile of type By or By. Thus, we need to define
the association policy {A; x, Az 1} of a typical user in Uy, with
distances X}, 1 and X}, » with respect to SCs with last mile of
type Bi1 and Bs, respectively.

A
Ay =

)

PI"[S = 1] =Ex,, [Pr [Rk,l(Xk,l) > Rk72]]

@ Ex, , lpr [Xk,z > Xk <O2’k) a]
' O1k

= / Pr [Xk,Q > X, <027k> a‘| ka 1($)d(IJ
o O1,k '

)

2

o (8C2kYa 2 .
(2) / e )\(Ol,k) X 2T\ - - e” ™ dg
0

Ag = ———— ®)

The equality (a) is a direct result of replacing R by the ex-
pression in (7) and (b) follows from using the ccdf expression
F x(z). The final result (c) is obtained by replacing y = 22
and a straight forward integration. The association probability



of a user in Ui with SC with last mile of type Bs can be
obtained in a similar manner as:

1
2/a
O1,x
(B2)" +1
and it can be verified that A;  + A, = 1, as expected.

The probabilities of any user associating with SCs with last
mile of type B; and B can be expressed as follows:

Ao = ; €))

K

A= pukAik (10)
k=1
K

Ay = Zpu,kAQ,k~ (11)
k=1

B. Policy-based user-cell distance

The minimum distance between a typical user and the
closest SC in @y, is z, such as fx(z) = 27\ - exp(—7Az?),
as explained in Section II. We consider a typical user in U;
at the origin associated with a SC with a last mile of type
B; or Bj, according to the UCB. Denote X}, 1 (or Xy 2) as
the distance between the user and its serving BS. Since SCs
are deployed as a PPP, X}, ; and X} » are random variables
described by their probability density function fx, ,(z) and
[x,..(x) that we derive in this section.

Pr [Xk,l >x,s= 1]
Pr[s=1]

FXM(%‘) =Pr [Xm >zxls=1] =

(12)
The probability Pr[s =1] is equal to Ay, as shown in
Section III-A. The joint probability Pr[Xj 1 > z,s = 1] can
be found as follows:

Pr(Xp1 >z,s=1 = Pr[Xg1 >z, Ri1(Xk1) > Ri,2]
/ Pr (Rt (2) > Ria) fxy, (2)da

27 /00 T - e-mﬁ((gi’; )2“+1> dx

—mAz?/Aq

= Al,k - € (13)

Plugging (13) into (12) leads to the expression of the ccdf as follows:
(14)

_ 2
FXk:,l(w) = e—wa /AL

Consequently, the pdf of the policy-based user-SC distance can be
found as follows:

. dFXk,l(x) o d(l 7?}(,“1(.%‘))
fX’”’l(m) - dz - dz
.2 _mx
A e (25) (15)
A

Similarly, the pdf of the distance between a user in U; and a SC with
last mile of type Bs according to UCB can be obtained as follows:

2 =
zoe | (“w)

Fxua(@) = 222

16)

2.k

C. Ergodic throughput

In this section, we derive the average ergodic throughput 7'
of a typical user that has p,, ;, probability of being in set Uy,
where Zszl Du,r = 1. Moreover, this user has A; probability
of connecting to a SC with last mile of type B; and A,
otherwise.

K K
T = Zpu,kAl,le,k + Zpu,kA2,kT2,k
k=1 k=1

A7)

T1 T2

where, T1 ;, and T ;, are the average throughput of a typical
user in Uy, associated with a SC with last mile of type B;
and B, respectively. The average throughput T (24 s,7) =
E; [E, [Wlog, (14 7)]] is a function of two variables: the
distance between user and associated SC (X, s) and v, the
received SINR. The SINR of a typical user at a random
distance = from its associated SC c is defined as follows:

y(x) = Do o M.
o2 + Zie%\c (P ST Hz)

where, H, is the exponentially distributed serving channel
power with unit mean, x; is the distance between interfering
SC ¢ and the typical user at the origin, and H; is the
exponentially distributed interfering channel power with unit
mean from SC i. The expression E, [IWlog, (1 + ~(x))] is
derived in [12] as follows:

E, [Wlog, (14 ~(x))] (19)
= V[/ln2/Oo exp{ _ 7 ! }Eh(m“(T —1))dr
0 Y

where, 7 is the target throughput, v/ is the signal-over-noise
ratio (SNR), and £ is the Laplace function as defined below:

Lr, (227 = 1)) (20)

° 1
=exp | —mA?(27 — 1)% / ) =dz
(27-1)" 1+ 22

The general average ergodic throughput of a user u at a
variable location associated with a SC with B, last mile can
be expressed as in (21) shown at the top of the next page.
This can be further expanded by substituting (19) and (15), as
shown in (22).

1) Special interference-limited case: For a particular case
in which the radio coverage is interference limited, the SINR
can be approximated with the signal-to-interference ratio
SIR = %) (e, Yep, (P-zi®-H) > o?). If, in
addition, we assume that o = 4, the expected throughput at a
defined distance can be further simplified as follows [12]:

(18)

E; [Wlog, (14 %(x))] (24)
= W1n2/ Ly (2227 —1))dr
7>0
77r)\x2m(%73rctan<\/2}_771))d7_

= Wln2/ e
>0



Tou = / T, [Wlog, (1 +1(2)] X fx, . (2)dz

ey

[es} [e's} 22 T _
Tou @ 2mh Wln2/ / e T Aeu expd — 2 - LR Lr, (%27 —1))drzdx (22)
Asu o Jo Y
Tsu( y,a=4) = 2mA ><W1112/Oo /C><J eiﬂ% X ex {—71')\12\/27—1 (E—arctan (L))}mdxdr
s,u "Y 77 - - As,u o 0 p 2 \/ﬁ
1 dr 23)

2

:W1n2/0 L+ As x VI (5 - arctan (7))

G(As,u)

Consequently, the expression of the average ergodic through-
put of a user u at a variable location associated with a SC with
B; last mile, (22), can be further simplified to (23), shown in
the top of the next page. Plugging (23) in (17), we get the
average ergodic throughput of a typical user in the network
(for the interference limited basic deployment with o = 4):

T=Wh2) Y A xG(Ar), (25)
s k

where the function G(-) is defined as follows:
1

g(g)é/o 1+gx\/ﬁ(g_amtam(ﬂ}—,l>>

dr

(26)
The average number of users of type U}, associated with a
SC with B, last mile, can be obtained as the ratio J\/'S,;C =
Puk - Ask - Au/Ap, Where A, is the intensity of the users’
represented by @, and )\, is the density of SCs in P, as
defined in Section II. For the given particular case, the average
throughput of a SC with B, type of last mile can thus be
expressed as follows.:

TS = ZNS’k X Ts,k
k

Au
= X WIHQ;p%k CAgr X G(Asr) 27

IV. RESULTS AND ANALYSIS

In this section, we solve the UCB optimisation problem in
which we consider two optimisation attributes (i.e., K = 2):
Throughput and Resilience. Hence, there are two user types in
the network, U; and U,y. Moreover, we consider that users of
both types share the same QoS targets but associate different
weights, as shown below:

e Set Uy with wy = {wl’l = 1,0.)1’2 = 0},

e Set Uy with wy = {U.}Q’l = 0,&)2,2 = 1},

o M; =M, = {M;, M>}.

Each SC has a single last mile BH employing either VDSL2
technology or V-band millimeter wave (71 — 76 GHz and
81—86 GHz). VDSL2 is highly resilient with limited through-
put while the V-band is less robust with ample capacity.
The network-centric objective is to maximise the cumulative
throughput without exceeding the capacity of the BH links.

The user-centric constraints insure that the QoS gap for both
types of users is limited to the defined threshold.

A. Exhaustive search results

The optimisation problem is solved by using an exhaustive
search approach. There are two independent variables that
define the association policy A;; and A; 2, which indicate
the percentage of users of type U; that associate with SCs
having a VDSL2 BH, and users of type U, that choose
the same SCs, respectively. A feasible solution would entail
A1 =1— Ay, and Az o = 1 — A; > percentage of users of
each type associating with SCs having a V-band BH (i.e., any
user is served by exactly one SC). Accordingly, we explore all
possible values of A; ; and A; > and identify the joint feasible
solution space from a network-centric perspective, i.e., values
that do not overload any type of last mile links. In parallel,
the acceptable ranges of each of variables A; ; and Ao are
defined with respect to the user centric conditions Ml,l and
Mg’g, respectively. The solution space is further refined ac-
cording to the user-centric constraints. The association policy
that yields the highest throughput is optimal.

The exhaustive approach is demonstrated next, where we
adopt the default values in Table I with p,, ; = 0.8. In addi-
tion, we assume an interference-limited radio access scenario,
thus, the expressions derived in Section III-C1 may be used.
Figure 1 shows the solution space determined from a network-
centric perspective. The x-axis shows the variation of A o
from 0 — 60% while the y-axis shows (a) the cumulative
radio access load of the cells (b) the unused percentage of
the VDSL2 BH link (for instance, a 0% value on the y-
axes for VDSL2 indicates that there is no unused capacity
and the BH is fully loaded). As expected, the maximum
cumulative throughput is achieved when the users are equally
distributed among the SCs, from a radio access dimensioning
point of view. Nonetheless, the VDSL2 BH constraint limits
the feasible solution space to A; 1 < 40%. For A;1 = 40%
and A, o = 0%, the VDSL2 BH is fully loaded with 40% of
users of type U; associated to these SC and all users of type Us
served by SC with V-band last mile. Thus, the highest feasible
throughput setting, from a network perspective, is A; 1 = 30%
and A; o = 40% which also leads to full load on VDSL2 links.

The user-centric constraints are examined in Figure 2, as-
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Fig. 1. Network-centric performance for different association policies. The figure shows the radio access load for various combinations of association policies
in continuous lines with the highest value for equal partition, as expected. The dotted lines show the rate of unused capacity of the VDSL links; negative

values indicate overload of the BH link.

suming a common threshold 6; = 65 = 15%. The throughput-
related Mwl is valid between values of 30% < A; 1 < 70%,
whereas the resilience-related Mu’Q is valid for values of
A1 > 30%. It can be verified that the highest-throughput
BH-aware solution identified in Figure 1 complies with these
conditions, and is hence selected as the optimum association
policy resulting in A = {A; = 32%, A> = 68%} (using (10))
and an air interface load T = 97.59%. The radio access
load balancing user association policy would have resulted
in equal load to all SCs. Looking at Figure 1, 50% load on
each type of SC would entail 30% overload on VDSL?2 based
SCs. Consequently, the congested VDSL2 links would cause
quality degradation to 50% of the users in both throughput
and latency aspects.

TABLE 1
PARAMETERS EMPLOYED TO OBTAIN EXPERIMENTAL RESULTS.
Parameter Range Default
Xs (SCs/km?) 40 40
Ds,1 0.1 to 0.9 0.5
Du,1 0.2 t0 0.8 0.5
v (users/km?) 2000 2000
G1 = G2 1.3 1.3
MIMO rank 2 2
Q1,1 (Mbps) 50 to 150 80
Q2,1 (Mbps) 1000 1000
Q1,2 (%) 100 100
Q2,2 (%) 70 to 100 80
My (Mbps)% 3.5 35
Mo (%) 99 99
0, = 03 (%) 5 15

B. Q-learning implementation of UCB

The experiment conducted in the previous section is valu-
able as it demonstrates the potential of UCB is ameliorating
the network and user-centric performance metrics and the re-
spective margins that result from pertinent associations. How-
ever, from an implementation perspective, exhaustive search

0.051

M, —M,

0 i i
0.1 0.2 0.3

4 0.5 0.6
A11/A12

Fig. 2. User-centric performance for different association policies.

is not the best approach for two main reasons. Firstly, the
computational power needed to find the optimum association
policy becomes rapidly inhibitive in a realistic scenario with
multiple BH types and quality attributes. Second, it is desirable
to compute the optimum association policy in a distributed as
opposed to centralised fashion to guarantee practical response
times, agility, and scalability of the scheme. To this end,
authors in [8] propose a UCB Q-learning implementation (a
reinforcement learning technique) and demonstrate the gains
in a two-attributes scenario: Throughput and latency. The
results in [8] corroborate the analytical results derived in
this paper as the improvements in user experience are 9.73%
for throughput and 24.34% for latency. Nonetheless, it is
difficult to compare quantitatively the gains resulting from
Q-learning to the analytical output in the previous section.
This is due to the fact that the Q-learning approach allows
for individual cell bias setting as opposed to one bias per
group type in the analytical modelling. The increased degrees
of freedom unlock further the capacity of the network and
provide the required agility to address the users’ diversity.



Furthermore, the method is extended to three quality attributes
in [13] in a heterogeneous network and it is shown to deliver
significant improvement in users’ satisfaction when compared
to the state-of-the-art association schemes. Similar to [8], the
network centric performance may suffer some degradation
(3.3% recorded in [13]) while the user-centric performance
is significantly and systematically improved. Authors in [14]
use Fuzzy-Q-learning in their implementation of the UCB
and show superior gains compared to the basic Q-learning
approach at the cost of additional complexity. A memory-
based implementation of the UCB that takes advantage of
historical knowledge of previously identified optimum policies
is presented in [15] and is shown to deliver better performance
in terms of both convergence and gains. In both [14] and [15],
the authors select two attributes: throughput and resilience.
The memory-based scheme is the best implementation scheme
as it outperforms the Fuzzy-Q-learning by 51% and 82%, with
respect to throughput and resilience and it outperforms the
basic Q-learning by 63% and 87%, respectively.

Although the merits of the UCB have been repeatedly
demonstrated through network simulations in the cited papers,
this work is the first to enable the generalisation of these results
under variable conditions. On the other hand, the analytical
solution allows fast and accurate analysis of the impact of
different factors, whereas Q-learning-based simulations are
onerous as they require numerous iterations and scenarios to
yield representative results.

V. CONCLUSION

In this work, we have presented the first complete analytical
solution to the User-Centric-Backhaul (UCB) optimisation
problem. In a mono-layer network with two possible types
of BH technologies, we derive the throughput expressions
as a function of a variable association policy. An exhaustive
search approach is followed to find the optimum association
that would yield the maximum throughput without overloading
the constrained BH links nor breaching the users’ quality of
experience. The presented work is crucial as it demonstrates
the merits of the UCB in accommodating different user types
in a network with constrained BH links, whenever a feasible
solution exists. From a different perspective, the UCB is also
key in identifying the limiting constraint(s) in the network and
in allowing for a pertinent improvement.

This paper is the first to propose a solution to the BH-aware
and user-centric user-BS association problem. It is employed
to demonstrate the unique ability of the UCB in capitalising on
the diversity of 5G user-types in order to optimise the usage
of the constrained realistic BH network.
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