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Abstract—The recent advances in sensor technologies and
smart devices enable the collaborative collection of a sheer volume
of data from multiple information sources. As a promising tool to
efficiently extract useful information from such big data, machine
learning has been pushed to the forefront and seen great success
in a wide range of relevant areas such as computer vision, health
care, and financial market analysis. To accommodate the large
volume of data, there is a surge of interest in the design of
distributed machine learning, among which stochastic gradient
descent (SGD) is one of the mostly adopted methods. Nonetheless,
distributed machine learning methods may be vulnerable to
Byzantine attack, in which the adversary can deliberately share
falsified information to disrupt the intended machine learning
procedures. In this work, two asynchronous Byzantine tolerant
SGD algorithms are proposed, in which the honest collaborative
workers are assumed to store the model parameters derived
from their own local data and use them as the ground truth.
The proposed algorithms can deal with an arbitrary number
of Byzantine attackers and are provably convergent. Simulation
results based on a real-world dataset are presented to verify
the theoretical results and demonstrate the effectiveness of the
proposed algorithms.

I. INTRODUCTION

With the proliferation of sensors and smart devices, the past

decade has witnessed the blowout growth in the size of the

daily generated data. For example, according to [1], the world

produces around 2.5 quintillion bytes of data per day in

2014. Also, as predicted by Cisco, there will be around 11.6

billion mobile devices by the year 2020 and a smartphone will

generate 4.4 gigabytes data per month on average [2]. Facing

such a data deluge, distributed machine learning is anticipated

to play an essential role because of its ability to exploit

the collective computation power of the local smart/sensing

devices, thereby leading to enhanced big data analytics [3].

Specifically, distributed machine learning mechanisms have

several advantages over its centralized counterpart in big

data related applications. Firstly, decentralization offers better

scalability, and thus facilitates large-scale machine learning

applications in practice. Secondly, it eliminates the burden-

some process of moving the large amount of data from the

distributed devices to a central unit [4] as well as the difficulty

of storing the excessive amount of data in a single machine

[5].
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In the existing literature of distributed machine learning,

the workers are usually assumed to be honest and perform

perfectly well (i.e., not making any mistake in calculation

and information transmission). However, in practice, some

of the workers may share wrong information due to system

malfunction or software bugs. Also, some of them may even be

compromised by an adversary and deliberately share falsified

information to mislead the other co-workers. As is shown in [6]

and [7], even a single Byzantine worker can severely disrupt

the convergence of distributed gradient descent algorithms.

This problem becomes more critical in big data applications,

since the large number of data collection devices (i.e., the

workers in machine learning applications) and the sheer vol-

ume of the collected data make it extremely challenging, if not

impossible, to ensure perfect trustworthiness in data sharing

and processing.

There have been some recent works [6]–[12] on Byzantine

tolerant distributed machine learning algorithms, and most of

them focus on stochastic gradient descent (SGD), which is

one of the classic and widely adopted distributed machine

learning algorithm with good scalability. However, most of

them only consider the synchronous setting. This may lead

to a waste of computation resources, since the workers with

better computation capability have to wait for the other slower

workers. In addition, most existing methods can deal with

only a limited number of Byzantine workers. Moreover, they

all assume a parameter server to coordinate the collaboration

among the workers, which may be vulnerable to the single

point of failure (SPOF).

To better accommodate the need of big data analytics, two

asynchronous distributed Byzantine tolerant SGD algorithms

that can deal with an arbitrary number of Byzantine workers

are proposed in this work. Particularly, in the proposed algo-

rithms, the workers are allowed to maintain their own local

model parameters, which eliminates the need for a shared

parameter server as in the existing literature. Also, in this

setting, the workers do not need to wait for the latest broadcast

model parameter from the parameter server and can proactively

fetch the current learning results from the other (possibly

Byzantine) co-workers at any time, thereby fulfilling asyn-
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chronous learning.1 The two proposed algorithms correspond

to two different scenarios, respectively. In the first scenario, it

is assumed that an upper-bound p of the number of Byzantine

workers is known. To defend the Byzantine attack in this case,

each worker takes an average of the N − p model parameters

that are closest to its own and then performs a gradient descent

update step based on this average value. In the second scenario,

no prior knowledge about the number of Byzantine workers

is assumed. In this case, each worker first accepts the model

parameters that potentially lead to lower empirical risk based

on its evaluation over the local training samples. Then, the

worker takes an average over the accepted model parameters

and performs a gradient descent update step accordingly. Both

of the proposed algorithms are provably convergent.

The remainder of this article is organized as follows.

Section II reviews preliminaries and notations used in this

work. The problem is formulated and presented in Section III.

The proposed algorithms are presented in Section IV. The

effectiveness of the proposed algorithms is examined through

simulations in Section V. Related works are discussed in

Section VI. Conclusions and future works are presented in

Section VII.

II. PRELIMINARIES AND NOTATIONS

In this section, we start by reviewing some important def-

initions. Suppose that there is a training data set S =
{(x1, y1), · · · , (xn, yn)} with n training instances randomly

sampled from a sample space Z = X × Y , where X is a

space of feature vectors and Y is a label space. Let W ⊆ R
d

be a hypothesis space of the model parameter equipped with

the standard inner product and 2-norm ||·||. Given a prediction

model h(w) ∈ F : X → Y which is parameterized by w ∈ W ,

the goal is to learn a good model parameter w. The prediction

accuracy is measured by a loss function f : W×Z → R.Given

a hypothesis w ∈ W and a training sample (xi, yi) ∈ S,

we have a loss f(w, (xi, yi)). SGD [13] is a commonly used

optimization algorithm, which aims to minimize the empirical

risk F (w) = 1
n

∑n

i=1 f(w, (xi, yi)) over the training data set

S of n samples. For simplicity, let fi(w) = f(w, (xi, yi)) for

fixed S. In each iteration, given a training sample (xt, yt),
SGD updates the hypothesis wt as follows:

wt+1 = Gft,ηt
= wt − ηt∇ft(wt), (1)

in which ηt is the learning rate and ∇ft(wt) =
∇f(wt, (xt, yt)) is the gradient.

To facilitate later discussion on convergence, some defini-

tions related to the loss function are presented as follows.

Definition 1. Let g : W → R be a function:

• g is convex if for any u, v ∈ W ,

g(u) ≥ g(v)+ < ∇g(v), u− v >

1We note that the proposed algorithms indeed introduce some communica-
tion overhead. However, it can also be implemented with a parameter server
which maintains and updates the local models for the workers. In this case,
the communication overhead is similar to the existing methods in the literature
mentioned above. Nonetheless, it may be vulnerable to SPOF.

• g is L-Lipschitz if for any u, v ∈ W ,

||g(u)− g(v)|| ≤ L||u− v||
• g is λ− strongly convex if for any u, v ∈ W ,

g(u) ≥ g(v)+ < ∇g(v), u− v > +λ
2 ||u− v||2

III. PROBLEM FORMULATION

In this work, a network N = {1, · · · , N} consisting of N
collaborative workers, each storing a portion of a dataset,

is considered. It is assumed that each worker i stores and

updates its own local model parameter wi
t which will be used

for their own classification tasks. In addition, asynchronous

update is assumed in this work, where each worker can start its

next update step immediately once the previous step finishes.

Particularly, as is frequently done in the literature (e.g., [14],

[15]), the time steps are modeled as the ticking of local clocks

governed by Poisson processes. It is assumed that each worker

has a clock that ticks with a rate 1 Poisson process. Thus,

the inter-tick times at each worker are rate 1 exponentials,

independent across workers and over time. In addition, there

is a master clock which ticks whenever a local processor clock

ticks and the time is discretized according to the master clock

ticks (since these are the only time that the local models are

updated). In this sense, the master clock ticks according to

a rate N Poisson process and the local clock i that causes

each master clock tick is an independently and identically

distributed (i.i.d.) random variable drawn from N . At iteration

step t (when there have been t−1 total update steps for all the

workers), a worker i sends requests and fetches the local model

parameters from all the other workers (i.e., wj
t , ∀j ∈ N/{i})

and updates its local models based on the shared model

parameters and its local dataset. In this work, it is assumed that

up to p workers are Byzantine which behave arbitrarily and

can share any information. Furthermore, the Byzantine workers

are assumed to be aware of the local model parameters from

the honest workers since they can also send requests to them.

Let B and H denote the sets of Byzantine workers and honest

workers, respectively. After fetching, worker i will receive

wj
t =

{

wj
t , if j ∈ H,

any w ∈ W , if j ∈ B.
(2)

The goal of this work is to design robust SGD algorithms

that can tolerant any number of Byzantine attackers (i.e., p can

be any integer in [0, N − 1]).

IV. PROPOSED ALGORITHMS

In this section, the proposed algorithms are presented. In

particular, depending on whether the upper bound p of the

number of Byzantine workers is known or not, two scenarios

are considered. It is assumed that whenever a worker responds

to a request and sends its model parameter to others, the shared

information will arrive on time. In this case, all the Byzantine

workers will choose to share something upon requests, since

they can be easily identified if the others fail to receive

information from them.



A. Scenario 1: p is known

The main steps of the proposed algorithm are given in Al-

gorithm 1. The main idea is that the local model parameter

stored by worker i (i.e., wi
t) can serve as the ground truth,

based on which the received shared model parameters (i.e.,

wj
t , ∀j ∈ N/{i}) can be filtered. Specifically, given the upper

bound p of the number of Byzantine workers, accepting the

N − p − 1 model parameters which are closest to an honest

worker’s own model parameter will intuitively help filter out

the wrong information shared by the Byzantine workers.

Algorithm 1 Byzantine Tolerant SGD Algorithm when p is

known

1. Initialization: total number of workers: N , number of

training data samples for each node: M , upper-bound of

the number of Byzantine workers: p, each honest worker

i ∈ H randomly initialize its model parameter wi
0.

2. for iteration t = 0, 1, · · · , T do

3. if worker i causes the master clock to tick:

4. worker i sends requests and fetches the model

parameters from all the other workers, then it accepts the

N−p−1 model parameters which are closest to its own (i.e.,

the N−p−1 wj
t with the smallest ||wi

t−wj
t ||). Then worker

i takes an average over the accepted model parameters, and

randomly samples a mini-batch of training samples Si
t from

its local dataset and performs one gradient descent step as

follows:

wi
t+ 1

2

=
wi

t +
∑

j∈Ai

t

wj
t

N − p
, (3)

wi
t+1 = wi

t+ 1

2

− ηt∇fSi

t
(wi

t+ 1

2

), (4)

in which wi
t+ 1

2

is the average of its own and the accepted

model parameters for worker i, Ai
t is the set of accepted

workers, ∇fSi

t
(wi

t+ 1

2

) = 1
|Si

t
|

∑

m∈Si

t

∇fm(wi
t+ 1

2

) is the

average gradient and ηt is the learning rate at time t.
5. worker i normalizes its own model parameter, i.e.,

wi
t+1 =

wi
t+1

||wi
t+1||

(5)

6. end if

7.end for

Note that since each worker i compares the received infor-

mation with its own local model parameter by measuring the

distance between the model parameters, naturally one possible

attack against the proposed mechanism for the Byzantine

workers is to add some random noise to the model parameter

(i.e., wi
t) of the worker that sends the request and then send

the resulting perturbed result back to the requester. Note that

in order to pass the accepting condition in Algorithm 1 (i.e.,

step 4), the Byzantine workers tend to modify the requester’s

model parameter moderately (otherwise it will be filtered out).

Therefore, in the following analysis on Algorithm 1, it is

assumed that for any wj
t from worker j accepted by worker

i at time t, it satisfies wj
t = wi

t + ǫ, with E[||ǫ||] = 0
and E[||ǫ||2] ≤ σ2, in which σ is a positive real number.

Nonetheless, we note that the proposed algorithm works well

on other types of attacks too.

Theorem 1. Suppose that the loss function f is λ-strongly

convex. At each iteration t, assume that worker i can sample a

random gradient ∇fSi

t
(wi

t+ 1

2

) that satisfies E[∇fSi

t
(wi

t+ 1

2

)] =

E[∇F (wi
t+ 1

2

)] and ||∇fSi

t
(w)||2 ≤ G2 for any w and Si

t . Then

running Algorithm 1 with the time model as described, with a

constant step size η, we have

N−p
∑

l=1

E[||wl
t+1 − w∗||2] ≤ (1− 2ηλ

N − p
)t

N−p
∑

l=1

E[||wl
0 − w∗||2]

+
(1− 2ηλ)σ2 + η2G2

2ηλ
.

(6)

Proof. Without loss of generality, we assume that the first N−
p workers are honest while the last p workers are Byzantine.

Then we have

N−p
∑

l=1

E[||wl
t+1 − w∗||2] = N − p− 1

N − p

[

N−p
∑

l=1

E[||wl
t − w∗||2]

]

+

1

N − p

N−p
∑

l=1

[

E[||wl
t+ 1

2

− η∇fSl

t

(wl
t+ 1

2

)− w∗||2]
]

.

(7)

For any l ∈ H, we have

E[||wl
t+ 1

2

− η∇fSl
t

(wl
t+ 1

2

)− w∗||2]
= E[||wl

t+ 1

2

− w∗||2] + η2E[||∇fSl

t

(wl
t+ 1

2

)||2]
− 2ηE[< wl

t+ 1

2

− w∗,∇fSl

t

(wl
t+ 1

2

) >].

(8)

According to the strongly convexity of the loss function,

E[< wl
t+ 1

2

− w∗,∇fSl

t

(wl
t+ 1

2

) >]

= E[< wl
t+ 1

2

− w∗,∇F (wl
t+ 1

2

) >] ≥ λE[||wl
t+ 1

2

− w∗||2].
(9)

As a result,

E[||wl
t+ 1

2

− η∇fSl
t

(wl
t+ 1

2

)− w∗||2]
≤ (1− 2ηλ)E[||wl

t+ 1

2

− w∗||2] + η2E[||∇fSl

t

(wl
t+ 1

2

)||2].
(10)

Note that wl
t+ 1

2

=
wl

t
+
∑

m∈Al
t

wm

t

N−p
, we have

E[||wl
t+ 1

2

− w∗||2] ≤ 1

N − p

[

E[||wl
t − w∗||2]

+
∑

m∈Al

t

E[||wm
t − w∗||2]

]

≤ E[||wl
t − w∗||2] + N − p− 1

N − p
σ2.

(11)

Plugging (10) and (11) into (15), we obtain



N−p
∑

l=1

E[||wl
t+1 − w∗||2] ≤ N − p− 1

N − p

[

N−p
∑

l=1

E[||wl
t − w∗||2]

]

+
1

N − p

N−p
∑

l=1

[

(1− 2ηλ)E[||wl
t − w∗||2]

+
(1− 2ηλ)(N − p− 1)

N − p
σ2 + η2G2

]

≤
N−p
∑

l=1

(1− 2ηλ

N − p
)E[||wl

t − w∗||2] + η2G2

N − p

+
(1− 2ηλ)

(N − p)
σ2.

(12)

Therefore,

N−p
∑

l=1

E[||wl
t+1 − w∗||2] ≤ (1− 2ηλ

N − p
)t

N−p
∑

l=1

E[||wl
0 − w∗||2]

+
(1− 2ηλ)σ2 + η2G2

2ηλ
.

(13)

Remark 1. Theorem 1 indicates that the local model param-

eters converge to a ball around the optimal solution, whose

radius is upper bounded by a variable depending on the noise

added to the shared model parameters from the Byzantine

workers.

B. Scenario 2: p is unknown

Note that in practice, the upper bound of the number of Byzan-

tine workers may not be available for the honest workers, an

algorithm that does not require any prior knowledge about p is

developed in this subsection. The main steps of the proposed

algorithm are given in Algorithm 2. The main difference with

Algorithm 1 is the conditions of accepting a shared model

parameter. In this case, the filtering criteria in Algorithm 1

cannot be used since p in unknown. Therefore, (24) is proposed

to prevent the workers from accepting model parameters that

are too far away from their local model parameters. However,

the performance induced by condition (24) depends on the

threshold parameter δ. If δ is too large, condition (24) cannot

filter out the Byzantine workers when the total number of

iterations is limited. If δ is too small, all the legit workers

may be filtered, which renders the collaboration ineffective.

With such consideration, condition (25) is proposed to further

improve the performance of Algorithm 2, especially for large

δ. In particular, (25) indicates that if worker i performs a

stochastic gradient update based on the shared model parame-

ter wj
t from worker j, its own local parameter model wi

t is not

in the direction of this update and therefore wj
t is supposed to

be closer to the optimal w∗. In addition, (25) is the sufficient

condition for
∑

k∈Si

t

[fk(w
i
t) − fk(w

j
t )] ≥ 0 when the loss

function f is convex, which essentially means that the model

parameter shared by worker j is likely to be better than the

local one.

The convergence of Algorithm 2 is given as follows.

Theorem 2. Suppose that the loss function f is λ-strongly

convex with L-Lipschitz gradients. At each iteration t, assume

that worker i can sample a random gradient ∇fSi

t
(wi

t+ 1

2

)

that satisfies E[∇fSi
t
(wi

t+ 1

2

)] = E[∇F (wi
t+ 1

2

)]. Then running

Algorithm 2 with the time model as described, with a constant

step size 0 ≤ η ≤ 2
λ+L

, we have

N−p
∑

l=1

E[||wl
t+1 − w∗||]

≤ (1− ηλL

(N − p)(λ+ L)
)t

N−p
∑

l=1

E[||wl
0 − w∗||]

+ (1− ηλL

λ+ L
)

δ

(N − p)

t
∑

k=0

(1 − ηλL
(N−p)(λ+L))

(t−k)

k + 1
.

(14)

Proof. Without loss of generality, we assume that the first N−
p workers are honest while the last p workers are Byzantine.

Then, we have

N−p
∑

l=1

E[||wl
t+1 − w∗||] = N − p− 1

N − p

[

N−p
∑

l=1

E[||wl
t − w∗||]

]

+

1

N − p

N−p
∑

l=1

[

E[||wl
t+ 1

2

− η∇fSl

t

(wl
t+ 1

2

)− w∗||]
]

.

(15)

For any l ∈ H, we have

E[||wl
t+ 1

2

− η∇fSl

t

(wl
t+ 1

2

)− w∗||2]
= E[||wl

t+ 1

2

− w∗||2] + η2E[||∇fSl
t

(wl
t+ 1

2

)||2]
− 2ηE[< wl

t+ 1

2

− w∗,∇fSl

t

(wl
t+ 1

2

) >].

(16)

According to the strongly convexity of the loss function,

E[< wl
t+ 1

2

− w∗,∇fSl

t

(wl
t+ 1

2

) >]

≥ λL

λ+ L
E[||wl

t+ 1

2

− w∗||2] + 1

λ+ L
||∇fSl

t

(wl
t+ 1

2

)||2.
(17)

As a result,

E[||wl
t+ 1

2

− η∇fSl

t

(wl
t+ 1

2

)− w∗||2]

≤ (1− 2ηλL

λ+ L
)E[||wl

t+ 1

2

− w∗||2]

+ (η2 − 2η

λ+ L
)E[||∇fSl

t

(wl
t+ 1

2

)||2].

(18)

Note that when η ≤ 2
λ+L

, the second term in (18) is negative

and therefore,

E[||wl
t+ 1

2

− η∇fSl

t

(wl
t+ 1

2

)− w∗||2]

≤ (1 − 2ηλL

λ+ L
)E[||wl

t+ 1

2

− w∗||2].
(19)



Since
√
1− 2x ≤ 1− x when 1− 2x > 0, we have

E[||wl
t+ 1

2

− η∇fSl

t

(wl
t+ 1

2

)− w∗||]

≤ (1 − ηλL

λ+ L
)E[||wl

t+ 1

2

− w∗||].
(20)

In addition, according to (24),

E[||wl
t+ 1

2

− w∗||]

= E[||
wl

t +
∑

m∈Al

t

wm
t

|Al
t|+ 1

− w∗||]

≤ 1

|Al
t|+ 1

[

E[||wl
t − w∗||] +

∑

m∈Al

t

E[||wm
t − w∗||]

]

≤ E[||wl
t − w∗||] + δ

t+ 1
.

(21)

Then,

N−p
∑

l=1

E[||wl
t+1 − w∗||]

≤
N−p
∑

l=1

(1− ηλL

(N − p)(λ + L)
)E[||wl

t − w∗||]

+ (1 − ηλL

λ+ L
)

δ

(N − p)(t+ 1)
.

(22)

As a result,

N−p
∑

l=1

E[||wl
t+1 − w∗||]

≤
N−p
∑

l=1

(1− ηλL

(N − p)(λ+ L)
)tE[||wl

0 − w∗||]

+ (1− ηλL

λ+ L
)

δ

(N − p)

t
∑

k=0

(1− ηλL
(N−p)(λ+L))

(t−k)

k + 1
.

(23)

Remark 2. According to (14), the convergence of the local

model parameters of the honest workers is immediate. In

particular, the term induced by the bound given in (24)

decreases as the number of iterations increases and will finally

vanish to 0. In addition, we note that although condition (24)

can guarantee the convergence of Algorithm 2, an appropriate

δ should be determined for good performance. However, the

choice of δ may depend on not only the specific dataset, but

also the number of workers, which makes it hard to find a

suitable δ in practice. This problem is solved by condition

(25), which preserves good performance even when we set δ
arbitrarily large.

V. SIMULATION RESULTS

In this section, we present the simulation results to demonstrate

the effectiveness of the proposed algorithms. In particular, the

real public dataset MNIST [16] is used. MNIST is a widely

used computer vision dataset which consists of 70,000 28×28

Algorithm 2 Byzantine Tolerant SGD Algorithm when p is

unknown

1. Initialization: total number of workers: N , number of

training data samples for each node: M , upper bound of

the number of Byzantine workers: p, each honest worker

randomly initialize their model parameters wi
t’s.

2. for iteration t = 0, 1, · · · , T do

3. if worker i causes the master clock to tick:

4. worker i sends requests and fetches the model

parameters from all the other workers, and then accepts wj
t

if it satisfies the following conditions:

||wi
t − wj

t || ≤
δ

t+ 1
, and (24)

< ∇fSi

t
(wj

t ), w
i
t − wj

t >≥ 0, (25)

in which ∇fSi
t
(wj

t ) =
1

|Si

t
|

∑

m∈Si

t

∇fm(wj
t ) is the average

gradient corresponding to the shared model parameter wj
t

and δ is subject to design and will be discussed in Section

V.

5. Then worker i takes an average over the accepted model

parameters, randomly samples a mini-batch of training

samples Si
t from its local dataset and performs one gradient

descent step as follows:

wi
t+ 1

2

=
wi

t +
∑

j∈Ai
t

wj
t

|Ai
t|+ 1

, (26)

wi
t+1 = wi

t+ 1

2

− ηt∇fSi

t
(wi

t+ 1

2

), (27)

in which Ai
t is the set of accepted workers, ∇fSi

t
(wi

t+ 1

2

) =
1

|Si

t
|

∑

m∈Si

t

∇fm(wi
t+ 1

2

) is the average gradient and ηt is

the learning rate at time t.
5. worker i normalizes its own model parameter, i.e.,

wi
t+1 =

wi
t+1

||wi
t+1||

. (28)

6. end if

7.end for

pixel images of handwritten digits from 0 to 9. The dataset

is divided into a training subset of size 60,000 and a testing

subset of size 10,000. It is assumed that there are 50 workers in

total (i.e., N=50) and all of them randomly select M training

samples from the training dataset and test their local model

parameters using the testing subset after training. It is assumed

that every worker builds a softmax regression model locally

and runs one epoch (and therefore a larger local dataset results

in more training iterations). During the training process, the

local clocks of the workers are governed by the asynchronous

model discussed in Section III. In addition, we assumed that

the Byzantine workers train their own local model parameters

independently and send requests to others but never use the

information from others when they perform gradient descent

steps.
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Fig. 1: The performance against “Add noise”
attack

100 200 300 400 500 600
Number of samples per worker M

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu
ra
cy

Number of Byzantine workers p=25

All honest
Algorithm 1
Algorithm 2: without bound δ
Non-collaborative
Krum [7]

Fig. 2: The performance against “Add noise”
attack
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Fig. 3: The performance against “Add noise”
attack
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Fig. 4: The performance against “Random” attack
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Fig. 5: The performance against “Random” attack
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Fig. 6: The performance against “Random” attack

To evaluate the effectiveness of the proposed algorithms,

the average accuracy of the final local model parameters of all

the legit workers is examined and compared with three base-

line mechanisms. In the “Non-collaborative” case, the honest

workers independently train their local model parameters and

do not collaborate at all; in the “All honest” case, all the

workers are supposed to be honest; for the baseline “Krum”,

we implement the algorithm proposed in [7]. In addition, three

types of attacks are considered. In the “Add noise” attack, the

Byzantine attackers add a random Gaussian noise with zero

mean and a variance of 0.1 to the local model parameters of

the workers that send requests; in the “Random” attack, the

Byzantine attackers generate and share a random vector with

each element drawn from a uniform distribution in [0,1]; in

the “Inverse” attack, the Byzantine attackers share the opposite

value of their own local model parameters.

A. The Performance of the Proposed Algorithms against Dif-

ferent Attacks

In this subsection, the performance of the proposed algorithms

against different attacks is examined. In particular, in the “All

honest” case, it is assumed that the total number of honest

workers is the same as the other examined mechanisms (i.e.,

if p = 5, then there are N − p = 45 workers). For the

implementation of Algorithm 2, we present the results ignoring

(24) and the choice of δ will be discussed in Section V-C.

It can be observed from Figs. 1-3 that both Algorithm 1

and Algorithm 2 perform better than the “Non-collaborative”

case and the “Krum” counterpart against the ”Add noise”

attack. In particular, “Krum” performs even worse than the

“Non-collaborative” case since it only utilizes one of the

gradients shared by all the workers and therefore discards

useful information from most of the legit workers. In addition,

for Algorithm 1, it is assumed that the exact number of

Byzantine workers is known, and therefore it achieves almost

the same performance as that in the “All honest” counterpart,

which can be considered as the optimal case. When p is

small, Fig. 1 and Fig. 2 show that Algorithm 2 is about 2%

worse than Algorithm 1 in terms of testing accuracy. This

is because the condition given in (25) may filter out some

useful information from the honest workers. However, when

the number of Byzantine workers is large (i.e., p = 45 in the

simulation), the performance of Algorithm 2 is comparable to

that of Algorithm 1 and the “All honest” counterpart.

Figs. 4-6 and Figs. 7-9 show the performance of the

proposed algorithms against the “Random” attack and the

“Inverse” attack, respectively. It can be observed the proposed

algorithms outperform the “Non-collaborative” and “Krum”

counterparts, which further verifies their effectiveness.

B. The Impact of Knowledge about p on Algorithm 1

Note that in the previous discussion, it is assumed that the

exact number of Byzantine workers is known in the im-

plementation of Algorithm 1. In practice, however, such an

assumption is rarely valid. Fig. 10 shows the performance

of Algorithm 1 under “Random” attack when the estimated

number of Byzantine workers (i.e., the p used in Algorithm 1)

is different from the actual one, in the case that each worker

has 600 training samples. It can be seen that when the actual

number of Byzantine workers exceeds the estimated one, the

performance of Algorithm 1 degrades quickly. On the other

hand, an accurate estimated p can lead to better performance.

For example, Algorithm 1 with an estimated p = 25 performs

better than the estimated p = 45 counterpart when there are
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Fig. 7: The performance against “Inverse” attack
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Fig. 8: The performance against “Inverse” attack
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Fig. 9: The performance against “Inverse” attack
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Fig. 11: The impact of the bound δ on Algorithm
2
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Fig. 12: The impact of the bound δ on Algorithm
2

less than 25 Byzantine workers. We note that when the number

of local training samples is large enough, assuming a large p
does not degrade the performance much since the workers can

afford to discard useful information from some of the legit

workers. However, an accurate estimate of p can be essential

when the workers have only a limited number of training

samples.

C. The Impact of Different Bound δ on Algorithm 2

Fig. 11 and Fig. 12 show the performance of Algorithm 2

under “Random” attack with different bound δ, in the case

that there are 25 and 45 Byzantine attackers respectively. In

particular, N is the total number of workers and R satisfies

||w|| ≤ R, ∀w ∈ W . It can be seen that a smaller bound may

lead to worse performance since more useful information may

be filtered out. In fact, the optimal choice of δ may depend

on the specific datasets, attacks and the number of Byzantine

workers and it can be computationally expensive to obtain.

However, Fig. 11 and Fig. 12 show that if we remove the bound

δ (or equivalently set δ to arbitrarily large), the performance

of Algorithm 2 is only around 2% worse than the “All honest”

case.2

VI. RELATED WORKS

There have been many prior works on Byzantine tolerant

SGD algorithms. In particular, [6] proposes a geometric me-

dian based aggregation rule to calculate the gradient used

for parameter update, given all the gradients received from

the workers. In [7], given the total number of workers N
and the number of Byzantine workers p, for each worker

2Similar results can be observed for other scenarios and are omitted in the
interest of space.

i and its gradient ∇f i, the parameter server first selects

a set Vi that contains the N − p − 2 closest gradients

to ∇f i. Then a score si is computed for each worker i,
which measures how close its gradient is to the gradients

in Vi (i.e., si =
∑

j∈Vi
||∇f i − ∇f j||2). Finally, the worker

with the minimum score is selected and its gradient is used

for parameter update. [8] considers generalized Byzantine

attackers which attack certain elements of the gradient vectors

instead of the whole gradient vectors and proposes modified

median based aggregation rules. [9] proposes coordinate-wise

median and coordinate-wise trimmed mean based aggregation

rules for gradient selection. [10] tries to identify the good

workers by comparing their shared gradients with the medians

and use the gradient information from the good workers for

parameter update. However, the algorithms proposed in [6]–

[10] become incompetent when more than half of the workers

are Byzantine. In addition, synchronous settings are assumed

(i.e., the workers with better computation capability have to

wait for the other slower workers) in these works, which

leads to waste of computation resources. [11] proposes an

asynchronous Byzantine tolerant SGD algorithm. Particularly,

it consists of a Byzantine-resilient filter and a frequency filter

to determine whether a (possibly outdated) gradient should

be accepted or not. However, it can only deal with up to 1
3

Byzantine workers. In [12], it is assumed that the parameter

server has a small portion of dataset locally, which is used to

compute a noisy version of the true gradient. After receiving

the gradients from the workers, the parameter server compares

them with the local noisy gradients and decides to accept

them if the difference is within a threshold. In this sense, the

algorithm proposed in [12] can deal with an arbitrary number

of Byzantine workers and therefore is the most relevant one



to this work. However, it still requires a parameter server to

collect the gradients and therefore may be vulnerable to the

single point of failure. In addition, it requirs to manually set

the threshold, which depends on specific datasets. Finally, only

synchronous scenarios are considered in [12].

VII. CONCLUSIONS AND FUTURE WORKS

Considering that most of the Byzantine tolerant SGD algo-

rithms in the literature are either synchronous or robust against

a limited number of Byzantine workers, two asynchronous

distributed Byzantine tolerant SGD algorithms that can deal

with an arbitrary number of Byzantine workers are proposed

in this work. The convergence analysis for both algorithms

is provided and the simulation results show that the proposed

algorithms work well against all types of the examined Byzan-

tine attacks. Since the proposed algorithms only consider the

current shared information to decide whether to accept them or

not, considering the usage of past information for performance

improvement remains our future work.
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