
A Temporal-information-based Adaptive Routing

Algorithm for Software Defined Vehicular Networks

Liang Zhao1, Zhuhui Li1, Jiajia Li1, Ahmed Al-Dubai2, Geyong Min3 and Albert Y. Zomaya4
1 School of Computer Science, Shenyang Aerospace University, Shenyang, China

2 School of Computing, Edinburgh Napier University, UK
3 College of Engineering, Mathematics and Physical Sciences, University of Exeter, UK

4 School of Information Technologies, University of Sydney

Corresponding Author: Liang Zhao (lzhao@sau.edu.cn)

Abstract—Most recent studies on Software Defined Vehicular

Networking (SDVN) consider the vehicular network as a static

graph and compute the flow table based on the static information.

However, a static graph could only contain partial network data.

Computation based on the static graph could be inefficient by

missing the important temporal information since vehicular

networks are temporal graphs in fact. Thus, in this paper, we

propose a novel routing algorithm based on the Markov model and

temporal graph. Unlike conventional routing algorithms, the

proposed algorithm adopts the concept of a temporal graph where

every edge has its specific temporal information. We apply the

Markov model to predict the future routing of the network and use

prediction data to get the optimal routing. This is achieved by

running the temporal graph optimal path algorithm. The

algorithm runs on the temporal graph constructed for SDVNs

without generating additional routing overhead. In addition,

based on the information of the vehicular network which is

collected from the data plane, the controller can enhance the

Markov model as time flows. By applying the above mechanisms,

the flow table (route) could be calculated more precisely to enable

efficient vehicular communication. The simulation experiments

demonstrate the superiority of the proposed algorithm over its

counterparts in high-density vehicular networks.

Keywords-VANET, SDVN, Controller, Temporal Graph,

Optimal Path

I. INTRODUCTION

Although distributed management fashion has been widely
adopted, the vehicular ad hoc network (VANET) is still unable
to optimally manage and fulfill the demands of Intelligent
Transport System (ITS). Instead, as an emerging networking
paradigm, Software Defined Vehicular Network (SDVN) breaks
the limitation caused by the current architecture of vehicular
communication [1]. Software Defined Vehicular Networking
(SDVN) is a novel network architecture that aims to facilitate
management of vehicular communication and enable
programmatically efficient network configuration. The main
idea of SDVN is to decouple the data plane from the control
plane, which binds the interaction of vehicles more closely.
SDVN employs a logically centralized network controller, refers
to as the controller, which is mainly able to manage, mediate,
and facilitate communication among network elements, and get
the global network information from them. In VANETs, nodes
forward the packets, and compute routing selection
simultaneously. In contrast, SDVN decouples the control logic
(by control plane) from the underlying routers and switches that
forward the information (by data plane) [2]. In this context, the

underlying networking devices are only required to focus on the
forwarding packets. Hence, the controller collects the status of
the network, and calculate the globally best routing path. This
architecture allows more flexibility and quick response for
network management. However, this architecture has still
numerous challenging issues in implementing SDVN for central
control and management of vehicular networking. One of the
open problems is how to efficiently compute the most proper
routing path for every vehicle in real-time and adjust the
computing strategy according to the current network situation
[3]. There are still requirements to meet in the control plane to
calculate the optimal routing. For example, the massive data
exchange among vehicles also brings the unbounded delay,
packet loss, and network congestion during the packet
transmission. [4]

 In SDVNs, most existing studies treat the vehicular network
as a sequence of static graphs. Each static graph represents the
nodes and links at a specific timestamp. Then, the flow table is
calculated by applying the static routing algorithm (normally a
static shortest path algorithm like Dijkstra or Bellman-Ford)
based on a single static graph. However, real vehicular networks
are actual temporal graphs [5]. The nodes are highly dynamic,
and the existence of links may only last for a short period. In
such networks, the node communicates with another node at a
specific time while each edge of a vehicle temporal graph has its
specific temporal information. Therefore, computing routes
based on a static graph without real-time network information
could lead to packet loss and heavy delays in the later forwarding
stage. For example, Fig.1(a) shows a temporal graph G of a
vehicular network, while Fig.1(b) shows its corresponding static
graph. As stated above, each edge has its temporal information
which is represented by (𝑢, 𝑣, 𝑡, 𝑑) indicating that the edge from
𝑢 to 𝑣 starts at time 𝑡, and it survives for 𝑑 timestamps until the
packet has successfully arrived at 𝑣 [6]. In fact, there could be

(b) Static Graph (a) Temporal Graph

Figure 1. Temporal Graph 𝐺 and its corresponding Static Graph 𝐺′

multiple edges between 𝑢 and 𝑣 indicating their relationships at
different timestamps. For simplicity, let us assume that the
duration of each edge in Fig.1(a) is 1 while the number on each
edge is its starting time. Now, we can calculate the shortest path
from 𝐴 to 𝐽 . In Fig.1(b), one of the shortest paths is <
𝐴, 𝐷, 𝐺, 𝐽 > with distance 3 obviously. However, in Fig.1(a), it
is impossible to find any accessible path from 𝐴 to 𝐽 . It is
because that we can only get 𝐽 from 𝐺 but the latest departure
time from 𝐺 is time 9 and the earliest-arrival time at 𝐺 is time
10. The difference makes 𝐽 unreachable if we start from 𝐴. Fig.1
shows the traditional static graph can produce misleading
information in dynamic traffic topology. This also works when
we calculate the routing path (flow table) in the next timestamp
in SDVNs. First, we assume that each node is a vehicle, or an
infrastructure and the edge represents a vehicle transmitting the
packet to another vehicle. The edge (or link, that was valid in the
past) could be broken before the packet arrives at the destination
(receiver). If the above takes place, the new route to retransmit
the packet is required to generate in the controller of SDVN
which causes packet loss, routing overhead, and delay [7]. Hence,
it is essential to keep the temporal information in SDVNs.

Figure 2. A typical urban scenario for the vehicle B requesting for transmitting

traffic information to 𝐾 in our archituture.

However, existing studies on SDVN controllers mainly
focus on calculating the flow table based on the static topology
whereas the road network is, in fact, a temporal graph. Based on
the recent study of temporal graphs [8,9,10], the optimal path
algorithms demonstrate the time complexity of 𝑂(𝑚 + 𝑛) and
the space complexity of 𝑂(𝑛). Meanwhile, if we apply a greedy
strategy to calculate the optimal path in a similar way to
Dijkstra’s algorithm, with the requirement of a minimum
priority queue, the greedy strategy could be highly inefficient
compared to the optimal path algorithm of the temporal graph as
they achieve a time complexity of 𝑂(𝑚 𝑙𝑜𝑔 𝜋 + 𝑚 𝑙𝑜𝑔 𝑛) and a

space complexity of 𝑂(𝑀 + 𝑛) [8]. Thus, it is necessary to
consider temporal information in the routing of SDVNs.
Therefore, in this paper, we propose a routing algorithm for
SDVNs, namely Temporal-information-based Adaptive Routing
(TibAR).

At first, to compute the routes for the packet transmission in
the next timestamp, the controller needs to predict the required
temporal information for such computation. Here we define the
history temporal information which we use for the prediction in
SDVNs

DEFINITION 1 (Routing Edge Information). During a
packet transmission in SDVNs, a packet on the optimal route
sent from vehicle 𝑖 reaches the next vehicle 𝑗 using optimal
routing. The temporal information of this routing edge is
collectively called routing edge information. The routing edge
information, like the edge of temporal graph, include the sender
node 𝑖, the receiver node 𝑗, the starting time 𝑡 and the duration
𝑑.

With the information collected from the data plane, we
construct a Markov model based on the historical Routing Edge
Information (REI) and distance information. Then we predict the
possible REI from the source to the receiver. Finally, as the input
of an efficient optimal path algorithm, the predicted REI is used
to calculate the optimal routing. The contributions of this paper
can be summarized as follows.

■ To the best of our knowledge, the current work is the
first to adopt temporal graphs for routing in SDVNs.

■ A Markov routing prediction model is proposed by
considering historical REI and distance information.
When the traffic topology changes from time to time, the
model will be updated adaptively.

■ An efficient optimal path algorithm with a linear
computation time for the temporal SDVNs is proposed
by applying the properties of temporal graphs.

The rest of the paper is organized as follows. Section II
presents the application scenarios and the proposed architecture,
model, and algorithms that work in the scenarios. Section III
evaluates the performance of our proposal. We conclude the
paper in Section IV.

II. APPLICATION SCENARIOS, SYSTEM MODEL

AND ALGORITHMS

A. System Model

As for specific application scenarios, Fig.2 shows the system
for routing calculation of the proposed algorithm. Vehicles are
equipped with GPS for geographic location management. In this
model, vehicles periodically send beacon messages to their one-
hop neighbors. The neighbors receive the beacons and calculate
the distance to the sender based on the GPS position information
carried in the beacon messages. Then the receiver forwards the
distance information to the SDVN controller. When a vehicle
node on the optimal routing path receives the packet, it is
required to send the present REI to the controller. When the
controller receives the routing request from a vehicle, our
proposed optimal path algorithm is then applied to compute the
optimal routing path (flow table) efficiently. This algorithm is

fully based on the distance and history REI received from the
data plane (vehicles).

B. Algorithm components and details

Temporal graphs record two types of temporal information.
The first one is temporal information which has occurred such
as all REI during the last hour. The second one is routine flight
information like an air-transportation network. In order to
calculate the routing at the next timestamp, we should predict
enough REI in the future. Hence, we use the Markov model
constructed by the historical REI and distance. Here we need to
explain why we consider distance as a vital factor. Distance is
directly connected with the quality and the delay of this edge in
SDVNs. The longer the edge normally leads to a more fragile
link. Moreover, the delay grows with the increase of the distance.
It is worth mentioning that, in this paper, we will consider the
duration of an edge as the distance between two nodes of this
edge since the delay of a data packet is highly related to the
distance.

Figure 3. The framework of Temporal-information-based Adaptive Routing

(TibAR) Algorithm in a SDN architecture.

Hence, this section shows how to construct a Markov model,

how to apply the model to get enormous REI, and how to

calculate the optimal routing based on the REI. To construct the

Markov model for predicting REI, the controller needs to get

distance and historical REI of the entire network from the data

plane. Fig.3 shows the communication between two agents of an

SDVN and the application of our proposal.

In this section, we first present the process of constructing

the Markov model by achieving the transition index between two

nodes, which possibly communicate with each other in the future.

Then, we propose the Forward Prediction algorithm and the

Reverse Prediction algorithm to generate enough REI for the

future routing. Among the predicted REI, the requester and the

destination are connected. Finally, we introduce an efficient

optimal path algorithm to get the optimal routing for temporal

SDVNs.

1) Constructing the Markov Model

To fully utilize historical REI, a prediction matrix of the
Markov model is constructed by linking each state to each
vehicle in the network. We define the possibility of transiting

state 𝑖 to state 𝑗 as transition index from 𝑖 to 𝑗. The transition
index from𝑖 to j is denoted by 𝑖𝑖𝑗 . With all transition index

between each node pair in the vehicular network, a Markov
model is constructed [11]. Now the question is how to compute
each transition index between every two nodes who had or could
have a connection with each other in the future. We consider that
there are two factors: historical REI and distance. We shall not
state the importance of distance between two vehicles in detail
as it is very clear that the closer distance means a higher success
rate of delivering data packets, higher data rate, and less
overhead. Meanwhile, the historical REI indicates there was a
successful delivery in the past. This link has a big chance to be
stable and reliable now. Of course, the longer time it has passed,
the less important the historical REI will be. Then the weight of
this REI will be smaller. Thus, 𝑖𝑖𝑗 between 𝑖 and 𝑗 is calculated

as follow:

 𝑖𝑖𝑗 =
𝑘

𝑑𝑖𝑗
+

𝑙

∑ (𝑡𝑝−
𝑝
ℎ=0 𝑡ℎ)∗𝑟

𝑖𝑗

𝑡ℎ
 (1)

In equation (1), 𝑖𝑖𝑗 denotes the transition index from node 𝑖
to node 𝑗. 𝑘 and 𝑙 are the weight of distance and historical REI
respectively. The sum of 𝑘 and 𝑙 is always 1. The bigger the 𝑘
value is, the more important the distance information is. On the
contrary, the importance of historical REI grows with the
increase of the value of 𝑙. 𝑑𝑖𝑗 represents the distance between

node 𝑖 and node 𝑗 at the present time, 𝑡𝑖 means the time value at
time 𝑖. 𝑖 = 0 means the time that at which the first historical REI
happened. Meanwhile, 𝑖 = p denotes the present time value and

 𝑟𝑖𝑗
𝑡ℎ is the routing valid value from 𝑖 to 𝑗 at time h. If at time h,

node 𝑖 was transmitting packets to node 𝑗; i.e., this routing from

𝑖 to 𝑗 was happening, the value of 𝑟𝑖𝑗
𝑡ℎ is 1, otherwise this routing

valid value is 0.

With the historical REI (e.g., the REI in the last hour) and
the current distance information of vehicular network obtained
from the data plane, we can compute the transition indexes for
each pair of the nodes in the network at the initialization phase.
That means that we only need to do it once at the beginning of
each time period. These computed indexes are stored as entries
of a two-dimensional N × N matrix where one dimension means
the node of the current state and the other dimension corresponds
to the state in the next timestamp. At this point, the initial state
of the Markov model has been constructed.

2) Prediction of REI with Markov Model

In this part, we denote how to use this model to predict enough

REI values for the shortest-path algorithm. There are two main

problems for the predicted data in our proposal. First, the

destination (receiver of a data packet) must be reachable for the

requester among these future data, i.e., the reachability between

the source vehicle and the receiver vehicle. We need to

guarantee that we can extract at least one connected routing

with right time sequence among all the predicted REI. Second,

the number of predicted REI need to be within an appropriate

range. In our later simulation, the maximum number of nodes is

4000. According to that our Markov model is a 4000 × 4000

matrix, if we predict the REI iteratively for each involved node

for certain times, the number of REI could be too big to compute

further. If the number of predicted REI is small, we cannot

guarantee the reachability at all.
To solve these two problems, we present a Bidirectional

Recursive Prediction Method Based on the Markov model. We
use the pseudo-code in Algorithms 1 and 2 to show the
procedures described below. Before the prediction, we need to
create an empty sorted list 𝐿 to store the prediction result ordered
by the REI starting time. And then the algorithm officially starts.
First, we linearly scan M[s], i.e., the transition index for start
point 𝑠 to any other point. If the transition index between s and j
is above the average value of the sum of transition index start
with s (Line 5), we consider this REI is qualified and insert this
edge into 𝐿 (Line 6 and 7). Then, we use the Forward Prediction
recursively, the starting point is the endpoint of this REI j and
the starting time is 𝑡𝑎 + 𝑑𝑠𝑗 . In addition, iteration times plus 1.

Eventually, when the routing calculation reaches at the endpoint
or the iteration time equals MaxTime, this branch then reaches
its end. After all recursion have finished, this algorithm is over,
and all the predicted REI are stored in 𝐿 ordered by their starting
time.

Algorithm 1: 𝐅𝐨𝐫𝐰𝐚𝐫𝐝 𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧 (M, s, d, 𝑡𝑎, 𝑡𝑤 , 𝑡, 𝐿)

Input: A Markov model 𝑀 include N nodes in its N × N

matrix representation, start point 𝑠, end point 𝑑,time interval

[𝑡𝑎, 𝑡𝑤] ,iteration time 𝑡 and a sorted list 𝐿 to store predicted

REI ordered by their starting time; initially, 𝐿 is empty;

Output: a series of predicted REI in the future ordered by their

start time

1 if 𝑠 = 𝑑 or t ≥ 𝑀𝑎𝑥𝑇𝑖𝑚𝑒 then

2 return;

3 end if

4 for each node 𝑗 in the 𝑀 do

5 if M[𝑠][j] > AveValue[s] then

6 edge e ← (s, j, 𝑡𝑎, 𝑑𝑠𝑗);

7 insert e into 𝐿;

8 Forward Prediction(M, j, d, 𝑡𝑎 + 𝑑𝑠𝑗 , 𝑡𝑤 , 𝑡 +

1, 𝐿)

9 end if

10 end for

The Forward Prediction can generate the proper amount of

REI. However, we cannot guarantee reachability. In this case,

we can predict the REI reversely from the endpoint to the start

point. In that way, if these two parts of REI could be linked

together in the right time sequence, there must be at least one

optimal and linked routing among the data. Therefore, we design

Algorithm 2 to solve this problem.
The main body of this Reverse Prediction algorithm is

similar to the Forward Prediction algorithm. Compared with the
latter, there are two main differences in order to increase the
reachability between two nodes. (1) the Reverse Prediction starts
at the endpoint. Each recursion takes the starting point of the
previous step as the endpoint. It is like that we predict the REI
reversely from the end to the beginning. Its termination
condition is that the end meets the starting or the iteration time
equals MaxTime, same as which of the Forward Prediction. (2)
we set the termination time (the starting time of an edge + its
duration) of the last edge end with 𝑑 . Then we execute this

algorithm post orderly. Once we meet the edge whose starting
point has happened in 𝐿 as the endpoint of the edge (Line 7).
Note that, the edges in 𝐿 are the edges we have predicted in the
Forward Prediction. We adjust the starting time of the linked
edge to the minimum end time of the involved edges in 𝐿 (Line
8). As we do it post orderly, the previous prediction can get the
temporal information from the back one which is closer to the
starting point. In this method, we can link the REI predicted from
the Forward Prediction algorithm and the Reverse Prediction
algorithm together. By running these two algorithms and adjust
the MaxTime value, we can guarantee the reachability as well as
the proper amount of REI.

Algorithm 2: Reverse 𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧(M, s, d, 𝑡𝑎, 𝑡𝑤, 𝑡, 𝐿)

Input: A Markov model 𝑀 include N nodes in its N × N

matrix representation, start point 𝑠, end point 𝑑, time interval

[𝑡𝑎, 𝑡𝑤], iteration time 𝑡 and a sorted list 𝐿 to store predicted

REI ordered by their starting time after 𝐅𝐨𝐫𝐰𝐚𝐫𝐝 𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧;

Output: a series of predicted REI in the future ordered by their

start time

1 if 𝑠 = 𝑑 or t ≥ 𝑀𝑎𝑥𝑇𝑖𝑚𝑒 then

2 return;

3 end if

4 for each node 𝑗 in the 𝑀 do

5 if M[𝑗][𝑑] > AveValue[j] then

6 Reverse Prediction (M, s, d, 𝑡𝑎, 𝑡𝑤 − 𝑑𝑗𝑑 , 𝑡 +

1, 𝐿);

7 if there are edges 𝑒𝑠 end with 𝑗 in the 𝐿

then

8 𝑡𝑤 ← min end time 𝑡𝑡 in 𝑒𝑠 + 𝑑𝑗𝑑 ;

9 end if

10 edge e ← (s, j, 𝑡𝑤 − 𝑑𝑗𝑑 , 𝑑𝑗𝑑);

11 insert e into 𝐿;

12 end if

13 end for

3) Temporal Graph Routing Algorithm

After predicting enough REI in the future, our method uses
the optimal path algorithm based on temporal information to
calculate the optimal routing we need. As for the optimal path
for the temporal graph, Wu et al. propose four shortest path
algorithms in [8]. Here we mainly choose the first one to
compute the earliest-arrival time, which has the same goal with
routing. The main idea of this algorithm is described as followed.
First, we scan the edges by the sequence of their starting times.
We have achieved this goal as 𝐿 in the prediction procedure. 𝐿
is a REI sequence ordered by their starting time. Then we set a
list 𝑡[𝑁] to record and manage the earliest-arrival time of each
node. Finally, we check the temporal graph to scan each edge
𝑒(𝑢, 𝑣, 𝑡, 𝑑) in 𝐿 by the right sequence of their starting times. If
the starting time of 𝑒 is latter than the present earliest-arrival
time of 𝑢 and the end time (𝑠 + 𝑑) is earlier than the present
earliest-arrival time of 𝑣, we consider this edge is a part of the
optimal route at the present stage and update the earliest-arrival
time of 𝑣. Since the edges are scanned ordered by the right time
sequence, we certainly will not miss any possible optimal
routing.

Hence the main problem of this algorithm is the input, which
is an edge sequence order by their starting times. We have
already achieved this as 𝐿 in the prediction procedure. However,
except for the earliest-arrival time, we also need the optimal path
node information. So, we bring a list for each node in our
algorithm to record previous hop nodes on the optimal path.
Because there may be multiple previous hop nodes on the
optimal path. i.e. there are multiple optimal paths with the same
earliest-arrival time. Therefore, we will record multiple previous
hop nodes instead of one. After the algorithm, we will get the
earliest-arrival time and its corresponding previous hop nodes
list for each node on the optimal path. As we scan the previous
hop nodes list, we can get the node sequence on the optimal path
easily. Then we present the detail of the algorithm as following
in Algorithm 3.

Algorithm 3: 𝐂𝐨𝐦𝐩𝐮𝐭𝐢𝐧𝐠 𝐎𝐩𝐭𝐢𝐦𝐚𝐥 𝐑𝐨𝐮𝐭𝐢𝐧𝐠

Input: A sorted edge list 𝐿 ordered by their starting time, start

point 𝑥, time interval [𝑡𝑎, 𝑡𝑤];

Output: The earliest-arrival time from x to every node, the

previous nodes list for each node on their specific optimal

routing.

1 initialize 𝑡[𝑥] = 𝑡𝑎, and 𝑡[𝑣] = ∞ for each node 𝑣 except 𝑥;

2 initialize 𝑝𝑟𝑒𝑣[𝑣] for each node 𝑣 to make sure each one is

empty;

3 for each edge 𝑒 = (𝑢, 𝑣, 𝑡, 𝑑) in 𝐿 do

4 if 𝑡 ≥ 𝑡[𝑢] then

5 if 𝑡[𝑢] + 𝑑 < 𝑡[𝑣] then

6 initialize 𝑝𝑟𝑒𝑣[𝑣];

7 insert 𝑢 into 𝑝𝑟𝑒𝑣[𝑣];

8 𝑡[𝑣] ← 𝑡 + 𝑑;

9 else

10 if 𝑡[𝑢] + 𝑑 = 𝑡[𝑣] then

11 insert 𝑢 into 𝑝𝑟𝑒𝑣[𝑣];

12 end if

13 end if

14 end if

15 end for

16 return 𝑡[𝑣] and 𝑝𝑟𝑒𝑣[𝑣] for each node 𝑣;

Line 1 and 2 are to initialize the earliest-arrival time and

previous node for each node; we use array 𝑡[𝑁] and 𝑝𝑟𝑒𝑣[𝑁] to
represent them. We filter the edges for the first time at Line 4. If
it departure at 𝑢 before the earliest-arrival time of 𝑢, we will not
take this edge into account. Then we will update the earliest-
arrival time and rebuild the previous nodes if the end time of this
edge is earlier than the earliest-arrival time of 𝑣 at Line 5-8. The
reason of rebuilding is that this could be a brand-new routing. If
the end time equals the earliest-arrival time, we just add 𝑢 into
𝑝𝑟𝑒𝑣[𝑣]. At last, we end this algorithm when all edges have been
scanned. The 𝑡[𝑁] and 𝑝𝑟𝑒𝑣[𝑁] are the optimal routing result.

4) Improvement of Temporal-information-based Adaptive

Routing

The calculation in our algorithm are mainly concentrated in
the construction of the Markov model. If once the controller
receives the routing request, it computes a specific Markov
model for the entire network. The algorithm becomes too

complicated. We need to adjust the original Markov model
adaptively [12]. Thus, we propose an improved method. At the
beginning, similar to the conventional model one, we construct
the Markov model; predict REI and compute the optimal routing.
The difference is, in the new method, once the Markov model is
constructed, we do not have to construct a brand-new one when
the latest information comes. We can update the related
information of the Markov model instead of deleting the past one
and creating a new one. Once the Markov model obtains the
distance information update between vehicle 𝑢 and vehicle 𝑣,
the transition index updates as defined in (2).

 𝑖𝑢𝑣 = 𝑖𝑢𝑣
′ +

𝑘

𝑘+𝑙
(𝑑𝑢𝑣 − 𝑑𝑢𝑣

′) (2)

𝑖𝑢𝑣 denotes the goal transition index between 𝑢 and 𝑣 we
need. 𝑖𝑢𝑣

′ is the transition index we already have, and it is out of
date. 𝑘 and 𝑙 are the weight parameters for distance and
historical data mentioned before. 𝑑𝑢𝑣 and 𝑑𝑢𝑣

′ are the present
and historical distance information between 𝑢 and 𝑣. We adjust
the transition index adaptively according to the distance in the
present and past. Similarly, we adjust the transition index when
packet transmission from 𝑢 to 𝑣 happens, as described in (3).

 𝑖𝑢𝑣 = 𝑖𝑢𝑣
′ ∗

𝑙

𝑘+𝑙
∗ 𝑑𝑒 (3)

𝑑𝑒 refers to the withering factor which is in the range of 0
and 1. It is not wise to let one edge takes over too much
transmission work which may cause unbalanced load. Therefore,
at one timestamp each time packet transmission happens
between 𝑢 and 𝑣, the importance of edge from 𝑢 to 𝑣 decrease.
the transition index declines too. At last, the average value of
transition indexes of 𝑢 is required to change correspondingly.

 𝐴𝑣𝑒𝑉𝑎𝑙𝑢𝑒[𝑢] =
𝐴𝑣𝑒𝑉𝑎𝑙𝑢𝑒[𝑢]′∗𝑁+(𝑖𝑢𝑣−𝑖𝑢𝑣

′)

𝑁
 (4)

To guarantee the accuracy, after a fixed time interval, we
restart a process to recalculate the Markov model based on the
latest distance and REI. These data have been collected by the
control plane already.

III. SIMULATION

In this section, we present the detail of the simulation
including parameters and evaluations. We ran all the
experiments on a PC with Windows 10 on an Intel 2.4 GHz CPU
and 16 GB RAM. We build an SDVN simulation platform with
C++ programming language based on the changes of the
positions of vehicles. The position is produced from SUMO [13].
Moreover, the historical REI is produced by NS-2 under the
protocol GPSR. In the simulation, four different numbers of
nodes have been considered. The main parameters of the
vehicular network are described in Table 1.

TABLE I. PARAMETERS OF SIMULATION

Parameter Value

Number of vehicles 500/1000/2000/4000

Vehicle velocity 1 - 60 km/h

Vehicle movement range 1200 km * 850 km

Parameter Value

MAC protocol IEEE 802.11p

Transmission Range 250 m

The simulation duration 100 s

TibAR is compared with the existing scheme of the Dijkstra
algorithm. We send the routing request for the random vehicle
to the SDVN controller from a random vehicle once per second.
We mainly consider two performance parameters to evaluate the
performance of TibAR. First, the average calculating time for
routing is used as the average time for the controller to complete
the calculating the optimal routing for each routing which
includes the construction of Markov model and updating.
Second, the average delay of routing is applied as the average
delay of each routing form the source node to each other nodes
(we use a relative value to represent the level of latency in this
paper).

Figure.4 Average calculating time for routing v.s. the number of nodes

Figure.5. Average delay of routing v.s. the number of nodes

As shown in Fig.4, the difference between the efficiency of
TibAR and Dijkstra is not apparent in the low-density traffic
scenario (500 nodes). However, with the increase of nodes,
TibAR gradually outperforms Dijkstra. In particular, the
efficiency of TibAR could be six times compared to Dijkstra as
more edges are scanned. With the increase of nodes, Dijkstra
requires to deal with the number of edges growing at 𝑂(𝑛2)
speed. Meanwhile, in TibAR, by applying the proposed Forward
Prediction and Reserve Prediction algorithm, the number of
scanning edges is within a proper range. As shown in Fig.5, the
Dijkstra algorithm calculates the absolute optimal path in the
vehicular networks, while Dijkstra outperforms TibAR in the
routing delay. However, with the increase of nodes, TibAR
could obtain much more training data in the constructing process
which results in a reduction of latency. As we can see, the

routing delay produced by TibAR is very close to the absolute
optimal path when the number of nodes reaches 4000. We
observe that TibAR outperforms the main existing routing
schemes in computing efficiency and routing latency in the high-
density traffic scenarios of SDVNs.

IV. CONCLUSIONS AND FUTURE WORK

Our study reveals that existing routing schemes do not
consider the temporal information. They view the vehicular
network as a sequence of static graphs. This could lead to the
missing of temporal information and cause the additional
overhead. On the other hand, the shortest path algorithm in the
temporal graph has a better performance in efficiency. To fill in
this gap, we proposed a SDVN routing scheme namely, TibAR.
Instead of calculating the static graph, TibAR used the properties
of the temporal graph to compute optimal routing. We also
construct a Markov model based on the REI and distance
information to produce the REI as the input of optimal path
algorithm. Our simulation results show that TibAR outperforms
existing SDVN routing schemes in the high-density traffic
scenarios. For future work, we would like to optimize the
Markov model to achieve more precise predictions and allow our
work to adapt to dynamic topology.

REFERENCES

[1] Nadeau, Thomas D., and Ken Gray. SDN: Software Defined Networks:

An Authoritative Review of Network Programmability Technologies.
O'Reilly Media, Inc.", 2013.

[2] A. Y. Al-Dubai, L. Zhao, A. Y. Zomaya and G. Min, "QoS-Aware Inter-

Domain Multicast for Scalable Wireless Community Networks," IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 11, pp.

3136-3148, 1 Nov. 2015.

[3] D. Kreutz et al., “Software-Defined Networking: A Comprehensive

Survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[4] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T.
Turletti, “A Survey of Software-Defined Networking: Past, Present, and

Future of Programmable Networks,” IEEE Commun. Surv. Tutorials, vol.

16, no. 3, pp. 1617–1634, 2014.
[5] P. Holme and J. Saramäki, “Temporal networks,” Physics Reports, vol.

519, no. 3, pp. 97–125, 2012.

[6] V. Kostakos, “Temporal graphs,” Physica A: Statistical Mechanics and
its Applications, vol. 388, no. 6, pp. 1007–1023, 2009.

[7] L. Zhao, A. Al-Dubai, X. Li, G. Chen, and G. Min, “A new efficient cross-

layer relay node selection model for Wireless Community Mesh
Networks,” Computers & Electrical Engineering, vol. 61, pp. 361-372,

2017.

[8] H. Wu et al., “Path problems in temporal graphs,” Proc. VLDB Endow.,

vol. 7, no. 9, pp. 721–732, 2014.

[9] H. Wu, Y. Huang, J. Cheng, J. Li, and Y. Ke, “Reachability and time-
based path queries in temporal graphs,” in the Proceedings of the 2016

IEEE 32nd International Conference on Data Engineering (ICDE),

Helsinki, Finland, May. 2016 - May. 2016, pp. 145–156.
[10] B. B. XUAN, A. FERREIRA, and A. JARRY, “Computing shortest,

fastest, and foremost journeys in dynamic networks,” Int. J. Found.

Comput. Sci., vol. 14, no. 02, pp. 267–285, 2003.
[11] L. R. Rabiner, “A tutorial on hidden Markov models and selected

applications in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp. 257–

286, 1989.
[12] H. Li, K. Ota and M. Dong, "Learning IoT in Edge: Deep Learning for

the Internet of Things with Edge Computing," IEEE Network, vol. 32, no.

1, pp. 96-101, Jan.-Feb. 2018.
[13] Daniel Krajzewicz, Jakob Erdmann, Michael Behrisch, and Laura Bieker.

Recent Development and Applications of SUMO - Simulation of Urban

MObility. International Journal on Advances in Systems and
Measurements, 5 (3&4):128-138, December 2012.

[14] L. Zhao et al., “Vehicular Communications: Standardization and Open

Issues,” IEEE Communications Standards Magazine, 2019

