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Abstract—Most recent studies on Software Defined Vehicular 

Networking (SDVN) consider the vehicular network as a static 

graph and compute the flow table based on the static information. 

However, a static graph could only contain partial network data. 

Computation based on the static graph could be inefficient by 

missing the important temporal information since vehicular 

networks are temporal graphs in fact. Thus, in this paper, we 

propose a novel routing algorithm based on the Markov model and 

temporal graph. Unlike conventional routing algorithms, the 

proposed algorithm adopts the concept of a temporal graph where 

every edge has its specific temporal information. We apply the 

Markov model to predict the future routing of the network and use 

prediction data to get the optimal routing. This is achieved by 

running the temporal graph optimal path algorithm. The 

algorithm runs on the temporal graph constructed for SDVNs 

without generating additional routing overhead. In addition, 

based on the information of the vehicular network which is 

collected from the data plane, the controller can enhance the 

Markov model as time flows. By applying the above mechanisms, 

the flow table (route) could be calculated more precisely to enable 

efficient vehicular communication. The simulation experiments 

demonstrate the superiority of the proposed algorithm over its 

counterparts in high-density vehicular networks.  
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Optimal Path 

I.  INTRODUCTION  

Although distributed management fashion has been widely 
adopted, the vehicular ad hoc network (VANET) is still unable 
to optimally manage and fulfill the demands of Intelligent 
Transport System (ITS). Instead, as an emerging networking 
paradigm, Software Defined Vehicular Network (SDVN) breaks 
the limitation caused by the current architecture of vehicular 
communication [1]. Software Defined Vehicular Networking 
(SDVN) is a novel network architecture that aims to facilitate 
management of vehicular communication and enable 
programmatically efficient network configuration. The main 
idea of SDVN is to decouple the data plane from the control 
plane, which binds the interaction of vehicles more closely. 
SDVN employs a logically centralized network controller, refers 
to as the controller, which is mainly able to manage, mediate, 
and facilitate communication among network elements, and get 
the global network information from them. In VANETs, nodes 
forward the packets, and compute routing selection 
simultaneously. In contrast, SDVN decouples the control logic 
(by control plane) from the underlying routers and switches that 
forward the information (by data plane) [2]. In this context, the 

underlying networking devices are only required to focus on the 
forwarding packets. Hence, the controller collects the status of 
the network, and calculate the globally best routing path. This 
architecture allows more flexibility and quick response for 
network management. However, this architecture has still 
numerous challenging issues in implementing SDVN for central 
control and management of vehicular networking. One of the 
open problems is how to efficiently compute the most proper 
routing path for every vehicle in real-time and adjust the 
computing strategy according to the current network situation 
[3]. There are still requirements to meet in the control plane to 
calculate the optimal routing. For example, the massive data 
exchange among vehicles also brings the unbounded delay, 
packet loss, and network congestion during the packet 
transmission. [4] 

 In SDVNs, most existing studies treat the vehicular network 
as a sequence of static graphs. Each static graph represents the 
nodes and links at a specific timestamp. Then, the flow table is 
calculated by applying the static routing algorithm (normally a 
static shortest path algorithm like Dijkstra or Bellman-Ford) 
based on a single static graph. However, real vehicular networks 
are actual temporal graphs [5]. The nodes are highly dynamic, 
and the existence of links may only last for a short period. In 
such networks, the node communicates with another node at a 
specific time while each edge of a vehicle temporal graph has its 
specific temporal information. Therefore, computing routes 
based on a static graph without real-time network information 
could lead to packet loss and heavy delays in the later forwarding 
stage. For example, Fig.1(a) shows a temporal graph G of a 
vehicular network, while Fig.1(b) shows its corresponding static 
graph. As stated above, each edge has its temporal information 
which is represented by (𝑢, 𝑣, 𝑡, 𝑑) indicating that the edge from 
𝑢 to 𝑣 starts at time 𝑡, and it survives for 𝑑 timestamps until the 
packet has successfully arrived at 𝑣 [6]. In fact, there could be 
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Figure 1. Temporal Graph 𝐺 and its corresponding Static Graph 𝐺′ 



multiple edges between 𝑢 and 𝑣 indicating their relationships at 
different timestamps. For simplicity, let us assume that the 
duration of each edge in Fig.1(a) is 1 while the number on each 
edge is its starting time. Now, we can calculate the shortest path 
from 𝐴  to 𝐽 . In Fig.1(b), one of the shortest paths is <
𝐴, 𝐷, 𝐺, 𝐽 > with distance 3 obviously. However, in Fig.1(a), it 
is impossible to find any accessible path from 𝐴  to 𝐽 . It is 
because that we can only get 𝐽 from 𝐺 but the latest departure 
time from 𝐺 is time 9 and the earliest-arrival time at 𝐺 is time 
10. The difference makes 𝐽 unreachable if we start from 𝐴. Fig.1 
shows the traditional static graph can produce misleading 
information in dynamic traffic topology. This also works when 
we calculate the routing path (flow table) in the next timestamp 
in SDVNs. First, we assume that each node is a vehicle, or an 
infrastructure and the edge represents a vehicle transmitting the 
packet to another vehicle. The edge (or link, that was valid in the 
past) could be broken before the packet arrives at the destination 
(receiver). If the above takes place, the new route to retransmit 
the packet is required to generate in the controller of SDVN 
which causes packet loss, routing overhead, and delay [7]. Hence, 
it is essential to keep the temporal information in SDVNs.  

 

Figure 2. A typical urban scenario for the vehicle B requesting for transmitting 

traffic information to 𝐾 in our archituture.  

However, existing studies on SDVN controllers mainly 
focus on calculating the flow table based on the static topology 
whereas the road network is, in fact, a temporal graph. Based on 
the recent study of temporal graphs [8,9,10], the optimal path 
algorithms demonstrate the time complexity of 𝑂(𝑚 + 𝑛) and 
the space complexity of 𝑂(𝑛). Meanwhile, if we apply a greedy 
strategy to calculate the optimal path in a similar way to 
Dijkstra’s algorithm, with the requirement of a minimum 
priority queue, the greedy strategy could be highly inefficient 
compared to the optimal path algorithm of the temporal graph as 
they achieve a time complexity of 𝑂(𝑚 𝑙𝑜𝑔 𝜋 + 𝑚 𝑙𝑜𝑔 𝑛) and a 

space complexity of 𝑂(𝑀 + 𝑛) [8]. Thus, it is necessary to 
consider temporal information in the routing of SDVNs. 
Therefore, in this paper, we propose a routing algorithm for 
SDVNs, namely Temporal-information-based Adaptive Routing 
(TibAR).  

At first, to compute the routes for the packet transmission in 
the next timestamp, the controller needs to predict the required 
temporal information for such computation. Here we define the 
history temporal information which we use for the prediction in 
SDVNs 

DEFINITION 1 (Routing Edge Information). During a 
packet transmission in SDVNs, a packet on the optimal route 
sent from vehicle 𝑖  reaches the next vehicle 𝑗  using optimal 
routing. The temporal information of this routing edge is 
collectively called routing edge information. The routing edge 
information, like the edge of temporal graph, include the sender 
node 𝑖, the receiver node 𝑗, the starting time 𝑡 and the duration 
𝑑.  

With the information collected from the data plane, we 
construct a Markov model based on the historical Routing Edge 
Information (REI) and distance information. Then we predict the 
possible REI from the source to the receiver. Finally, as the input 
of an efficient optimal path algorithm, the predicted REI is used 
to calculate the optimal routing. The contributions of this paper 
can be summarized as follows. 

■ To the best of our knowledge, the current work is the 
first to adopt temporal graphs for routing in SDVNs. 

■ A Markov routing prediction model is proposed by 
considering historical REI and distance information. 
When the traffic topology changes from time to time, the 
model will be updated adaptively.  

■ An efficient optimal path algorithm with a linear 
computation time for the temporal SDVNs is proposed 
by applying the properties of temporal graphs.  

The rest of the paper is organized as follows. Section II 
presents the application scenarios and the proposed architecture, 
model, and algorithms that work in the scenarios. Section III 
evaluates the performance of our proposal. We conclude the 
paper in Section IV. 

II. APPLICATION SCENARIOS, SYSTEM MODEL 

AND ALGORITHMS 

A. System Model  

As for specific application scenarios, Fig.2 shows the system 
for routing calculation of the proposed algorithm. Vehicles are 
equipped with GPS for geographic location management. In this 
model, vehicles periodically send beacon messages to their one-
hop neighbors. The neighbors receive the beacons and calculate 
the distance to the sender based on the GPS position information 
carried in the beacon messages. Then the receiver forwards the 
distance information to the SDVN controller. When a vehicle 
node on the optimal routing path receives the packet, it is 
required to send the present REI to the controller. When the 
controller receives the routing request from a vehicle, our 
proposed optimal path algorithm is then applied to compute the 
optimal routing path (flow table) efficiently. This algorithm is 



fully based on the distance and history REI received from the 
data plane (vehicles). 

B. Algorithm components and details 

Temporal graphs record two types of temporal information. 
The first one is temporal information which has occurred such 
as all REI during the last hour. The second one is routine flight 
information like an air-transportation network. In order to 
calculate the routing at the next timestamp, we should predict 
enough REI in the future. Hence, we use the Markov model 
constructed by the historical REI and distance. Here we need to 
explain why we consider distance as a vital factor. Distance is 
directly connected with the quality and the delay of this edge in 
SDVNs. The longer the edge normally leads to a more fragile 
link. Moreover, the delay grows with the increase of the distance. 
It is worth mentioning that, in this paper, we will consider the 
duration of an edge as the distance between two nodes of this 
edge since the delay of a data packet is highly related to the 
distance.  

 

Figure 3. The framework of Temporal-information-based Adaptive Routing 

(TibAR) Algorithm in a SDN architecture. 

Hence, this section shows how to construct a Markov model, 

how to apply the model to get enormous REI, and how to 

calculate the optimal routing based on the REI. To construct the 

Markov model for predicting REI, the controller needs to get 

distance and historical REI of the entire network from the data 

plane. Fig.3 shows the communication between two agents of an 

SDVN and the application of our proposal. 

In this section, we first present the process of constructing 

the Markov model by achieving the transition index between two 

nodes, which possibly communicate with each other in the future. 

Then, we propose the Forward Prediction algorithm and the 

Reverse Prediction algorithm to generate enough REI for the 

future routing. Among the predicted REI, the requester and the 

destination are connected. Finally, we introduce an efficient 

optimal path algorithm to get the optimal routing for temporal 

SDVNs. 

1) Constructing the Markov Model 

To fully utilize historical REI, a prediction matrix of the 
Markov model is constructed by linking each state to each 
vehicle in the network. We define the possibility of transiting 

state 𝑖  to state 𝑗 as transition index from 𝑖  to 𝑗. The transition 
index from𝑖  to j is denoted by 𝑖𝑖𝑗 . With all transition index 

between each node pair in the vehicular network, a Markov 
model is constructed [11]. Now the question is how to compute 
each transition index between every two nodes who had or could 
have a connection with each other in the future. We consider that 
there are two factors: historical REI and distance. We shall not 
state the importance of distance between two vehicles in detail 
as it is very clear that the closer distance means a higher success 
rate of delivering data packets, higher data rate, and less 
overhead. Meanwhile, the historical REI indicates there was a 
successful delivery in the past. This link has a big chance to be 
stable and reliable now. Of course, the longer time it has passed, 
the less important the historical REI will be. Then the weight of 
this REI will be smaller. Thus, 𝑖𝑖𝑗  between 𝑖 and 𝑗 is calculated 

as follow: 

 𝑖𝑖𝑗 =
𝑘

𝑑𝑖𝑗
+

𝑙

∑ (𝑡𝑝−
𝑝
ℎ=0 𝑡ℎ)∗𝑟

𝑖𝑗

𝑡ℎ
 (1) 

In equation (1), 𝑖𝑖𝑗  denotes the transition index from node 𝑖 
to node 𝑗. 𝑘 and 𝑙 are the weight of distance and historical REI 
respectively. The sum of 𝑘 and 𝑙 is always 1. The bigger the 𝑘 
value is, the more important the distance information is. On the 
contrary, the importance of historical REI grows with the 
increase of the value of 𝑙. 𝑑𝑖𝑗  represents the distance between 

node 𝑖 and node 𝑗 at the present time, 𝑡𝑖 means the time value at 
time 𝑖. 𝑖 = 0 means the time that at which the first historical REI 
happened. Meanwhile, 𝑖 = p denotes the present time value and 

 𝑟𝑖𝑗
𝑡ℎ is the routing valid value from 𝑖 to 𝑗 at time h. If at time h, 

node 𝑖 was transmitting packets to node 𝑗; i.e., this routing from 

𝑖 to 𝑗 was happening, the value of 𝑟𝑖𝑗
𝑡ℎ is 1, otherwise this routing 

valid value is 0. 

With the historical REI (e.g., the REI in the last hour) and 
the current distance information of vehicular network obtained 
from the data plane, we can compute the transition indexes for 
each pair of the nodes in the network at the initialization phase. 
That means that we only need to do it once at the beginning of 
each time period. These computed indexes are stored as entries 
of a two-dimensional N × N matrix where one dimension means 
the node of the current state and the other dimension corresponds 
to the state in the next timestamp. At this point, the initial state 
of the Markov model has been constructed.  

2) Prediction of REI with Markov Model 

In this part, we denote how to use this model to predict enough 

REI values for the shortest-path algorithm. There are two main 

problems for the predicted data in our proposal. First, the 

destination (receiver of a data packet) must be reachable for the 

requester among these future data, i.e., the reachability between 

the source vehicle and the receiver vehicle. We need to 

guarantee that we can extract at least one connected routing 

with right time sequence among all the predicted REI. Second, 

the number of predicted REI need to be within an appropriate 

range. In our later simulation, the maximum number of nodes is 

4000. According to that our Markov model is a 4000 × 4000 

matrix, if we predict the REI iteratively for each involved node 

for certain times, the number of REI could be too big to compute 



further. If the number of predicted REI is small, we cannot 

guarantee the reachability at all. 
To solve these two problems, we present a Bidirectional 

Recursive Prediction Method Based on the Markov model. We 
use the pseudo-code in Algorithms 1 and 2 to show the 
procedures described below. Before the prediction, we need to 
create an empty sorted list 𝐿 to store the prediction result ordered 
by the REI starting time. And then the algorithm officially starts. 
First, we linearly scan M[s], i.e., the transition index for start 
point 𝑠 to any other point. If the transition index between s and j 
is above the average value of the sum of transition index start 
with s (Line 5), we consider this REI is qualified and insert this 
edge into 𝐿 (Line 6 and 7). Then, we use the Forward Prediction 
recursively, the starting point is the endpoint of this REI j and 
the starting time is 𝑡𝑎 + 𝑑𝑠𝑗 . In addition, iteration times plus 1. 

Eventually, when the routing calculation reaches at the endpoint 
or the iteration time equals MaxTime, this branch then reaches 
its end. After all recursion have finished, this algorithm is over, 
and all the predicted REI are stored in 𝐿 ordered by their starting 
time.  

Algorithm 1: 𝐅𝐨𝐫𝐰𝐚𝐫𝐝 𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧 (M, s, d, 𝑡𝑎, 𝑡𝑤 , 𝑡, 𝐿) 

Input: A Markov model 𝑀  include N nodes in its N × N 

matrix representation, start point 𝑠, end point 𝑑,time interval 

[𝑡𝑎, 𝑡𝑤] ,iteration time 𝑡  and a sorted list 𝐿  to store predicted 

REI ordered by their starting time; initially, 𝐿 is empty; 

Output: a series of predicted REI in the future ordered by their 

start time 

1 if 𝑠 = 𝑑 or t ≥ 𝑀𝑎𝑥𝑇𝑖𝑚𝑒 then 

2  return; 

3 end if 

4 for each node 𝑗 in the 𝑀 do 

5  if M[𝑠][j] > AveValue[s] then 

6   edge e ←  (s, j, 𝑡𝑎, 𝑑𝑠𝑗); 

7   insert e into 𝐿; 

8   Forward Prediction(M, j, d, 𝑡𝑎 + 𝑑𝑠𝑗 , 𝑡𝑤 , 𝑡 +

1, 𝐿) 

9  end if 

10 end for 

 

The Forward Prediction can generate the proper amount of 

REI. However, we cannot guarantee reachability. In this case, 

we can predict the REI reversely from the endpoint to the start 

point. In that way, if these two parts of REI could be linked 

together in the right time sequence, there must be at least one 

optimal and linked routing among the data. Therefore, we design 

Algorithm 2 to solve this problem. 
The main body of this Reverse Prediction algorithm is 

similar to the Forward Prediction algorithm. Compared with the 
latter, there are two main differences in order to increase the 
reachability between two nodes. (1) the Reverse Prediction starts 
at the endpoint. Each recursion takes the starting point of the 
previous step as the endpoint. It is like that we predict the REI 
reversely from the end to the beginning. Its termination 
condition is that the end meets the starting or the iteration time 
equals MaxTime, same as which of the Forward Prediction. (2) 
we set the termination time (the starting time of an edge + its 
duration) of the last edge end with 𝑑 . Then we execute this 

algorithm post orderly. Once we meet the edge whose starting 
point has happened in 𝐿 as the endpoint of the edge (Line 7). 
Note that, the edges in 𝐿 are the edges we have predicted in the 
Forward Prediction. We adjust the starting time of the linked 
edge to the minimum end time of the involved edges in 𝐿 (Line 
8). As we do it post orderly, the previous prediction can get the 
temporal information from the back one which is closer to the 
starting point. In this method, we can link the REI predicted from 
the Forward Prediction algorithm and the Reverse Prediction 
algorithm together. By running these two algorithms and adjust 
the MaxTime value, we can guarantee the reachability as well as 
the proper amount of REI. 

Algorithm 2: Reverse 𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧(M, s, d, 𝑡𝑎, 𝑡𝑤, 𝑡, 𝐿) 

Input: A Markov model 𝑀  include N nodes in its N × N 

matrix representation, start point 𝑠, end point 𝑑, time interval 

[𝑡𝑎, 𝑡𝑤], iteration time 𝑡 and a sorted list 𝐿 to store predicted 

REI ordered by their starting time after 𝐅𝐨𝐫𝐰𝐚𝐫𝐝 𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧; 

Output: a series of predicted REI in the future ordered by their 

start time 

1 if 𝑠 =  𝑑 or t ≥ 𝑀𝑎𝑥𝑇𝑖𝑚𝑒 then 

2  return; 

3 end if 

4 for each node 𝑗 in the 𝑀 do 

5  if M[𝑗][𝑑] > AveValue[j] then 

6   Reverse Prediction (M, s, d, 𝑡𝑎, 𝑡𝑤 − 𝑑𝑗𝑑 , 𝑡 +

1, 𝐿); 

7   if there are edges 𝑒𝑠  end with 𝑗  in the 𝐿 

then 

8    𝑡𝑤 ← min end time 𝑡𝑡 in 𝑒𝑠 + 𝑑𝑗𝑑 ; 

9   end if 

10   edge e ←  (s, j, 𝑡𝑤 − 𝑑𝑗𝑑 , 𝑑𝑗𝑑); 

11   insert e into 𝐿; 

12  end if 

13 end for 

 

3) Temporal Graph Routing Algorithm 

After predicting enough REI in the future, our method uses 
the optimal path algorithm based on temporal information to 
calculate the optimal routing we need. As for the optimal path 
for the temporal graph, Wu et al. propose four shortest path 
algorithms in [8]. Here we mainly choose the first one to 
compute the earliest-arrival time, which has the same goal with 
routing. The main idea of this algorithm is described as followed. 
First, we scan the edges by the sequence of their starting times. 
We have achieved this goal as 𝐿 in the prediction procedure. 𝐿 
is a REI sequence ordered by their starting time. Then we set a 
list 𝑡[𝑁] to record and manage the earliest-arrival time of each 
node. Finally, we check the temporal graph to scan each edge 
𝑒(𝑢, 𝑣, 𝑡, 𝑑) in 𝐿 by the right sequence of their starting times. If 
the starting time of 𝑒 is latter than the present earliest-arrival 
time of 𝑢 and the end time (𝑠 + 𝑑) is earlier than the present 
earliest-arrival time of 𝑣, we consider this edge is a part of the 
optimal route at the present stage and update the earliest-arrival 
time of 𝑣. Since the edges are scanned ordered by the right time 
sequence, we certainly will not miss any possible optimal 
routing. 



Hence the main problem of this algorithm is the input, which 
is an edge sequence order by their starting times. We have 
already achieved this as 𝐿 in the prediction procedure. However, 
except for the earliest-arrival time, we also need the optimal path 
node information. So, we bring a list for each node in our 
algorithm to record previous hop nodes on the optimal path. 
Because there may be multiple previous hop nodes on the 
optimal path. i.e. there are multiple optimal paths with the same 
earliest-arrival time. Therefore, we will record multiple previous 
hop nodes instead of one. After the algorithm, we will get the 
earliest-arrival time and its corresponding previous hop nodes 
list for each node on the optimal path. As we scan the previous 
hop nodes list, we can get the node sequence on the optimal path 
easily. Then we present the detail of the algorithm as following 
in Algorithm 3. 

Algorithm 3: 𝐂𝐨𝐦𝐩𝐮𝐭𝐢𝐧𝐠 𝐎𝐩𝐭𝐢𝐦𝐚𝐥 𝐑𝐨𝐮𝐭𝐢𝐧𝐠 

Input: A sorted edge list 𝐿 ordered by their starting time, start 

point 𝑥, time interval [𝑡𝑎, 𝑡𝑤]; 

Output: The earliest-arrival time from x to every node, the 

previous nodes list for each node on their specific optimal 

routing. 

1 initialize 𝑡[𝑥] = 𝑡𝑎, and 𝑡[𝑣] = ∞ for each node 𝑣 except 𝑥; 

2 initialize 𝑝𝑟𝑒𝑣[𝑣] for each node 𝑣 to make sure each one is 

empty; 

3 for each edge 𝑒 = (𝑢, 𝑣, 𝑡, 𝑑) in 𝐿 do 

4  if 𝑡 ≥ 𝑡[𝑢] then 

5   if 𝑡[𝑢] + 𝑑 < 𝑡[𝑣] then 

6    initialize 𝑝𝑟𝑒𝑣[𝑣]; 

7    insert 𝑢 into 𝑝𝑟𝑒𝑣[𝑣]; 

8    𝑡[𝑣] ← 𝑡 + 𝑑; 

9   else  

10    if 𝑡[𝑢] + 𝑑 =  𝑡[𝑣] then 

11    insert 𝑢 into 𝑝𝑟𝑒𝑣[𝑣]; 

12   end if 

13  end if 

14 end if 

15 end for 

16 return 𝑡[𝑣] and 𝑝𝑟𝑒𝑣[𝑣] for each node 𝑣; 

 
Line 1 and 2 are to initialize the earliest-arrival time and 

previous node for each node; we use array 𝑡[𝑁] and 𝑝𝑟𝑒𝑣[𝑁] to 
represent them. We filter the edges for the first time at Line 4. If 
it departure at 𝑢 before the earliest-arrival time of 𝑢, we will not 
take this edge into account. Then we will update the earliest-
arrival time and rebuild the previous nodes if the end time of this 
edge is earlier than the earliest-arrival time of 𝑣 at Line 5-8. The 
reason of rebuilding is that this could be a brand-new routing. If 
the end time equals the earliest-arrival time, we just add 𝑢 into 
𝑝𝑟𝑒𝑣[𝑣]. At last, we end this algorithm when all edges have been 
scanned. The 𝑡[𝑁] and 𝑝𝑟𝑒𝑣[𝑁] are the optimal routing result. 

4) Improvement of Temporal-information-based Adaptive 

Routing 

The calculation in our algorithm are mainly concentrated in 
the construction of the Markov model. If once the controller 
receives the routing request, it computes a specific Markov 
model for the entire network. The algorithm becomes too 

complicated. We need to adjust the original Markov model 
adaptively [12]. Thus, we propose an improved method. At the 
beginning, similar to the conventional model one, we construct 
the Markov model; predict REI and compute the optimal routing. 
The difference is, in the new method, once the Markov model is 
constructed, we do not have to construct a brand-new one when 
the latest information comes. We can update the related 
information of the Markov model instead of deleting the past one 
and creating a new one. Once the Markov model obtains the 
distance information update between vehicle 𝑢 and vehicle 𝑣, 
the transition index updates as defined in (2). 

 𝑖𝑢𝑣 = 𝑖𝑢𝑣
′ +

𝑘

𝑘+𝑙
(𝑑𝑢𝑣 − 𝑑𝑢𝑣

′ ) (2) 

𝑖𝑢𝑣  denotes the goal transition index between 𝑢  and 𝑣  we 
need. 𝑖𝑢𝑣

′  is the transition index we already have, and it is out of 
date. 𝑘  and 𝑙  are the weight parameters for distance and 
historical data mentioned before. 𝑑𝑢𝑣  and 𝑑𝑢𝑣

′  are the present 
and historical distance information between 𝑢 and 𝑣. We adjust 
the transition index adaptively according to the distance in the 
present and past. Similarly, we adjust the transition index when 
packet transmission from 𝑢 to 𝑣 happens, as described in (3). 

 𝑖𝑢𝑣 = 𝑖𝑢𝑣
′ ∗

𝑙

𝑘+𝑙
∗ 𝑑𝑒 (3) 

𝑑𝑒 refers to the withering factor which is in the range of 0 
and 1. It is not wise to let one edge takes over too much 
transmission work which may cause unbalanced load. Therefore, 
at one timestamp each time packet transmission happens 
between 𝑢 and 𝑣, the importance of edge from 𝑢 to 𝑣 decrease. 
the transition index declines too. At last, the average value of 
transition indexes of 𝑢 is required to change correspondingly. 

 𝐴𝑣𝑒𝑉𝑎𝑙𝑢𝑒[𝑢] =  
𝐴𝑣𝑒𝑉𝑎𝑙𝑢𝑒[𝑢]′∗𝑁+(𝑖𝑢𝑣−𝑖𝑢𝑣

′ )

𝑁
  (4) 

To guarantee the accuracy, after a fixed time interval, we 
restart a process to recalculate the Markov model based on the 
latest distance and REI. These data have been collected by the 
control plane already. 

III. SIMULATION 

In this section, we present the detail of the simulation 
including parameters and evaluations. We ran all the 
experiments on a PC with Windows 10 on an Intel 2.4 GHz CPU 
and 16 GB RAM. We build an SDVN simulation platform with 
C++ programming language based on the changes of the 
positions of vehicles. The position is produced from SUMO [13]. 
Moreover, the historical REI is produced by NS-2 under the 
protocol GPSR. In the simulation, four different numbers of 
nodes have been considered. The main parameters of the 
vehicular network are described in Table 1.  

TABLE I.  PARAMETERS OF SIMULATION 

Parameter Value 

Number of vehicles  500/1000/2000/4000 

Vehicle velocity 1 - 60 km/h 

Vehicle movement range 1200 km * 850 km 



Parameter Value 

MAC protocol IEEE 802.11p 

Transmission Range 250 m 

The simulation duration 100 s 

 

TibAR is compared with the existing scheme of the Dijkstra 
algorithm. We send the routing request for the random vehicle 
to the SDVN controller from a random vehicle once per second. 
We mainly consider two performance parameters to evaluate the 
performance of TibAR. First, the average calculating time for 
routing is used as the average time for the controller to complete 
the calculating the optimal routing for each routing which 
includes the construction of Markov model and updating. 
Second, the average delay of routing is applied as the average 
delay of each routing form the source node to each other nodes 
(we use a relative value to represent the level of latency in this 
paper). 

 

Figure.4 Average calculating time for routing  v.s. the number of nodes 

 

Figure.5. Average delay of routing v.s. the number of nodes 

As shown in Fig.4, the difference between the efficiency of 
TibAR and Dijkstra is not apparent in the low-density traffic 
scenario (500 nodes). However, with the increase of nodes, 
TibAR gradually outperforms Dijkstra. In particular, the 
efficiency of TibAR could be six times compared to Dijkstra as 
more edges are scanned. With the increase of nodes, Dijkstra 
requires to deal with the number of edges growing at 𝑂(𝑛2) 
speed. Meanwhile, in TibAR, by applying the proposed Forward 
Prediction and Reserve Prediction algorithm, the number of 
scanning edges is within a proper range. As shown in Fig.5, the 
Dijkstra algorithm calculates the absolute optimal path in the 
vehicular networks, while Dijkstra outperforms TibAR in the 
routing delay. However, with the increase of nodes, TibAR 
could obtain much more training data in the constructing process 
which results in a reduction of latency. As we can see, the 

routing delay produced by TibAR is very close to the absolute 
optimal path when the number of nodes reaches 4000. We 
observe that TibAR outperforms the main existing routing 
schemes in computing efficiency and routing latency in the high-
density traffic scenarios of SDVNs. 

IV. CONCLUSIONS AND FUTURE WORK 

Our study reveals that existing routing schemes do not 
consider the temporal information. They view the vehicular 
network as a sequence of static graphs. This could lead to the 
missing of temporal information and cause the additional 
overhead. On the other hand, the shortest path algorithm in the 
temporal graph has a better performance in efficiency. To fill in 
this gap, we proposed a SDVN routing scheme namely, TibAR. 
Instead of calculating the static graph, TibAR used the properties 
of the temporal graph to compute optimal routing. We also 
construct a Markov model based on the REI and distance 
information to produce the REI as the input of optimal path 
algorithm. Our simulation results show that TibAR outperforms 
existing SDVN routing schemes in the high-density traffic 
scenarios. For future work, we would like to optimize the 
Markov model to achieve more precise predictions and allow our 
work to adapt to dynamic topology.  
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