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Abstract—End-to-end learning of communication systems with
neural networks and particularly autoencoders is an emerging
research direction which gained popularity in the last year. In
this approach, neural networks learn to simultaneously optimize
encoding and decoding functions to establish reliable message
transmission. In this paper, this line of thinking is extended
to communication scenarios in which an eavesdropper must
further be kept ignorant about the communication. The secrecy
of the transmission is achieved by utilizing a modified secure
loss function based on cross-entropy which can be implemented
with state-of-the-art machine-learning libraries. This secure loss
function approach is applied in a Gaussian wiretap channel
setup, for which it is shown that the neural network learns
a trade-off between reliable communication and information
secrecy by clustering learned constellations. As a result, an
eavesdropper with higher noise cannot distinguish between the
symbols anymore.

I. INTRODUCTION

Communication theory addresses the problem of reliably
transmitting information and data from one point to another.
A communication system itself can be abstracted into three
blocks: (1) An encoder at the transmitter side, which takes a
message to transmit and encodes it into a codeword. (2) A
noisy channel, which transforms the transmitted codeword in
a certain way. And (3) a decoder at the receiver side, which
estimates the transmitted message based on its noisy channel
output. The channel is usually fixed and accounts for example
for signal impairments and imperfections in real life scenarios,
such as wireless communication. The communication channel
of interest in this work is the additive white Gaussian noise
channel (AWGN). The aim is now to develop appropriate
encoding and decoding schemes to combat the impairments
of this channel. This usually involves adding redundancy and
introducing sophisticated techniques which use the available
communication dimensions (e.g. frequency and time) in an
optimal way. However, constructing capacity-achieving coding
schemes is a highly non-trivial task even for very simple
communication scenarios. It is therefore natural to search for
solutions which can simplify this process, for example using
deep learning.

Recent developments have shown that a neural network (NN)
can simultaneously learn encoding and decoding functions by
implementing the communication channel as an autoencoder
with a noise layer in the middle, see for example [1] and
references therein. Surprisingly, [2] showed that those learned
encoding-decoding systems come close to practical baseline
techniques. The appeal of this idea is that complex encoding

and decoding functions can be learned without extensive
communication theoretic analysis. It also enables an on-the-fly
ability of the system to cope with new channel scenarios.

In this paper, we are interested not only in learning the
encoding and decoding to account for reliable communica-
tion, but also in exploring the possibility to learn how the
communication can be secured at the physical layer. To this
end, we are interested in physical layer security approaches,
which establish a secure transmission by utilizing the intrinsic
channel properties and by employing information-theoretic
principles as security measures. In particular, these approaches
result in secrecy techniques which are independent of the
computational power of unknown adversaries, which is in
contrast to prevalent computational complexity or cryptographic
approaches, e.g. [3] and [4]. It therefore results in a stricter
notion of security with the drawback that these schemes need
to be designed for specific communication scenarios. The
simplest scenario which involves reliable transmission and
secrecy is the wiretap channel [5]. This refers to a three-
node network with a legitimate transmitter-receiver link and
an external eavesdropper which must be kept ignorant of the
transmission. It has been shown that specific encoding and
decoding techniques exploit an inherent asymmetry (of the
additive noise) of the legitimate receiver and the eavesdropper to
account for physical layer secure communication. The secrecy
capacity of the wiretap channel, i.e., maximum transmission
rate at which both reliability and secrecy are satisfied, is
known [6], [7]. However, constructing suitable encoders and
decoders which achieve the secrecy capacity remains a non-
trivial challenge. There are several approaches to this problem
and most of them are based on polar, LDPC or lattice codes,
see [8]. However, those techniques are not practical and only
work for highly specialized cases/channels. Our motivation is
therefore that a NN code design provides a way for on-the-fly
code design, which is practical for any channel. The question
at hand is now, how to exploit and modify the autoencoder
concept to also include the physical layer secrecy measures to
obtain coding schemes for physical layer secure communication
scenarios. In this paper, we demonstrate that this is indeed
possible by creating a training environment where two NN
decoders compete against each other. For that we define a novel
security loss function, which is based on the cross-entropy. We
then show resulting constellations and the probability of error
for an SNR range before and after secure coding.

Related work: The work of [1] introduced the idea of
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using an autoencoder NN concept to model the communication
scenario. The main drawback of this method is, that the channel
model needs to be differentiable, which can become a problem
with real world channels. However, it was shown in [2], that
the learned encoding and decoding rules provide a system
which comes close to classical schemes and performs well
if used on actual over-the-air transmissions. Moreover, [9]
showed, that the training can be done without a mathematical
channel model by including reinforcement learning. This shows
that end-to-end learning of communication systems can be a
viable technology. This also holds for fiber communication
as shown in [10] and in [11], which utilized the autoencoder
concept. Moreover, the concept can be used to learn advanced
communication schemes such as orthogonal frequency division
multiplexing (OFDM), which enables reliable transmission in
multi-path channel scenarios as shown in [12].

The idea of using two competing NNs in a specific context
is not new. One of the first works was for example [13] on the
principle of predictability minimization. This principle is as
follows: for each unit inside a NN exists an adaptive predictor,
predicting the unit, based on all other units. The units are
now trained to minimize this predictability, therefore enforcing
independence between the units. Another popular instance of
competing NNs are generative adversarial networks (GANs) as
introduced in [14]. There, the two NNs consist of a generative
model and a discriminative model, with the later predicting
the probability that a sample came from the former model.
The generative model is now trained to maximize the error
probability of the discriminator model, which introduces an
adversarial process. Another recent work is [15], where a key
was provided to Alice and Bob and the NN learns to use the
key on its communication link in a way, such that Eve cannot
decipher the message (since she has no key). It is therefore a
neural cryptography setting and different from our approach, as
our network learns to encode a message for direct transmission
such that Eve cannot decode it.

Notation: We stick to the convention of upper case random
variables X and lower case realizations x, i.e. X ∼ p(x), where
p(x) is the probability mass function of X . Moreover, we use
upper case bold script X for random vectors and constant
matrices, while lower case bold script x is used for constant
vectors. We also use |X | to denote the cardinality of a set X .

II. PHYSICAL LAYER SECURITY IN WIRETAP CHANNELS

The wiretap channel is a three-node network in which a
sender (Alice) transmits confidential information to a legitimate
receiver (Bob) while keeping an external eavesdropper (Eve)
ignorant of it. This setup can be seen as the simplest communi-
cation scenario that involves both tasks of reliable transmission
and secrecy. Accordingly, this is the crucial building block
of secure communication to be understood for more complex
communication scenarios.

In this paper, we study the degraded Gaussian wiretap
channel as depicted in Fig. 1. The legitimate channel between
Alice and Bob is given by an additive white Gaussian noise

Encoder f Decoder g
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Fig. 1: Degraded Gaussian wiretap channel. The confidential
communication is between Alice and Bob, while Eve tries to
eavesdrop upon it.

(AWGN) channel as

Yi = Xi +NB,i (1)

where Yi is the received channel output at Bob, Xi is the
channel input of Alice, and NB,i ∼ N (0, σ2

B) is the additive
white Gaussian noise at Bob at time instant i. The eavesdropper
channel to Eve is then given by

Zi = Yi +NE,i = Xi +NB,i +NE,i (2)

where Zi is the received channel output at Eve and NE,i ∼
N (0, σ2

E) is the additive white Gaussian noise at Eve. This
defines a degraded wiretap channel for which the eavesdropper
channel output Zi is strictly worse than the legitimate channel
output Yi.1

The communication task is now as follows: To transmit
a message m ∈ M = {1, ..., |M|}, Alice encodes it into a
codeword x(m) = f(m) of block length n, where x ∈ Xn.2

Moreover, we assume an average transmission power constraint∑n
i=1 x

2
i (m) ≤ nP . At the receiver side, Bob obtains an

estimate m̂ of the transmitted message by decoding its received
channel output as m̂ = g(y). The transmission rate is then
defined as R = log |M|/n.

The secrecy of the transmitted message is ensured and
measured by information theoretic concepts. There are different
criteria of information theoretic secrecy including weak secrecy
[5] and strong secrecy [16]. In the end, all criteria have
in common that the output at the eavesdropper Z should
become statistically independent of the transmitted message
M implying that no confidential information is leaked to the
eavesdropper. For example, strong secrecy is defined as

lim
n→∞

I(M ;Z) = 0 (3)

with I(M ;Z) =
∑

m,z p(m, z) log p(m,z)
p(m)p(z) the mutual infor-

mation between M and Z, cf. for example [17].
The secrecy capacity now characterizes the maximum

transmission rate R at which Bob can reliably decode the
transmitted message while Eve is kept in the dark, i.e., the

1Note that any Gaussian wiretap channel of the general form Yi = hXi +
NB,i and Zi = gXi + NE,i with h and g multiplicative channel gains
can be transformed into an equivalent degraded wiretap channel as in (1)-(2).
This means that any Gaussian wiretap channel is inherently degraded, cf. for
example [6, Sec. 5.1].

2Usually, X = R in the Gaussian setting.



x ym m̂

Alice Bob

Eve

m̃

N
o
is
e
la
y
er

N
o
is
e
la
y
er

N
o
rm

a
li
za
ti
o
n

D
en
se

la
y
er
s

O
n
e-
h
o
t
en
c

S
o
ft
m
a
x

D
en
se

la
y
er
s

S
o
ft
m
a
x

D
en
se

L
a
y
er
s

z

Fig. 2: Neural network implementation of the degraded wiretap
channel.

secrecy criterion (3) is satisfied while achieving a vanishing
error probability limn→∞ Pe = Pr[M 6= M̂ ] = 0. The secrecy
capacity of the Gaussian wiretap channel is known [6], [18]
and is given by

Cs = max
p(x)

(I(X;Y )− I(X;Z)) (4)

=
1

2
log

(
1 +

P

σ2
B

)
− 1

2
log

(
1 +

P

σ2
E + σ2

B

)
. (5)

Mututal information vs. cross-entropy: A straight-forward
approach to optimize a NN based on information-theoretic
criteria would be an optimization based on the mutual in-
formation as in (3) and (4). In the security context, this
would mean to optimize the encoder f(·) and decoder g(·)
mapping to maximize I(X;Y ), while minimizing I(X;Z).
However, estimating the mutual information from data samples
is a non-trivial challenge, due to the unknown underlying
distribution. One approach is for example the variational
information maximization, introduced in [19], which was
recently applied to GANs [20]. This technique computes a
tractable lower bound to maximize the mutual information
between two distributions. However, in our case we would
need a technique to simultaneously upper and lower bound
two connected mutual information terms. To circumvent this
challenge, we adapt a secrecy criterion based on the cross-
entropy on which we elaborate further in the next section.

III. NEURAL NETWORK IMPLEMENTATION

A. General model

As in the reference work [1], we implemented the commu-
nication scenario using an autoencoder-like network setting.
An autoencoder is usually a NN which aims to copy the input
m of the network to its output. It consists of an encoder
x = f(m), which maps the input to some codewords and a
decoder m̂ = g(x) which aims to estimate the input from
the output, see [21]. It is therefore a perfect scenario for
the communication problem. Usually, these autoencoders are
restricted in a certain way, for example that the encoding
function performs a dimensionality reduction. That way, the
autoencoder can learn useful properties of the data, which

are needed for reconstruction. This is in contrast to the
communication scenario where the encoder aims to introduce
redundancy, i.e. increase the dimensionality. Moreover, there
is a noise function in-between encoder and decoder. The NN
therefore learns to represent the input in a higher dimensional
space to combat the noise corruption, such that the decoder
can still estimate the correct output.

The general structure of our NN can be seen in Fig. 2. There,
the message m gets one-hot encoded into the binary vector
s ∈ F|M|2 , which can be viewed as a probability distribution
that shows which message was sent and is fed into the NN.
The encoder is comprised of two fully connected/dense layers,
where the first layer maps s to s′ ∈ R|M| with a ReLU
activation function, while the second layer maps the input
to x ∈ Rn with no activation function3. Here, n represents the
codeword dimension and can be thought of as time instants or
channel uses. The last layer of the encoder is a normalization,
where the codewords get a unit power constraint, which is
either the classical average power constraint over the codeword
dimension, i.e.

∑n
i=1 x

2
i ≤ n or a batch average power

constraint 1
Nb

∑Nb

j=1

∑n
i=1 x

2
i ≤ n, where the average is taken

over the batch and the codeword dimension. Note that the
normalization actually enforces that the resulting codewords
have exactly the power specified, turning the inequalities into
equalities. For the classical average power constraint, this will
yield a constellation, where all the points lie on a circle with
radius

√
n. The channel itself is realized as in Section II. Here

we scale the variance as σ2 = 1
SNR , where SNR means Signal-

to-Noise Ratio. Moreover, we have two receiver blocks, which
are equally constructed. Each one has two fully connected
layers, where the first one maps the channel output back to
R|M| with a ReLU activation function and the second one maps
from R|M| to R|M| with a linear activation function. As the
last step, we use the softmax function4 and the cross-entropy
as loss function. The softmax gives a probability distribution
ŝ ∈ (0, 1)|M| over all messages, which is fed into the cross-
entropy:

H(pdata(M), pmodel(M)) = −
∑

m∈M
pdata(m) log pmodel(m)

= −
|M|∑
i=1

si log ŝi (6)

as a loss function, which we then average over the batch
sample size Nb. This can be seen as a maximum likelihood
estimation of the send signal, see for example [21, Chap. 5].
The index of the element of ŝ with the highest probability will
be the decoded symbol m̂. The same loss function is applied
to the receiver model of the wiretapper, i.e. Eve. However,
training for security needs a different loss function.

3The first layer is given by s′ = σReLU(W1s+ b1) and the second layer
by x = W2s′ +b2 where Wi and bi represent the weight matrices and the
bias vectors, respectively and σReLU := max(0, ·).

4The softmax function is defined as f(x) := exp(si)∑
j exp(sj)

.



B. The security loss function

Remember that information theoretic security results in a
difference of mutual information terms between the links.
This is in general hard to compute and accordingly difficult
use for NN optimization. We therefore focus on the cross-
entropy and establish another way to define the security loss.
A straightforward method would be to define a security loss
function by considering the differences between the cross-
entropy losses of Bob and Eve’s receiver. The secure loss
would therefore be

L := H(pdata(M), pBob(M))−H(pdata(M), pEve(M)). (7)

Here, pBob and pEve are the resulting probability mass functions
from the softmax output in Bob and Eve’s decoder. Note that
the data distribution is one-hot encoded. The sum in Eq. (6) is
therefore reduced to − log ŝi for a sent symbol si. Minimizing
H(pdata(M), pBob(M)) trains the encoder to maximize the
output probability of symbol si, and thereby reducing the output
probability of all other symbols at Bob. In contrast, maximizing
H(pdata(M), pEve(M)) forces the system to reduce the output
probability of the symbol si and therefore randomly forces a
higher probability on other symbols ŝj 6=i, depending on the
weights of Eves decoder. This means that training the network
for each symbol would result in training the encoder (Alice),
such that Eve sees that symbol in another random location,
only based on the weight configurations of Eve’s network (and
therefore highly dependent on the adversary). Moreover, cross-
entropy is unbounded from above, resulting in a logarithmic
growing negative loss from H(pdata(M), pEve(M)). This shows
that the loss function above is fundamentally ill-suited for the
problem. We therefore decided to mimic traditional wiretap-
coding techniques. Theoretically, the usual approach is to map
a specific message to a bin of codewords and then select
a codeword randomly from this bin. There, intuitively, the
randomness is used to confuse the eavesdropper. A more
concrete method is to use coset codes, where the actual
messages label the cosets, and the particular codeword inside
the coset is again chosen at random. This method goes back to
the work of [5] and we refer the reader to [22, Appendix A]
for an introduction. The idea is that Eve can only distinguish
between clusters of codewords. Whereas the messages itself
are hidden randomly in each cluster. However, the legitimate
receiver has a better channel and can also distinguish between
codewords inside the clusters. This results in a possible secure
communication by trading a part of the communication rate
for security.

Our approach is now that we train the network such that Eve
sees the same probability for all codewords in a certain cluster.
The security loss function is a sum of the cross-entropy of Bob
and the cross-entropy of Eve’s received estimated distribution
with a modified input distribution. The input distribution is
modified in a way, such that clusters of codewords have the
same probability. Consider for example the training vector batch

Algorithm 1: This algorithm calculates the operator E,
which is used on the input distribution and returns a
modified distribution, such that clusters of the input are
uniformly distributed.

Input: number of clusters l, number of symbols |M|,
kmeans.labels, number of elements in the clusters
nc

Output: Equalization operator E ∈ R|M|×|M|
Initialize: E = 0
for j ← 1 to l do

for i← 1 to |M| do
if kmeans.labels(i)=j then

for k ← 1 to |M| do
if kmeans.labels(k)=j then

Ei,k = 1
nc

end
end

end
end

end

m = (1, 2, 3, 4), resulting in the one-hot encoding matrix

S =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (8)

where the rows are the samples of the batch and the columns
indicate the symbol.

Multiplying this one-hot input matrix from the right with
the matrix E, see Algorithm 1, results in the equalized matrix
S̄:

S̄ = SE =


0.5 0.5 0 0
0.5 0.5 0 0
0 0 0.5 0.5
0 0 0.5 0.5

 . (9)

One can see that in the resulting matrix S̄, the first and
second symbol, and the third and fourth symbol have the
same distribution. The advantage of this method is, that we
only need to calculate an |M| × |M| matrix, which can be
used with any input batch size. The new security loss can
therefore be defined as

Lsec := (1− α)H(pdata(M), pBob(M))

+αH(pdata(M)), pEve(M))

= (α− 1)

|M|∑
i=1

si log ŝi − α
|M|∑
i=1

s̄i log s̃i, (10)

where s̃ is Eve’s decoded distribution and s̄ stands for
the equalized input symbol distribution. Furthermore, the
α parameter controls the trade-off between security and
communication rate on the legitimate channel. The loss function
is then averaged over the batch size Nb. Moreover, we chose
a modified k-means algorithm, which gives equal cluster sizes,
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Fig. 3: The figure shows the learned encoder mappings and
decoder decision regions of 16 symbols for a batch average
power constraint and an average power constraint on the
symbols.

for the clustering of the constellation points. This provides us a
clustering based on the euclidean distance and goes well with
the initial idea of coset codes, when they are implemented as
a lattice code with a nearest neighborhood decoder.

IV. TRAINING PHASES AND SIMULATION RESULTS

All of the simulations were done in TensorFlow with the
Adam optimizer [23] and gradually decreasing learning rate
from 0.1 to 0.001. Moreover, we constantly increased the batch
size from 25 to 300 during the epochs. The training was done
with a channel layer of the direct link with an SNR of 12 dB,
and on Eve’s link with an SNR of 5 dB. All of the following
figures for constellations and decision regions were done with
codeword dimension n = 2, such that they can be easily plotted
in 2-d. Our training procedure is divided into four phases.

In the first phase, we only train the encoder and the decoder
of Bob with the standard cross-entropy, as done in [1]. Here,
the NN learns a signal constellation to combat the noise in
an efficient way dependent on the power constraint and the
signal-to-noise ratio. The resulting learned constellations, i.e.
encoding rules and the learned decision regions, i.e. decoding
rules, are shown in Fig. 3 for an average power constraint
over the whole batch and for an average power constraint per
symbol.

In the second phase, we freeze the encoding layers, and train
Eve on decoding the previously learned encoding scheme with
her cross-entropy and the normal input distribution. The reason
behind the freezing of the encoder is that we assume that in
real-life situations an attacker can not influence the encoding
of the signals. We therefore have an unchanged constellation,
but Eve’s NN learns a decision region for her channel model,
i.e. an additional noise factor with 5 dB SNR.
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Fig. 4: The figure shows the clusters for batch average power
norm on the right hand side and for average power constraint
per symbol on the left hand side. The red crosses show the
cluster centers of the k-means algorithm.
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Fig. 5: The figure shows the learned secure constellations for
the decoder with batch average power norm on the right hand
side and for average power constraint per symbol on the left
hand side.

In the third phase, we freeze the decoding layers of Eve and
train the NN with the loss function (10) and α = 0.7. This
time the freezing is done because we cannot assume that a
communication link has access to the decoding function of an
attacker. For the equalization of the input clusters, we feed the
network with an identity matrix I|M| and calculate the clusters
of the constellation points with the k-means algorithm. Fig. 4
shows the results of the clustering algorithm on the learned
constellations. We then use Alg. 1 to calculate E and create
the equalized batch label matrix with S̄ = SE. The resulting
training effect is, that the NN tries to pull codewords from the
same cluster together, close enough that Eve cannot distinguish
the symbols in a cluster, and loose enough such that Bob can
still decode them. Fig. 5 shows the learned secure encoding
schemes.

After the secure training phase we train Bob’s and Eve’s
decoder once again. Therefore, both neural networks are trained
to decode the new secure encoded signals. Hence, we also
want to validate that we have indeed achieved security in
comparison to a training advantage where Eve was merely not
trained enough to decode the new secure encoded symbols.

The training phase for 16 symbols gets more accurate and
faster with increasing codeword dimensions n, which suggests
that the NN can find better constellations. The drawback is that
the actual communication rate drops, since the system needs
more time instants to transmit a bit. Therefore, we have taken a
conservative approach, which resulted in n = 32. Moreover, we
implemented a coset coding algorithm. In our case, we use 4
clusters, so each cluster consists of 4 symbols. We have 4 secure
messages, and for every message, a specific cluster is chosen
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for a 16 symbol constellation size with n = 32 channel uses
and fixed additional SNR of 17 dB in Eve’s channel, before
and after secure encoding. Note that the SNR is per symbol
and not per bit (EB/N0).

at random (i.e. point in its coset), mapping the 4 messages
to 16 symbols. This randomness increases Eve’s confusion
about the transmission. Intuitively, we sacrifice a part of the
transmission rate, i.e we only use 4 instead of 16 symbols,
to accommodate randomness to confuse Eve. Again we refer
to [22, Appendix A], which discusses Eve’s error probability
and shows that coset coding does increase confusion at the
eavesdropper. The NN therefore learns a constellation which
can be seen as a finite lattice-like structure, on which one can
implement the idea of coset coding. For the actual simulation,
we have taken a direct SNR of 10 dB and an additional SNR
of 7 dB in the adversary link, during the training phase. We
then evaluated the symbol error rate which approximates Pe

for decoding the symbols before the third training phase, i.e.
before secure coding and after all the training, which results in
Fig. 6. We note that the figures were tested with the same total
sample size of 50000, while the testing was also done with a
SNR of 7 dB in the adversary link. Moreover, we used a factor
of α = 0.3 in the security loss function. One can see in the
results, that the NN learns a trade-off between communication
rate and security.

V. CONCLUSIONS AND OUTLOOK

We have shown that the recently developed end-to-end learn-
ing of communication systems via autoencoder neural networks
can be extended towards secure communication scenarios. For
that we introduced a modified loss function which results
in a trade-off between security and communication rate. In
particular, we have shown that the neural network learns a
clustering, which resembles a finite constellation / lattice, which
can be used for coset encoding as demonstrated. This opens up
the ongoing research of end-to-end learning of communication
systems to the field of secure communication, as classical

secure coding schemes can be learned and applied with a neural
network. We think that our approach via the new loss function,
is a fruitful direction in that regard. However, an optimal way
would be to tackle the problem by direct optimization via
mutual information terms which remains an open problem.
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