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Abstract—This work considers the design of online transmis-
sion policy in a wireless-powered communication system with a
given energy budget. The system design objective is to maximize
the long-term throughput of the system exploiting the energy
storage capability at the wireless-powered node. We formulate
the design problem as a constrained Markov decision process
(CMDP) problem and obtain the optimal policy of transmit power
and time allocation in each fading block via the Lagrangian
approach. To investigate the system performance in different
scenarios, numerical simulations are conducted with various
system parameters. Our simulation results show that the optimal
policy significantly outperforms a myopic policy which only
maximizes the throughput in the current fading block. Moreover,
the optimal allocation of transmit power and time is shown to
be insensitive to the change of modulation and coding schemes,
which facilitates its practical implementation.

I. INTRODUCTION

Wireless-powered communication networks (WPCNs),

which usually consist of a hybrid access point (H-AP) and

several user equipments (UEs) [1], have drawn significant at-

tention recently. The system performance in terms of different

metrics (e.g., throughput [2], outage [3], energy efficiency

[4]) for various scenarios (e.g., point-to-point [5], two-hop

relaying [6], multiple-input and multiple-output (MIMO) [7])

have been thoroughly investigated. However, most existing

works devoted their efforts to studying the system performance

of only one time block (slot), where all the harvested energy

is exhausted immediately without exploiting long-term energy

storage. In practice, due to the variability of the communica-

tion channel quality, it is more reasonable to store part of or

even all the harvested energy in the battery when the channel

undergoes deep fading. Thus it is of great importance to

study the transmission policy for optimizing long-term system

performance with long-term energy storage capability.

Some research efforts have been devoted to improving the

long-term system performance. Considering two simple online

transmission policies for a single-user WPCN, the limiting

distribution of the stored energy at the UE as well as the

outage performance of the system was investigated in [8].

In [9], the data rate maximization problem of an orthogonal

frequency division multiplexing (OFDM)-based WPCN was

studied. To jointly optimize the subchannel allocation and

the power allocation over time, an offline algorithm and an

online algorithm were designed for the case of non-causal

channel state information (CSI) and causal CSI, respectively.

Considering the variation of the CSI and the evolution of the

battery state over slots, the long-term system performance of

a two-user WPCN in an infinite horizon was studied in [10].

Based on the theory of Markov decision process, the optimal

online policy was obtained to maximize the long-term system

throughput. After that, the authors in [11] extended this work

to a full-duplex scenario where the H-AP transfers energy and

receives information data simultaneously. The corresponding

optimal online policy for the full-duplex case was obtained and

the long-term performance gap between the full-duplex WPCN

and the half-duplex WPCN was also discussed. However, the

temporal correlation of the time-varying channels, which can

be exploited to improve the system performance, was not

considered in these works. Also, the H-AP in these works,

e.g., [8]–[11], was assumed to equip with an infinite power

supply and hence energy consumption of the system has not

been a consideration in the previous studies.

In this paper, we focus on the long-term throughput per-

formance of a WPCN with limited system energy budget.

More specifically, considering the H-AP with a finite amount

of energy, we design an optimal online transmission policy

to maximize the throughput over an infinite horizon. The

contribution of the work lies in both the modeling and solution

development of the throughput maximization problem. First,

during problem formulation, the finite state Markov channel

(FSMC) model is adopted to capture the temporal-correlation

behavior of the fading channel. Moreover, practical aspects

including circuit power consumption and efficiency of the

power amplifier are considered to evaluate the total system

energy consumption. Then, we formulate the problem as a

constrained Markov decision process (CMDP) problem and

solve it optimally via the Lagrangian approach, where a bisec-

tion search is introduced to update the corresponding Lagrange

multiplier. Subsequently, the long-term system performance
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under various scenario is studied via numerical simulations. In

particular, the impact of the system parameters on the system

performance is thoroughly discussed, which provides practical

insights on the design and implementation of the WPCN.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a WPCN consisting of

a H-AP and a single-antenna UE in this paper. The H-AP

is equipped with a directional antenna and the UE is driven

by a rechargeable battery with maximum capacity Bmax. A

time-correlated block fading channel is considered between

the H-AP and the UE, where the channel power gain remains

constant in a block but varies from one to another. In block t ∈
1, 2, · · ·, the channel power gain is expressed as Ht = θtd

−α,

where θt is a random variable capturing the multipath fading,

d is the distance between the H-AP and the UE, and α is the

path loss exponent. In each block, there is a wireless energy

transfer (WET) period and a wireless information transfer

(WIT) period. The UE first harvests energy from the H-AP

and stores it in the battery during WET, and then transmits

its data to the H-AP utilizing the energy stored in the battery

during the following WIT.

WET

WIT

UE H-AP

Harvested 

energy

Battery

Fig. 1. The system model of a WPCN.

In this paper, we aim at maximizing the system throughput

over an infinite horizon under a given energy budget constraint.

This considered problem can be formulated in the framework

of a CMDP which consists five elements: the system state

space S, the action space A, the probability transition matrix

P , the reward function r(·), and the cost function e(·). In

the following, detail descriptions of these five elements are

provided.

A. System States

For the considered system, the optimal policy is constructed

at the H-AP based on the channel information and the battery

information. We assume that in the current block, perfect CSI

as well as the UE’s battery information is available at the H-AP

(In practice, this information can be acquired in the training

phase at the beginning of each block). Correspondingly, in

block t, the system state st ∈ S consists the channel state ht ∈
H and the battery state bt ∈ B, i.e., st = [ht, bt]. Similar to the

works in [12]–[15], quantized system state is considered in this

paper. Specifically, the system state space S is expressed as

S = H×B, where H , {1, 2, ...,K} and B , {0, ..., l, ..., L}
define the set of channel state and battery state, respectively.

The battery is at state 0 when the stored energy is exhausted.

In practice, the channel in a communication system is

generally time-correlated. As stated in [15]–[17], the time-

varying behavior of the fading channel can be well captured

by the FSMC model. Accordingly, in this paper, we sep-

arate the channel gain by a set of boundaries, i.e., Γ =
{Θ1,Θ2, ...,Θk, ...ΘK+1} × d−α, where Θk varies in an

increasing order with Θ1 = 0 and ΘK+1 = ∞. In the t-th

block, the channel state ht ∈ H is said to be at state k (i.e.,

ht = k) if Θk≤θt < Θk+1.

We assume that there is only an one-step channel state

transition from block to block. Denoting πk as the steady state

probability of the channel being at state k. With equiprobable

partition of the channel gain (this is a reasonable and com-

monly adopted technique in a FSMC model, cf. [13]–[15]),

i.e., πk = 1
K
, ∀k ∈ {1, 2, ...,K}, the fading boundaries Θk

can be obtained by solving the following equations:

πk =

∫ Θk+1

Θk

ρ(θt)dθt =
1

K
, ∀k ∈ {1, 2, ...,K}, (1)

where ρ(θt) is the probability density function of the variable

θt. When channel is at state k, i.e., ht = k, the quantized

value of the channel gain is

H̄t =

∫ Θk+1

Θk
Htρ(θt)dθt

∫ Θk+1

Θk
ρ(θt)dθt

=

∫ Θk+1

Θk
θtd

−αρ(θt)dθt

πk

. (2)

Similarly, the available energy in the battery of the UE is

discretized into L quantum. Denote Q as one energy quantum

level of the battery, then the maximum capacity of the battery

is Bmax = LQ. In the t-th block, the battery state is said to be

at state l (i.e., bt = l) if ⌊Bt

Q
⌋ = l, where Bt is the available

battery energy at the beginning of block t.

B. Actions, Reward, and Cost Functions

At the beginning of each block, the H-AP makes a decision

according to the current system state and reports it to the UE

such that the system is well scheduled during the following

WET and WIT procedure. The time duration of each block

T is divided into two orthogonal time slots: τEt for WET

and τ It for WIT with τEt + τ It ≤ T . Let PE
t and P I

t be

the transmit power of the H-AP for WET and the transmit

power of the UE for WIT, respectively. Then, the action

adopted in block t (denoted by at) contains four elements,

i.e., at = {τEt , τ It , PE
t , P I

t }.

For a given system state, different actions come with differ-

ent rewards and costs. In our work, we consider the throughput

per block (defined as the data bits transmitted in one block) as

the immediate reward and the energy consumption per block

as the immediate cost. Denote the feasible action set at state

st as A(st). For a given state st and an action at ∈ A(st),
the immediate reward, i.e., r(st,at) : S×A → R, is defined

as

r(st,at) =

∫ Θk+1

Θk
τ ItW log2

(
1 +

P I
t θtd

−α

ζσ2

)
ρ(θt)dθt

πk

, (3)

where W is the bandwidth of the considered system, σ2 =
N0W is the thermal noise power (where N0 is the noise



power density), and the factor ζ characterizes the discrepancy

between the achievable rate and the channel capacity due to

the use of practical modulation and coding schemes [4].

The corresponding immediate cost, i.e., e(st,at) : S ×
A → R, is expressed as

e(st,at) =
PE
t τEt
ϑAP

+ PCAPτ
E
t + eITt − eAC

t , (4)

where the first two terms capture the energy consumption

at the H-AP and the last two terms describe the battery

consumption at the UE. Specifically, 0 < ϑAP < 1 is the

power amplifier efficiency of H-AP. Hence the first term in

(4) presents the energy consumption of the power amplifier

during WET. PCAP is the circuit power at the H-AP. Hence

the second term in (4) accounts for the energy consumption

of the circuit during WET. For the battery consumption at the

UE,

eITt =
P I
t τ

I
t

ϑU
+ PCUτ

I
t (5)

stands for the energy consumption of the UE during WIT,

where ϑU and PCU denote the power amplifier efficiency and

the circuit power at the UE, respectively. Finally,

eAC
t = min

(
Bt + ηGAP

E
t τEt H̄t, Bmax

)
−Bt (6)

is the energy accumulated in the battery in block t, where η is

the energy conversion efficiency and GA is the antenna gain at

the H-AP during WET. Obviously, the value of eITt −eAC
t can

be either positive (battery consumption) or negative (battery

accumulation).

By the conservation of energy, both r(st,at) and e(st,at)
are nonnegative. Since the available energy of the UE in block

t is limited by the current stored energy in the battery, the

feasible action set at system state st can be given as:

A(st) ={at|τEt + τ It≤T, τEt ≥0, τ It≥0, P I
t ≥ 0,

0≤PE
t ≤PE

max, e
IT
t ≤eAC

t +Bt},
(7)

where PE
max is the maximum transmit power of the H-AP.

C. Transition Probabilities

Denote the system state in block t and t + 1 as st and

st+1, respectively. For an adopted action at, the transition

probability from state st to state st+1 can be given as

P(st+1|st,at)
(a)
= P(ht+1, bt+1|ht, bt,at)

(b)
= P(ht+1|ht)P(bt+1|ht, bt,at),

(8)

where (a) holds by definition and (b) holds for the indepen-

dence of the channel state evolution from the battery state

and the action. In the following, we calculate the channel

state transition probability P(ht+1|ht) and the battery state

transition probability P(bt+1|ht, bt,at), respectively.

The channel state transition probability, which is closely

related to the time-varying behavior of the channel gain, can

be described by the level crossing rate Λ(Θ) [15]–[17], i.e.,

the average number of times that the instantaneous value of

θt crosses a given level Θ. Specifically, the channel state tran-

sition probability from state ht to ht+1 can be approximated

by the ratio of Λ(Θ) divided by the average number of blocks

the value of θt falls in the interval associated with the state ht.

Similar to [13]–[17], we assume that the channel state transits

between its adjacent state only (the validity of this commonly-

used assumption has been verified in [16]). Then, the channel

transition probabilities can be approximated as

P(ht+1 = k + 1|ht = k) ≈ Λ(Θk+1)T

πk

, (9)

P(ht+1 = k − 1|ht = k) ≈ Λ(Θk−1)T

πk

, (10)

P(ht+1 = k|ht = k) ≈ 1− Λ(Θk+1)T

πk

− Λ(Θk−1)T

πk

. (11)

On the other hand, the battery state transition can be

described as follows. If bt+1 < L,

P(bt+1|ht, bt,at) = δ{bt + ⌊e
AC
t − eITt

Q
⌋ = bt+1}, (12)

otherwise,

P(L|ht, bt,at) = δ{bt + ⌊e
AC
t − eITt

Q
⌋ ≥ L}, (13)

where δ(·) is the indicator function.

III. CMDP FORMULATION AND THE OPTIMAL POLICY

In this section, we formulate the CMDP problem and

provide the corresponding optimal solution.

A. Problem Formulation

For a system in the long run, a policy µ is a sequence

of decision rules, i.e., µ = {µ1, µ2, ...}, each in which is a

function mapping from the system state s to the action to

be taken, i.e., µt : S → A, ∀t. A policy µ is said to be

stationary if the decision rule in it is independent with time,

i.e., µ1 = µ2 = · · · . If a policy is stationary and deterministic,

then it is called a pure policy. To model the imperfect operation

of the system in Fig. 1, we introduce a factor λ ∈ [0, 1) to

capture the probability that the system hardware survives from

a operation failure in a block. Correspondingly, as described

in [18], for an available stationary policy µ, the long-term

throughput of the system can be defined as

R(s0,µ) = (1− λ)

∞∑

t=1

λt
E
µ

s0
{r(st,at)}, (14)

and the long-term energy cost of the system can be defined as

E(s0,µ) = (1− λ)

∞∑

t=1

λt
E
µ

s0
{e(st,at)}. (15)

When λ approaches 1, the discounted functions defined

in (14) and (15) converge to their expected average val-

ues [18], respectively, which are defined in the form of

limN→∞
1
N

∑N

t=1 λ
t
E
µ

s0
{Xt(st,at)}, X ∈ {r, e}, where N

is the number of blocks. Thus (14) and (15) can be interpreted



as the expected average throughput and the expected average

energy cost per block, respectively.

In this paper, we aim at finding an optimal policy µ
∗

such that the long-term throughput is maximized under a

given energy budget Eth. This policy can be obtained through

solving the following CMDP problem:

max
µ

R(s0,µ) (16a)

s. t. E(s0,µ)≤Eth. (16b)

B. The Optimal Policy

As shown in [18], the CMDP problem in the form of

(16) can be efficiently solved via the Lagrangian approach,

whereby the CMDP problem is transferred into an equivalent

unconstrained MDP problem. Accordingly, by introducing a

non-negative Lagrangian multiplier β for problem (16), a new

reward function r̃(s,a;β) : S × A × R
+ → R, can be

constructed for the equivalent unconstrained MDP problem,

where

r̃(s,a;β) = r(s,a) − βe(s,a), (17)

and the corresponding Bellman’s optimality equation is:

Jβ(s) = max
a∈A(s)

{(1 − λ)r̃(s,a;β)

+λ
∑

s′∈S

P(s′|s,a)Jβ(s′)
}
,

(18)

which can be efficiently solved via the Value Iteration Algo-

rithm (VIA) [19] for any fixed β. Correspondingly, the optimal

policy with a given β, i.e., µβ = {µβ(s), ∀s ∈ S}, can be

determined by:

µβ(s) = arg
a∈A(s)

max {(1 − λ)r̃(s,a;β)

+λ
∑

s′∈S

P(s′|s,a)Jβ(s′)
}
.

(19)

As described in [18], the optimal policy of a CMDP problem

with a single constraint is composed of two pure policies, i.e.,

µβ− and µβ+ , with β− and β+ as their associated Lagrangian

multipliers, respectively. The policy µβ− yields the highest

energy cost E− that satisfies the energy constraint, while the

policy µβ+ yields the lowest energy cost E+ that breaks

the energy constraint. Since Jβ(s) is a monotonically non-

increasing function of β [20], the value of β− and β+ can be

efficiently obtained via the bisection search method. With a

randomized mixture of µβ− and µβ+ , the optimal policy of a

CMDP problem can be given by:

µ
∗ =

{
µβ− , w.p. q (20)

µβ+ , w.p. 1− q , (21)

where the mixing weight parameter 0 ≤ q ≤ 1 can be obtained

via solving equation Eth = qE− + (1 − q)E+.

Correspondingly, the procedures for solving problem (16)

is described in Algorithm 1. Since the optimal policy consists

of two pure policies, both of which are irrelevant to time

sequence. In Algorithm 1, we drop the subscript “t” for

convenience. Specifically, initializations are performed in line

1, where n and εβ are the iteration sequence and the error

bound for updating β, respectively. The initial value of β+ is

specified in an incremental method, i.e., increasing the initial

value of β+ until that the corresponding long-term system

energy cost exceeds Eth. The VIA is conducted to solve

the equivalent unconstrained MDP problem in line 4 and the

Lagrangian multiplier β is updated via bisection search in lines

5-13. Finally, with the obtained policy µβ−(s) and µβ+(s), the

mixing weight q and the optimal policy are obtained in line

17 and line 18, respectively.

For the implementation of VIA, the candidate actions at

each state are quantized. Specifically, τE, τ I, PE, and P I are

discretized into levels of V E
τ , V I

τ , V E
P , and V I

P , respectively.

Since the update of β is independent from the action space

and the channel state space, the computational complexity of

Algorithm 1 is O( 1
1−λ

log( 1
1−λ

)V E
τ V I

τ V
E
P V I

P |S|3) [21].

Remark 1: In this paper, we obtain the optimal online policy

for the CMDP problem (16) for the case of single UE. For the

case of M > 1 UEs, the corresponding tuple of the CMDP

can be constructed as follow (here, we use the subscript “m”

to denote the elements of the m-th UE): the system space S̄
can be expressed as S̄ = S1 × S2... × Sm... × SM , where

Sm = Hm × Bm is the system state space of the m-th UE

and “×” is the Cartesian product; the action space Ā can be

expressed as Ā = A1 × ...Am... × AM , where Am presents

the action space of the m-th UE and is in the form of (7);

for an action āt = [a1,t, ...,am,t, ...,aM,t] adopted at state

s̄t = [s1,t, ..., sm,t, ..., sM,t], the immediate reward and the

immediate cost of the system can be defined as r̄(s̄t, āt) =∑M

m=1 r(sm,t,am,t) and ē(s̄t, āt) =
∑M

m=1 e(sm,t,am,t),
respectively; the system state transition probability matrix

can be expressed as P = P1 ⊗ ...Pm... ⊗ PM , where

Pm = [P(sm,t+1|sm,t,am,t)] is the system state transition

probability matrix of the m-th UE and ⊗ is the Kronecker

product. Based on this tuple, the CMDP problem for the multi-

user case can be constructed and the corresponding optimal

online policy can be obtained similarly via Algorithm 1.

Algorithm 1 The Optimal Policy for the CMDP (16)

1: Set n = 0, β− = 0, β+, β0 = β−, specify εβ > 0.

2: repeat

3: Set β = βn and n = n+ 1.

4: For a given β, obtain the optimal policy µβ =
{µβ(s), ∀s ∈ S} via VIA.

5: Compute the stationary distribution Ψ(s) induced by

µβ = {µβ(s), ∀s ∈ S}.

6: if
∑

s∈S
Ψ(s)e(s, µβ(s)) > Eth then

7: βn+1 = β++βn

2 .

8: β− = βn.

9: else

10: βn+1 = β−+βn

2 .

11: β+ = βn.

12: end if

13: until |βn+1 − βn| < εβ .

14: Find the policies µβ− = {µβ−(s), ∀s ∈ S} and µβ+ =



{µβ+(s), ∀s ∈ S} with obtained β− and β+, respectively.

15: Compute the stationary distribution Ψβ−(s) and Ψβ+(s)
induced by µβ− and µβ+ , respectively.

16: Compute

Rβ− =
∑

s∈S

Ψβ−(s)r(s, µβ− (s)), (22)

Rβ+ =
∑

s∈S

Ψβ+(s)r(s, µβ+(s)), (23)

Eβ− =
∑

s∈S

Ψβ−(s)e(s, µβ−(s)), (24)

Eβ− =
∑

s∈S

Ψβ+(s)e(s, µβ+(s)). (25)

17: Compute q by solving Eth = qEβ− + (1 − q)Eβ+ .

18: Obtian the optimal reward R = qRβ− + (1− q)Rβ+ and

the optimal policy

µ
∗ =

{
µβ− , w.p. q (26)

µβ+ , w.p. 1− q (27)

IV. SIMULATION RESULTS

In this section, numerical simulations are provided for eval-

uating the long-term throughput performance of the system.

For the practicality of RF energy transfer, a Rician fading

channel is considered between the H-AP and the UE [22],

[23]. Correspondingly, the PDF of θt is given by

ρ(θt) =
1

2̺2
e

−(θt+ς2)

2̺2 I0

(√
θtς

̺2

)
, (28)

where I0 is the modified Bessel function of the zero-th order,

2̺2 and ς2 are the parameters representing the power of

multi-path and line-of-sight, respectively. Moreover, the level

crossing rate Λ(Θb) is [17]

Λ(Θ) =

√
2π(1 + κ)Θ

θ̄
fDe−(κ+ 1+κ

θ̄
Θ)I0(2

√
κ(1 + κ)Θ

θ̄
),

(29)

where fD is the maximum Doppler shift of the channel,

θ̄ = 2̺2 + ξ2 is the local-mean fading power and κ = ξ2

2̺2 .

Accordingly, practical channel parameters setting in [17] is

considered in simulations, where the number of channel states

is selected as K = 3, fD is set as 1.34 Hz, and the block

duration is set as T = 16 ms, respectively.

Similar to [10], we focus on the case of small devices and

express the battery size as a function of the reference value

Bref = 10−3 × T J. Unless otherwise stated, the maximum

battery capacity is set as Bmax = 10Bref . On the other hand,

extensive simulations (not shown here) have revealed that the

accuracy of results is guaranteed when εβ = 10−4 and Q =
Bref . Other important parameters used in simulations are listed

in Table I. Moreover, to show the superiority of the optimal

policy, the myopic policy which maximizes the throughput in

only the current block is used as the benchmark. For legibility,

TABLE I
PARAMETERS SETTING

PE
max 10 W α 2.8 PCAP

500 mW

PCU
5 mW ϑAP 0.9 ϑU 0.9

η 0.95 λ 0.9 GA 8 dBi

ζ 1 W 2 kHz N0 -164 dBm/Hz

ς2 0.75 ̺2 0.125
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Fig. 2. The long-term throughput versus the system energy budget Eth.
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Fig. 3. The long-term throughput versus the maximum battery capacity Bmax.

in the simulation results, we mark the optimal policy and the

myopic policy as “Optimal” and “Myopic”, respectively.

To investigate the impact of the energy budget and the com-

munication distance on the system throughput performance,

we first depict the long-term throughput as as a function of

the energy budget Eth for different value of d. As shown in

Fig. 2, the optimal policy outperforms the myopic policy in

all the considered cases. The long-term throughput is shown

to be increased with Eth. This is because that a larger Eth

means more available energy budget. Due to the limitation

of transmit power and the battery capacity, the system per-

formance becomes saturated when Eth is exceedingly large



(see the case of d=10 m). On the other hand, since the signal

attenuations during WIT and WET are decreasing functions

of the communication distance. As expected, the long-term

throughput is shown to be reduced with d.

The maximum battery capacity Bmax, which limits the

maximum available energy at the UE in each block, is expected

to have an impact on the system performance. Hence, in

Fig. 3, we investigate the long-term system throughput with

varying Bmax. Here, we set Eth = 500Bref and d = 10 m. As

shown in the figure, the long-term throughput with the optimal

policy increases with Bmax. In fact, a larger Bmax means a

higher ability to handle the fluctuation of the channel state.

As Bmax grows, the performance gain becomes saturate due

to the limitation of Eth. However, the myopic policy shows a

different trend. With the growth of Bmax, the corresponding

long-term throughput first increases and then decreases. This

is due to the fact that the myopic policy operates sequentially

from block to block and exhausts the battery’s energy as much

as possible to maximize the current system throughput, which

results in a trade-off on Bmax. Nevertheless, compared to

the myopic policy, considerable improvement can be observed

when the optimal policy is adopted.
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Fig. 4. The long-term throughput versus the gap factor ζ .

As stated in (3), the factor ζ is used to capture the impact

from the practical modulation and coding schemes. In Fig.

4, we depict the long-term throughput as a function of ζ

with Eth = 500Bref and d = 10 m. As shown in the figure,

compared with the myopic policy, a high system performance

gain is achieved when the optimal policy is adopted. Moreover,

the long-term throughput is shown to be slightly decreased

with the increasing ζ. For example, with rising ζ from 1 to

5 (about 7 dB), the long-term throughput performance for the

optimal policy drops only about 0.296 dB. On the other hand,

the impact of ζ on the optimal policy is investigated in Fig. 5.

Here, we take the optimal policy with ζ = 1 (i.e., µ∗
ζ=1) as the

reference policy and use a binary indicator C to identify the

variation of the optimal policy with ζ. Specifically, denote the

optimal policy with ζ′ as µ
∗
ζ′ , then C = 1 if µ

∗
ζ′ is identical

to µ
∗
ζ=1. Otherwise, C = 0. As demonstrated in Fig. 5, the
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Fig. 5. The binary indicator C versus the gap factor ζ .
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Fig. 6. The long-term throughput versus the energy conversion efficiency η
with different circuit power PCAP

and PCU
.

value of C equals to 1 and remains unchanged for different

values of ζ, which implies that the optimal policy is irrelevant

to the practical implementation of the modulation and coding

schemes.

Lastly, the impact of the energy conversion efficiency and

the circuit power on the system performance is investigated in

Fig. 6. Here we set Eth = 500Bref and d = 8m. As can be

observed, the long-term throughput grows with the increasing

of η. This is due to the fact that more available energy can be

harvested at the UE with higher energy conversion efficiency.

On the other hand, although PCAP dominates the circuit power

of the whole system, the system performance is shown to

be more sensitive to PCU rather than PCAP . Specifically,

with the optimal policy, the long-term throughput achieves a

performance gain of 1.2 dB at η = 0.75 when PCU decreases

3 dB (from 10 mW to 5 mW), but is almost unchanged when

PCAP drops from 0.5 W to 0.25 W. In practice, this intrigues

an prior effort on cutting down the circuit power consumption

at the UE rather than at the H-AP.



V. CONCLUSION

In this paper, we studied the problem of designing the

optimal online policy in an energy-constrained WPCN to

manage the transmit power and time durations for both WET

and WIT over time-correlated fading channels. Aiming at

maximizing the system long-term throughput with a limited

energy budget, we formulate the transmission policy design

as a CMDP problem, which was later transformed into an

equivalent unconstrained MDP problem and solved via the

Lagrangian approach. Numerical results showed that the long-

term system performance is closely related to the total energy

budget, the battery capacity, the communication distance, the

energy conversion efficiency, and the circuit power of the

system. For instance, the circuit power consumption at the

UE has a stronger impact on the system performance than

that at the H-AP. Also, the optimal policy was shown to be

independent of the choices of modulation and coding schemes.
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