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Abstract—In this paper the capacity region of the Layered
Packet Erasure Broadcast Channel (LPE-BC) with Channel
Output Feedback (COF) available at the transmitter is in-
vestigated. The LPE-BC is a high-SNR approximation of the
fading Gaussian BC recently proposed by Tse and Yates, who
characterized the capacity region for any number of users and
any number of layers when there is no COF. This paper derives
capacity inner and outer bounds for the LPE-BC with COF for
the case of two users and any number of layers. The inner bounds
generalize past results for the two-user erasure BC, which is a
special case of the LPE-BC with COF with only one layer. The
novelty lies in the use of inter-user & inter-layer network coding
retransmissions (for those packets that have only been received
by the unintended user), where each random linear combination
may involve packets intended for any user originally sent on any
of the layers. Analytical and numerical examples show that the
proposed outer bound is optimal for some LPE-BCs.

I. INTRODUCTION

The Broadcast Channel (BC) is widely used as a model

for downlink communication systems. A channel particularly

important in wireless communications is the Additive White

Gaussian Noise fading BC (AWGN-BC), where the channel

between the single transmitter or base-station sending signal

X , and multiple users is modeled as Yi = hiX +Ni for user

i, where Ni is the AWGN, and hi is the fading parameter, or

channel state. When the transmitter has independent messages

to send to different subsets of users, the capacity region, the

largest set of rates for which the probability of error vanishes

to zero as the blocklength increases to infinity, captures some

of the tension seen in BCs: a single signal must be encoded

such that when correlated versions of this signal are received

at the users, each can extract their own intended message(s).

While the capacity region of the general BC remains

unknown, it is known for the degraded BC, the BC with

degraded message sets, the AWGN-BC without fading, and

the AWGN-BC with fading known at the transmitter and the

receivers [1]. The capacity of the AWGN-BC with COF is

unknown, but it may be enlarged by feedback even in the

non-fading regime [2], [3], in sharp contrast to memoryless

point-to-point channels. However, feedback cannot enlarge the

capacity of the physically degraded BC [4].

The capacity region of the AWGN-BC remains open when

the fading / Channel State Information (CSI) is not available at

the transmitter. Recently, the Layered Packet Erasure Broad-

cast Channel (LPE-BC) was proposed in [5] to approximate

the AWGN-BC without transmitter CSI. In the LPE-BC, the

base-station at each channel use sends a vector of inputs

(or layers of packets). At each time, each receiver receives

a random number of layers, and missing layers are said to

be “erased”. Erasures are correlated because when a layer

is erased, all the layers with smaller indices are also erased.

The authors in [5] determined the capacity region of the LPE-

BC exactly and bounded that of the AWGN-BC to within a

constant gap of ≈ 6 bits per channel use regardless of the

fading distribution.

The LPE-BC also generalizes another channel model widely

used in the networking literature: the (single-layer) Binary

Erasure Channel (BEC-BC), where at each channel use a

packet is sent, and the packet is either received or erased at

each receiver. The capacity region of the BEC-BC without

COF is known for any number of users (i.e., because the

channel is stochasticaly degraded) [1]. For the BEC-BC, the

presence of COF allows the transmitter to know if a packet

was erased or not at each receiver. This information allows it

to re-send certain packets, and may do so in a network-coded

fashion (by sending linar combinations of packets intended for

different users). In [6] the authors characterized the capacity

region of a 2-user BEC-BC with COF and constructed several

algorithms – that employ network coding of packets received

at the un-intended receiver – that achieve this capacity. In [7],

the capacity region for 3-user BEC-BC as well as two types of

symmetric K-user PEBCs and spatially independent PEBCs

with one-sided fairness constraints with COF were derived.

Similar results to [7] were also obtained in [8].

Contributions: All exact capacity results for the LPE-

BC are without COF [5], or for the single-layer case with

COF and up to three users [6], [7], [8]. We look explicitly at

the (multi-layer) LPE-BC with COF and combine and extend

the work in [5] and [6], [7], [8]. We provide a general outer

bound for LPE-BC with COF for K receivers (K ≥ 2) and

Q layers (Q ≥ 1), and present several achievable rate regions

(some only for the 2-user case). These regions are obtained

using schemes that employ network coding per-layer and / or

across layers in case retransmissions are needed. Inner and

outer bounds are analytically and numerically compared; it is

seen that they meet for certain LPE-BCs, thus giving exact

capacity results.

Paper Organization: Section II introduces the LPE-BC;

Section III presents the information theoretic inner and outer

bounds to the capacity region of the LPE-BC with COF known

at transmitter; Section IV illustrates the derived achievable

regions and outer bound with a numerical example; Section V

concludes the paper.
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II. SYSTEM MODEL AND ERGODIC CAPACITY RESULTS

The LPE-BC, as originally proposed in [5], consists of

one transmitter (base-station) and K receivers (users). At each

channel use (slot) the transmitter sends Q symbols (packets

/ layers), each symbol from an input alphabet X , where X
is assumed to be a discrete finite set; the input is denoted as

XQ := (X1, . . . , XQ) ∈ XQ. The LPE-BC is characterized

by the random vector (channel state) N := (N1, . . . , NK) ∈
[0 : Q]K, where Nk denotes how many layers have been

successfully received by user k ∈ [K]. The LPE-BC channel

output for user k ∈ [K] is Yk := XNk = (X1, . . . , XNk
) for

Nk > 0, that is, layers (XNk+1, . . . , XQ) have been erased;

if Nk = 0 then all layers have been erased and we set Yk = e

for some constant e. The channel state N is assumed to

be independent and identically distributed (i.i.d.) across time

slots, that is, the channel is memoryless. In the LPE-BC, the

erasures are correlated so as to capture the high SNR behavior

of the fading AWGN-BC [5]. The case Q = 1 and X =GF(2)

is the well studied BEC-BC.

A code for the LPE-BC is defined as follows. The trans-

mitter must convey |X |nRk (private) messages reliably to user

k ∈ [K] in n channel uses. Note that the rate Rk is measured

in number of packets per channel use. Let (W1, . . . ,WK) be

the messages to be sent to the users. We distinguish different

cases based on the amount of CSI at the transmitter (CSIT):

1) no CSIT: XQ
t (W1, . . . ,WK), t ∈ [n],

2) COF: XQ
t (W1, . . . ,WK,N

t−1), t ∈ [n],
3) full-lookahead CSIT: XQ

t (W1, . . . ,WK,N
n), t ∈ [n],

where XQ
t (·) is the encoding function a time t. We assume that

all receivers have full CSI, namely, by time t = n they know

N
n. User k ∈ [K] estimates Ŵk = deck(Y

n
k ,Nn) for some

decoding function deck. The probability of error is P
(n)
e :=

1−Pr[deck(Y
n
k ,Nn) = Wk, ∀k ∈ [K]]. The capacity region

is the convex closure of the set of (R1, . . . , RK) ∈ R
K
+ that

can be decoded at the receivers with vanishing probability of

error for some blocklength n, i.e., limn→∞ P
(n)
e = 0.

The case in item 1 / no CSIT has been solved in [5]:

Theorem 1 (no CSIT: from [5]). The capacity region of the

LPE-BC with no CSIT is characterized by

∑

k∈[K]

ωkRk ≤
∑

q∈[Q]

max
u∈[K]

(ωu Pr[Nu ≥ q]) , (1)

for all (ω1, . . . , ωK) ∈ R
K
+.

In this paper we are interested in the capacity for the case

in item 2. The case in item 3 is trivially solved by:

Theorem 2 (full-lookahead CSIT / ergodic capacity). The

capacity region of the LPE-BC with full lookahead CSIT is

characterized by

∑

k∈S

Rk ≤ E[max(Nu : u ∈ S)], (2)

for all non-empty subsets S ⊆ [K].

III. CAPACITY OF THE LPE-BC WITH COF

Although COF does not increase the capacity of a memo-

ryless single user channel, it enlarges the capacity region of

broadcast channels in general [2], [3].

Outer Bound: The following theorem gives an outer

bound to the capacity of the LPE-BC with COF:

Theorem 3 (COF: new outer bound). The capacity region of

the LPE-BC with COF is contained into
∑

k∈[K]

ωkRk ≤
∑

q∈[Q]

max
k∈[K]

(
ωπ(k) Pr[max(N

π(K)
π(k) ) ≥ q]

)
,

(3)

for all (ω1, . . . , ωK) ∈ R
K
+ and for all permutations π of [K],

and where N
π(K)
π(k) := [Nπ(k), Nπ(k+1), . . . , Nπ(K)].

Proof: We enhance the original LPE-BC to a physically

degraded LPE-BC by using a cooperation-based argument;

then, since feedback cannot increase the capacity of the

physically degraded broadcast channel [4], for the found

physically degraded LPE-BC we use the capacity result in

Theorem 1. Consider a permutation π of [K]. Enhance / give

as genie side information to receiver π(k) the following

Ñπ(k) := max(Nπ(k), Nπ(k+1), . . . , Nπ(K)), (4a)

so that the following Markov chains hold

XQ → XÑπ(1) → XÑπ(2) . . . → XÑπ(K) , (4b)

XQ → XÑk → XNk , ∀k ∈ [K]. (4c)

Apply Theorem 1 to the enhanced LPE-BC in (4) to obtain

the region in (3).

Note that Theorem 3 with Q = 1 is the outer bound in [7]

whose tightness is discussed next.

Inner Bounds: We give next several inner bounds for the

LPE-BC with COF.

Theorem 4 (COF: new Ach1). The following region is

achievable for the LPE-BC with COF and K = 2 users:

{(R1, R2) : max
q∈[Q]

(vq) ≤ 1 for some Ru,q ≥ 0}, (5a)

vq := max

(
R1,q

Pr[max(N1, N2) ≥ q]
+

R2,q

Pr[N2 ≥ q]
,

R1,q

Pr[N1 ≥ q]
+

R2,q

Pr[max(N1, N2) ≥ q]

)
, q ∈ [Q], (5b)

Ru := Ru,1 + . . .+Ru,Q, u ∈ [2]. (5c)

Proof: The region in (5) is achievable for the LPE-BC by

using the scheme in [6] independently on each layer, where

the erasure channel model studied in [6] is the special case of

Q = 1 in out LPE-BC model. To map the notation used in [6]

to ours, please note that ǫu,q = 1− Pr[Nu ≥ q], u ∈ [2], q ∈
[Q] is the probability that layer q is erased for user u, and

ǫ12,q = 1− Pr[max(N1, N2) ≥ q], q ∈ [Q] is the probability

that layer q is erased at both users.

Note that the extension of Theorem 4 to more than K = 2
users requires knowing the capacity of the single-layer model



for K users, which is open at present in general. The scheme

in [7] is tight (i.e., it achieves the outer bound in Theorem 3)

for Q = 1 and K ≤ 3 users, and also for Q = 1 and K ≥ 4
in some symmetric settings; the same paper claims that the

scheme matches to numerical precision the outer bound for

all simulated case of K ≤ 6 users; if the scheme were indeed

optimal for any number of users, then Theorem 4 could give a

scheme for any number of layers and users, and would prove

the tightness of Theorem 3 for Q = 1.

For the rest of this section, the achievable regions for the

LPE-BC with COF and K = 2 users will be of the form

presented in Theorem 5 next, which was inspired by [6]. We

shall use the following nomenclature: an uncoded packet is

packet that is sent by itself, i.e., not coded together with other

packets, on some layer; an overheard packet is packet that

has not yet been delivered uncoded to the intended user but

it has been successfully received at the non-intended user;

and a (network) coded packet is packet that is sent on some

layer in a linear combination involving other packets that

were originally sent uncoded on possibly some other layer

and to some other user. The idea is to have a protocol with

two phases: Phase1 corresponds to uncoded transmission on

some layers (and can be split in sub-phases), while Phase2 to

network coded transmissions on all layers.

Theorem 5 (COF: new Ach2). The following region is

achievable for the LPE-BC with COF and K = 2 users:

RCOF := {(R1, R2) : t
(unc) + t(NC) ≤ t

for some t ≥ 0, ku,q ≥ 0, q ∈ [Q], u ∈ [2]}, (6a)

Ru :=

∑
q∈[Q] ku,q

t
, ∀u ∈ [2], (rate), (6b)

t(unc) := max
q∈[Q]

(
t(unc)
q

)
, (duration of Phase1), (6c)

t(unc)
q :=

k1,q + k2,q
Pr[max(N1, N2) ≥ q]

, ∀q ∈ [Q], (6d)

k(rem)
u,q := ku,q

(
1−

Pr[Nu ≥ q]

Pr[max(N1, N2) ≥ q]

)
,
∀q ∈ [Q],
∀u ∈ [2],

(6e)

t(NC) := max
u∈[2]

(
t(NC)
u

)
, (duration of Phase2), (6f)

t(NC)
u :=

k(rem)
u

E[Nu]
, ∀u ∈ [2], (6g)

k(rem)
u := “DEPENDS ON THE SCHEME”, ∀u ∈ [2]. (6h)

Proof: Let ku,q ≫ 1, u ∈ [2], q ∈ [Q] so that we can

invoke the Law of Large Numbers in the following analysis

(loosely speaking, we “replace” random processes with their

statistical averages).

In Phase1, we send ku,q uncoded packets on layer q ∈ [Q]
for user u ∈ [2], one by one until one of the two users has

received it; it takes on average 1
Pr[max(N1,N2)≥q] time slots to

deliver one uncoded packet to some user on layer q ∈ [Q],
and therefore layer q ∈ [Q] is done delivering all its uncoded

packets by time t(unc)
q in (6d) at which point the number of

overheard packets for user u ∈ [2] is k(rem)
u,q in (6e). By time

t(unc) in (6c) all layers are done sending uncoded packets and

there are k(rem)
u in (6h) packets that still need to be delivered

to user u ∈ [2], which can be sent coded on any layer.

In Phase2, once all layers are done sending their uncoded

packets at time t(unc) in (6c), we send on every layer different

linearly independent random linear combinations of the over-

heard packets; user u ∈ [2] receives on average E[Nu] packets

in each time slot, thus it is done receiving its remaining k(rem)
u

in (6h) packets in t(NC)
u in (6g) time slots.

The different schemes in the following differ in the way

the time slots in the interval [t(unc)
q , t(unc)] on layer q ∈ [Q] are

utilized; this is the time interval after which all the k1,q+k2,q
uncoded packets for layer q ∈ [Q] have been delivered to

at least one user but there is at least one layer that is not

yet done sending its uncoded packets. Possible choices are to

leave layer q ∈ [Q] idle during [t(unc)
q , t(unc)] or to start sending

some coded packets.

Next we propose various ways to transmit information on

a layer once its uncoded phase if over, this will give different

expressions for the term in (6h) in Theorem 5.

Theorem 6 (COF: new Ach2: a layer is idle once its uncoded

phase is over). The region in (6) is achievable with k(rem)
u

in (6h) given by

k(rem)
u =

∑

q∈[Q]

k(rem)
u,q , ∀u ∈ [2], (7)

for k(rem)
u,q in (6e).

Proof: Here nothing is sent on layer q ∈ [Q] during times

slots [t(unc)
q , t(unc)], thus in Phase2 all the overheard packets

from all layers have to be delivered as indicated by (7).

Note that the extension of Theorem 6 to more than 2 users

requires being able to track which subset of non-intended

users has received a certain uncoded packet; this is the same

stumbling block as in the single-layer case in [7] for K ≥ 4.

Theorem 7 (COF: new Ach2: a layer, once its uncoded phase

is over, uses network coding for its overheard packets only).

The region in (6) is achievable with k(rem)
u in (6h) given by

k(rem)
u

=
∑

q∈[Q]

[
k(rem)
u,q − (t(unc) − t(unc)

q ) Pr[Nu ≥ q]

]+
, ∀ u ∈ [2].

(8)

for k(rem)
u,q in (6e), t(unc) in (6c) and t(unc)

q in (6d).

Proof: The region in Theorem 7 is the following en-

hancement of Theorem 6. During Phase1 of Theorem 6, layer

q ∈ [Q] remains idle during [t(unc)
q , t(unc)], which is a clear

waste of resources. The idea in Theorem 7 is that as soon as

a layer finishes sending its uncoded packets, it immediately

starts sending network-coded overheard packets that need

retransmission on that layer. The number of overheard packets

for user u ∈ [2] on layer q ∈ [Q] at time slot t(unc)
q is k(rem)

u,q .

There are extra t(unc) − t(unc)
q time slots to transmit coded

packets on layer q ∈ [Q] before the start of Phase2 (when

all layers will send coded packets). The number of packets



that can be received on layer q ∈ [Q] by user u ∈ [2] is

k(extra)
u,q = (t(unc) − t(unc)

q ) Pr[Nu ≥ q]. Since user u ∈ [2] has

k(rem)
u,q packets that still need to be received on layer q ∈ [Q],

k(extra)
u,q can not be larger than k(rem)

u,q . Thus, we have k(rem)
u in (8)

packets left for user u when Phase1 ends.

The scheme in Theorem 7 tries to “fill” the idle slots in

the scheme in Theorem 6. However, it may still be the case

that once a layer is done sending linear combinations of its

overheard packets, other layers are still in the process of

completing their uncoded phases; when this is the case, this

layer will remain idle, which does not seem to be optimal.

The following scheme aims to eliminate all idle slots.

Theorem 8 (COF: new Ach2: a layer, once its uncoded

phase is over, sends coded packets by combining all overheard

packets from all layers up to that point). The region in (6) is

achievable with k(rem)
u in (6h) given by

k(rem)
u

=

[ ∑

q∈[Q]

k(rem)
u,q − (t(unc) − t(unc)

q ) Pr[Nu ≥ q]

]+
, ∀ u ∈ [2].

(9)

Proof: The region in Theorem 8 is the following enhance-

ment of Theorem 7. During Phase1 of Theorem 7, once layer

q ∈ [Q] has finished sending its uncoded packets at time t(unc)
q ,

we send linear combinations of the overheard packets on layer

q and the network coded packets are sent on layer q only; we

refer to this scheme as inter-layer network coding scheme. In

Theorem 8 we propose an inter-layer network coding scheme:

once layer q has finished sending its uncoded packets at time

t(unc)
q , we send linear combinations of *all* overheard packets

on *all* layers up to time t(unc)
q (note: each layer gets a linearly

independent linear combination).

Moreover, for Theorem 8 the order in which packets are

sent on layer q ∈ [Q] during the uncoded phase (that is,

time interval [0, t(unc)
q ]) is randomized, that is, the probability

of a user being picked to be served at a given time slot is

proportional to how many uncoded packets that user needs

to receive on that layer. Let Aq be the random variable that

indicates which user is served on layer q ∈ [Q] during the

uncoded phase, assumed to be i.i.d. over time and independent

of everything else with

Pr[Aq = u] =
ku,q

k1,q + k2,q
, u ∈ [2]. (10a)

With (10a), we write

Pr[Aq = u,max(N1, N2) ≥ q] =
ku,q

t(unc)
q

, (10b)

Pr[Aq = u,max(N1, N2) ≥ q,Nu < q] =
ku,q

t(unc)
q

ηu,q,

(10c)

ηu,q :=
k(rem)
u,q

ku,q
= 1−

Pr[Nu ≥ q]

Pr[max(N1, N2) ≥ q]
∈ [0, 1], (10d)

where (10b) is the probability that user u ∈ [2] is scheduled

on layer q ∈ [Q] and its uncoded packet is received by at least

one of the users; similarly, (10c) is the probability that user

u ∈ [2] is scheduled on layer q ∈ [Q] and its uncoded packet

is received by the other user only. The quantity in (10d) can

be thought of as the fraction of overheard packets for user

u ∈ [2] on layer q ∈ [Q].
Let π be the permutation of [Q] such that

0 ≡ t(unc)

π(0) ≤ t(unc)

π(1) ≤ t(unc)

π(2) . . . ≤ t(unc)

π(Q) ≡ t(unc). (10e)

Let also

∆j := t(unc)

π(j) − t(unc)

π(j−1), j ∈ [Q]. (10f)

Phase1 is composed of Q sub-phases, where the j-th sub-

phase has duration ∆j , i.e., time slots [t(unc)

π(j−1), t
(unc)

π(j)), j ∈ [Q].

At time t(unc)

π(j), the layers π(1), . . . , π(j) have finished their

uncoded phase. There are Q! possible configurations of sub-

phases, one for each permutation of [Q].
Let k(unc)

u,q [j] be the number of uncoded packets left to be

delivered to user u ∈ [2] on layer q ∈ [Q] at the end of

the j-th sub-phase; these packets must be still sent on layer

q ∈ [Q]. Also, let k(rtx)
u [j] be the number of overheard packets

left to be delivered to user u ∈ [2] at the end of the j-th sub-

phase; these packets can be sent coded on any layer. Initialize

k(unc)
u,q [0] = ku,q ≥ 0 and k(rtx)

u [0] = 0. We have the following

recursive equation for j ∈ [Q]:

k(unc)
u,q [j]

=
[
k(unc)
u,q [j − 1]−∆j Pr[Aq = u,max(N1, N2) ≥ q]

]+

= ku,q max

(
1−

t(unc)

π(j)

t(unc)
q

, 0

)
. (10g)

The update equation for k(unc)
u,q [j] in (10g) says that the number

of uncoded packets for user u ∈ [2] on layer q ∈ [Q] decreases

with “time” j ∈ [Q]. In particular, at the end of the j-th sub-

phase, k(unc)
u,q [j − 1] is reduced by the number of packets that

can be received by either user during the time interval ∆j

whenever user u ∈ [2] is scheduled for transmission on layer

q ∈ [Q]. The final expression in (10g) simply says that by time

t(unc)

π(j) the fraction of uncoded packets left to be transmitted is

proportional to 1−t(unc)

π(j)/t
(unc)
q if π(j) < q and zero otherwise.

Similarly, we have for j ∈ [Q]:

k(rtx)
u [j]

=

[
k(rtx)
u [j − 1]−∆j

j−1∑

ℓ=1

Pr[Nu ≥ π(ℓ)]

+
∑

q∈[Q]

min
(
p, k(unc)

u,q [j − 1]
)
p:=∆j Pr[Aq=u,max(N1,N2)≥q,Nu<q]

]+

(10h)

=

[ ∑

{q:tq≥tπ(j)}

k(rem)
u,q

t(unc)

π(j)

t(unc)
q

+
∑

{q:tq<tπ(j)}

(
k(rem)
u,q − (t(unc)

π(j) − t(unc)
q ) Pr[Nu ≥ q]

)]+
.

(10i)



The update equation for k(rtx)
u [j] in (10h) says that the

number of coded packets for user u ∈ [2] can increase or

decrease over “time” j ∈ [Q]. In particular, at the end of the j-

th sub-phase, k(rtx)
u [j−1] is decreased by the number of packets

that can be received by user u ∈ [2] during the time interval

∆j on the layers that have already completed their uncoded

phase (which is proportional to
∑j−1

ℓ=1 Pr[Nu ≥ π(ℓ)]), or

increased by the number of overheard packets during the time

interval ∆j across any of the layers. The “min” in (10h)

simply says that the number of overheard packets for user

u ∈ [2] on layer q ∈ [Q] cannot exceed the number of uncoded

packets left for transmission at the end of the (j − 1)-th sub-

phase, k(unc)
u,q [j−1]. The final expression in (10i) can be derived

after some tedious algebra starting form (10h).

At the end of the Q-th sub-phase, we have all k(unc)
u,q [Q] =

0, but possibly some k(rtx)
u [Q] > 0. Therefore, we still have

k(rem)
u = k(rtx)

u [Q] in (6) coded packets to deliver to user u ∈ [2]
during Phase2. The expression in (9) can be obtained after

some simple algebra starting from (10i) with j = Q.

IV. NUMERICAL EVALUATIONS

Example 1: Consider the case of K = 2 users and Q = 2
layers, with N1 independent of N2 and with marginals as in [5,

eq(29)]. Without CSIT, the capacity region in Theorem 1 has

three corner points (R1, R2) ∈ {(0, 1), (34 ,
1
2 ), (1, 0)}, where

1 = E[N1] = E[N2]. The corner point (34 ,
1
2 ) is achieved by

assigning layer 1 to user 1 and layer 2 to user 2 [5]. With COF,

it can be shown analytically the outer bound in Theorem 3

has three corner points (R1, R2) ∈ {(0, 1), (79 ,
5
9 ), (1, 0)}, and

that Theorem 4 does not achieve the corner point (79 ,
5
9 ) while

Theorem 6 does (with R1 = R1,1 and R2 = R2,2). This is

an example where our bounds are tight. Note that for this

channel, one has t(unc)
1 = t(unc)

2 , thus there is no issue of “idle”

slots, which will not be the case for the next example. Notice

that COF enlarges the capacity region for this example.

TABLE I: Joint PMF Pr[(N1, N2) = (i, j)].

j = 0 j = 1 j = 2 Pr[N1 = i]
i = 0 0.0497 0.2443 0.0321 0.3261
i = 1 0.1483 0.2251 0.1222 0.4956
i = 2 0.0435 0.0728 0.0620 0.1783

Pr[N2 = j] 0.2415 0.5422 0.2163

Example 2: The inner and outer bound regions for the

channel described in Table I are evaluated in Fig 1, in which

both users have a more reliable look at layer 1 than at layer 2,

and the channel states are correlated at each channel use.

The outer bound in Theorem 3 is convex-hull of the fol-

lowing rate points: A = (0, 0.9748), B1 = (0.3326, 0.7585),
C1 = (0.4231, 0.6862), D1 = (0.6739, 0.3326), E =
(0.8522, 0). Corner points A and E are always trivially

achievable, so we will not list them in the following.

The achievable region in Theorem 4 has non-trivial corner

points: B2 = (0.0957, 0.9125), C2 = (0.4091, 0.6624),
D2 = (0.7697, 0.1540). The achievable region in Theo-

rem 6 has non-trivial corner points: B3 = (0.2779, 0.7941),
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Fig. 1: Outer and inner bounds for the channel in Table I.

C3 = (0.4817, 0.5903), D3 = (0.7176, 0.2511). The achiev-

able region in Theorem 7 has non-trivial corner points:

B4 = (0.2812, 0.7896), C4 = (0.4943, 0.5751), D4 =
(0.6988, 0.2827). The achievable region in Theorem 8 has

non-trivial corner points: B5 = (0.3069, 0.7752), C5 =
(0.5035, 0.5729), D5 = (0.6739, 0.3326). It is not easy to

tell the difference among the various achievable regions with

the naked eye from Fig 1, but the order of inclusion, from

the smallest to the largest region is, Theorem 4, Theorem 6,

Theorem 7, Theorem 8, and finally the outer bound in

Theorem 3. It is noticed that Theorem 8 achieves one of

the corner points (D1) of the outer bound in Theorem 3. An

interesting observation from the numerical optimization for

this example is that at the corner points either k1,q = 0 or

k2,q = 0 in the various achievable regions across layers (i.e.,

a layer is assigned to one user only – as it was the case in

Example 1), with the only exception of C-points; for the C-

points, the ‘more reliable’ layer 1 is shared by both users. We

also remark from Fig 1 that the inner and outer bounds are the

furthest apart around C-points. Why this is the case is subject

of current investigation.

V. CONCLUSIONS

This paper derived inner and outer bounds for the LPE-BC

with COF. The studied LPE-BC extends the classical (single-

layer) binary erasure BC and has can be connected to the

Gaussian fading BC. Our inner bounds make use of network

coded retransmissions when the sender, through COF, realizes

that a packet has been received only by unintended users.

What this work shows is the necessity of network coding

across users (a key element also for the single-layer binary

erasure BC with COF) and across layers. Analytical and

numerical examples confirm that our bounds can be tight for

some channel parameters. Future work includes determining

for which channel parameters the presented schemes are

optimal, deriving new strategies for the remaining cases,

extending the analysis to more than two users, and ultimately

derive schemes for the Gaussian noise case.
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