“© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.”

Real-Time Network Slicing with Uncertain
Demand: A Deep Learning Approach

Nguyen Van Huynh, Dinh Thai Hoang, Diep N. Nguyen, and Eryk Dutkiewicz

Abstract—Practical and efficient network slicing often faces
real-time dynamics of network resources and uncertain customer
demands. This work provides an optimal and fast resource slicing
solution under such dynamics by leveraging the latest advances
in deep learning. Specifically, we first introduce a novel system
model which allows the network provider to effectively allocate its
combinatorial resources, i.e., spectrum, computing, and storage,
to various classes of users. To allocate resources to users while
taking into account dynamic demands of users and resources
constraints of the network provider, we employ a semi-Markov
decision process framework. To obtain the optimal resource
allocation policy for the network provider without requiring
environment parameters, e.g., uncertain service time and resource
demands, a Q-learning algorithm is adopted. Although this
algorithm can maximize the revenue of the network provider, its
convergence to the optimal policy is particularly slow, especially
for problems with large state/action spaces. To overcome this
challenge, we propose a novel approach using an advanced deep
Q-learning technique, called deep dueling that can achieve the
optimal policy at few thousand times faster than that of the
conventional Q-learning algorithm. This approach is especially
significant for large-scale implementation to deal with dynamic
demands of users and real-time resource constraints. Simulation
results show that our proposed framework can improve the
long-term average return of the network provider up to 40%
compared with other current approaches.

Index Terms—Network slicing, resource allocation, uncertain
demand, real-time requests, MDP, Q-Learning, deep reinforce-
ment learning, and deep dueling networks.

I. INTRODUCTION

Network slicing is a novel virtualization mechanism that
enables multiple logical networks, i.e., slices, with specific
service and resource requirements to be created and simul-
taneously run on top of a single physical infrastructure by
using software-defined networking (SDN) and network func-
tions virtualization (NFV). By allowing network providers
to provide network infrastructure with flexible demands and
requirements as a service, network slicing thereby boosts the
operational efficiency and reduces time-to-market for new
services. However, there are two main challenges when al-
locating network resources to slices. First, various emerging
services, e.g., IoT services require not only radio resources for
communications but also other resources, e.g., computing and
storage resources to meet their users’ quality-of-service (QoS)
requirements. Thus, how to effectively and simultaneously
manage these combinatorial resources is a crucial challenge
for the network provider. Second, due to the uncertainty of
service demand/requirement, e.g., frequency of requests and
occupation time, how to optimally and dynamically allocate
resources in an online manner to maximize the long-term
revenue is another challenge.

To address these problems, several solutions have been
introduced recently. In particular, the authors in [2] introduce
a two-tier model to obtain the optimal admission policy and
to effectively allocate radio resources to the accepted slices.
To do so, an extensive searching method is developed to
find the globally optimal solution for the network provider.
Nevertheless, this searching method is impractical for complex
systems which have a large number of resources. To address
this problem, the authors in [3] propose a three-step heuristic
method to effectively allocate resources to slices. However,
this heuristic scheme cannot guarantee the optimality for
the network provider. Moreover, these solutions may not be
feasible to apply for dynamic network slicing systems with a
diversity of resource demands and service time.

To deal with the dynamic of the environment, the authors
in [4] introduce a model that can predict future demands
of slices, thereby maximizing the system resource utilization
for the network provider. To that end, the authors adopt the
Holt-Winters theory to predict network slice usage demands
through analyzing the traffic usage of slices in the past.
However, the heavy-tailed distribution functions and control
parameters such as scale factor, least-action trip planning, and
potential gain strongly affect the accuracy of this prediction.
Moreover, the proposed solution only considers the short-
term reward for the network provider, and thus the long-term
profit may not be able to obtain. Thus, the authors in [5]
and [6] propose reinforcement learning algorithms to address
these problems. In particular, reinforcement learning allows
the network control to learn from its decisions in a real-time
manner to obtain the optimal policy through the trial-and-error
learning process [7]. However, this approach converges slowly
to the optimal solution, especially for large-scale systems.

All aforementioned works only consider optimizing radio
resources, while, as stated in [8], a typical network slice is
composed of three main components, i.e., radio, computing,
and storage. Thus, considering only radio resources is imprac-
tical and may not be able to obtain the optimal slicing solution.

Given the above, in this paper, we develop a dynamic
network resource management model based on Semi-Markov
decision process (SMDP) framework [9]. This model allows
the network provider “slice” various combinatorial resources,
e.g., radio, computing, and storage resources, in an online
manner. However, jointly considering combinatorial resources
together with the uncertainty of demands may lead to an
intractable problem. This is because we need to simultaneously
deal with a very large multi-dimension state space and real-
time dynamic decisions. To tackle it, we propose a novel deep
learning approach using the dueling neural network architec-

ture combined with the Q-learning algorithm [10]. Extensive
simulations show that the proposed solution can’t only deal
effectively with the system’s dynamic, but also significantly
improve the system performance compared with all state of
the art network slicing resource allocation approaches.

II. SYSTEM MODEL

We consider a general network slicing model with three
major parties: (i) the network provider, (ii) tenants, and (ii) end
users [4], [5], [8]. The network provider is the owner of the
network infrastructure who provides resource slices including
radio, computing, and storage, to the tenants. The tenants
request and lease resource slices to meet service demands of
their subscribers. The end users run their applications on the
slices of the subscribed tenants.

LA

6 o
Utilities
=
Tenant
2
Automotive
Q Tenant
(¥ 2

Extra service -
management || Resource
llocat

Slice
requests |3

Service
management

3

B

g

2

3

8

3

3

2 8

Gptimal s &
olicy | 53
= o

2l

Y

3

information| Resource N
i 9

ing L |

End users Network provider

Tenants

Fig. 1: System model.

Fig. 1 illustrates three tenants corresponding to three com-
mon classes of services, i.e., utilities, automotive, and manu-
facturing. Each class of service has some special features such
as its functional, behavioral perspective, and requirements. For
automotive class, a vehicle may need an ultra reliable slice
for telemetry assisted driving, while security, resilience, and
reliability services are of higher priority for slice requests
from industry [11]. Hence, when a tenant sends a network
slice request to the network provider, the tenant will specify
requested resources and additional service requirements, e.g.,
security and reliability. As a result, depending on service
demands, tenants may need to pay different prices for their
requests. When a slice request arrives at the system, the service
management component will analyze the requirements and
make a decision, i.e., accept or reject the request, based on its
optimal policy. The resource management and orchestration
(RMO) block then allocate resources to the accepted slice
request. If the tenant has additional service requirements, the
extra service management (ESM) block will deploy extra
services on the requested slice at the same time. Once a
slice request is accepted, the network provider will receive an
immediate reward (the amount of money) paid by the tenant
for its granted resources and services.

Assume that there are C' classes of slices, denoted by
C = {1,...,¢,...,C}. Each slice from class ¢ requires
rl¢, wi® and 0.° units of radio, computing, and storage
resources, respectively. If a slice request from class c is
accepted, the provider will receive an immediate reward 7..
The maximum radio, computing, and storage resources of
the network provider are denoted by ©, €2, and A units,
respectively. Let n. denote the number of slices from class ¢
being simultaneously run/served in the system. To ensure that

the allocated resources do not exceed the available resources
at any time, we have the following resource constraints:

C c C
o0 > Zrzenc, Q> szenc, and A > Z(;Zenc.
c=1

c=1
(1

c=1

III. PROBLEM FORMULATION

To maximize the long-term reward of the network
provider while considering the real-time arrivals/departures
of slice requests, we adopt the semi-Markov decision pro-
cess (SMDP) [9]. An SMDP is represented by a tuple
(t;,S, A, L,r) where t; is an decision epoch, S is the state
space, A is the action space, £ captures the state transition
probabilities and the state sojourn time distribution, and r
is the reward function. Unlike discrete Markov decision pro-
cesses where decisions are made in every time slot, in an
SMDP, one only makes decisions when an event occurs. This
makes SMDP more effective to capture real-time systems.

A. Decision Epoch

A decision epoch is defined as the interval between two
successive decisions of the system. Under our system model,
the network provider needs to make decisions upon receiving
requests from tenants. Thus, we define a decision epoch as the
inter-arrival time between two successive slice requests.

B. State Space

The system state s of the SMDP at the current decision
epoch is defined as the number of slices n. from a given class
¢ € C simultaneously running in the system. Formally, we
define s by 1 x C vector:

ncl, 2

Given the constraints in (1), the state space S of all possible
states s is expressed as:

A
S=[n1,...,Ney. .-

c
S&2{s=1[ny,...,nc...nc]: R > Zrzenc;
c=1
c c 3
Q> wing A=Y 6,
c=1 c=1
We then define the event vector e = [ey, ..., e.,...,ec]

with e, € {1,—1,0},Vc € C at the current system state s. e,
equals to “1” if a new slice request from class c arrives, e.
equals to “—1” if a slice from class ¢ departs, and e, equals “0”
otherwise (i.e., no slice request arrives nor completes/departs
from the system). Then, all the possible events are defined as
in (4).

C
Sé{e;ece{—1,0,1};2\ec| g1}. (4)
c=1

For the case in which there is no event occurring in the system,
we define a trivial event e* 2 [0,...,0] € £.

C. Action Space

At state s, if a slice request arrives, the network provider can
choose either to reject or accept this request to maximize its
long-term reward (defined below). Let ag denote the action to
be taken at state s where ag = 1 if an arrival slice is accepted
and ag = 0 otherwise. The state-dependent action space A is
defined by:

As £ {as} = {0’ 1}' (5)

D. State Transition Probability

As aforementioned, in this work, we propose reinforcement
learning approaches which can obtain the optimal policy for
the network provider without requiring information from the
environment. However, to lay a theoretical foundation and to
evaluate the performance of our proposed solutions, we first
assume that slice requests from class c arrive in the system in
a Poisson process with mean rate \.. The network resources
occupation time of slices from class ¢ follows an exponential
distribution with mean 1/pu.. Through the uniformization
technique [12], we can compute the occurrence rate zg of the
next event expressed as follows:

C

Rs = Z()\c + nc/fcc)- (6)

c=1

Given z = maég(zs, based on (6), we can calculate the

probabilities of gveents occurring in the next event e as follows.
A slice request from class ¢ will arrive with probability \./z.
An accepted slice from class ¢ will depart from the system with
probability n.u./z. Finally, the trivial event occurring in the
system with probability 1 — zs/z. Based on these probabilities,
the state transition probabilities can be derived accordingly.

E. Reward Function

The immediate reward after action ag is executed at state
s € S is defined as follows:

s = {

At state s, if an arrival slice is accepted, i.e., as = 1, the
system will move to next state s’ and the network provider
receives an immediate reward r.. In contrast, the immediate
reward is equal to O if an arrival slice is rejected or there is no
slice request arriving at the system. The value of r. represents
the amount of money paid by the tenant based on resources
and additional services required.

As the transition and reward function do not change with
time, our system’s statistical properties are time-invariant, i.e.,
stationary. Hence, the decision policy 7, which is a pure
strategy, i.e., accept or reject an arrival request, of the SMDP
model can be defined as a time-invariant mapping from the
state space to the action space: S — As. Thus, the long-term
average reward starting from a state s can be formulated as:

E{Y o 7(sk, 7(sk))Is0 = s}
E{Zk 0 Tklso = s}

ife,=1,as=1,and s’ € S,
otherwise.

)

Ra(s) = V€S, ®

K~>oo

where 7, is the time interval between the k-th and (k + 1)-th
decision epoch, r is the immediate reward of the system, and
m(s) is the action corresponding to the policy 7 at state s.
In our SMDP model, the embedded Markov chain is unichain
including a single recurrent class and a set of transient states
for all pure policies 7. Hence, the average reward R,(s) is
well defined and does not depend on the initial state, i.e.,

Rr(s) = Rx,Vs € S [9]. The average reward maximization
problem is then written as:
max Ry = M 9)
i Lry(s,m(s))
s.t. Zﬂ('|s—1Vs€8
s’eS

where £ is the limiting matrix of the transition probability
matrix L. Our objective is to find the optimal admission policy
that maximizes the long-term average reward of the network
provider, i.e., 7" = argmax R.

It is worth noting tﬁrat the problem (9) requires environ-
ment information, i.e., arrival and completion rates of slice
requests, to construct the transition probability matrix £ [9].
Nevertheless, due to the uncertain demands and the dynamics
of slice requests from tenants, these environment parameters
might not be available and could be time-varying. To deal with
the demand uncertainty and curse-of-dimensionality problems,
in the following, we recruit Q-learning and deep dueling
algorithms to find the optimal admission policy at the RMO
to maximize the long-term average reward.

IV. Q-LEARNING ALGORITHM FOR DYNAMIC RESOURCE
ALLOCATION UNDER UNCERTAINTY

Q-learning [13] is a reinforcement learning technique which
enables the controller to find the optimal policy through
interaction processes with the environment without requiring
environment information in advance. In particular, the Q-
learning algorithm implements a Q-table to store the value
for each pair of state and action. Given the current state, the
network provider will make an action based on its current
policy. After that, the algorithm observes the results, i.e.,
reward and the next state, and updates the value of the Q-
table accordingly. In this way, the Q-learning algorithm can
learn from its decisions to converge to the optimal policy after
a finite number of iterations [13].

In this paper, we aim to find the optimal policy, i.e., a
mapping from the state space to actions, 7* : S — Ay for the
network provider to maximize its long-term average reward.
We first denote V™ (s) : S — R as the expected value function
obtained by policy 7 from each state s € S.

V7'(s) =E, {thm(st,astﬂso = s}
t=0

= Er[ru(sv.as,) + 1V (s041)ls0 = 5|,

(10)

where 0 < ~ < 1 is the discount factor that determines the
importance of long-term reward [13]. In particular, if +y is close
to 0, the RMO will prefer to select actions to maximize its

short-term reward. In contrast, if y approaches 1, the RMO will
make actions to maximize its long-term reward. r:(s¢, as,) is
the immediate reward achieved by taking action ag, at state
s;. Given a state s, policy 7(s) is obtained by taking action ag
such that the value function is maximized [13]. At each state
s, an optimal action is determined based on the optimal value
function as in (11):

V*(s) = max {Eﬂ[m(st,ast) + 7V’T(st+1)]}7 Vs € S.
] (11)
For all state-action pairs (s, as), the optimal Q-functions are
denoted by:

Q*(s,as) = re(st,as,) + YEL [V (s¢41)], Vs €S. (12)
Then, V*(s) is expressed as in (13):
V*(s) = max{Q" (s, as)}. (13)

By making samples iteratively, the problem is reduced to
determining Q*(s, as) for all (s,as). Intuitively, to find the
difference between the current Q-value and the predicted Q-
value, the Q-function is updated as follows:

Qi (st, as,) = Qi(se, as,)+
atPASMa&)+7wnw<QA&+ha&+JAfQASMa&),

sy p1
(14)
where oy is the learning rate that determines the impact of
new information to the existing value. Moreover, the learning
rate oy is deterministic, nonnegative, and satisfies (15) [13] to
ensure that the Q-learning algorithm converges to the optimal
solution.
o0 oo
oy € [0, 1),Zat = 00, and Z(at)Q < 00. (15)
t=1 t=1

Based on (14), the RMO can employ the Q-learning to
obtain the optimal policy. Specifically, the algorithm first
initializes the table entry Q(s,as) arbitrarily, e.g., to zero
for each state-action pair (s, as). Given the current state (s,
the algorithm chooses action ags and observes results after
performing this action. In practice, to select action as,_,,
one can use e-greedy algorithm [7]. Specifically, this method
introduces a parameter € which guides the controller to choose
a random action with probability € or select an action that
maximizes the Q(s, as) with probability 1 —e. In this way, the
algorithm can explore the whole state space. The algorithm
then determines the next state and reward after performing
the chosen action and update the table entry for Q(s;,as,)
based on (14). The algorithm will be terminated when the
number of iterations is reached or all the Q-values converge.
The output of the algorithm is the optimal policy determining
an action to be performed at a given state such that Q* (s, as)
is maximized, i.e., 7*(s) = arg max Q*(s, as). Under (15), it
was proved in [13] that the Q-lear(rllsing algorithm will converge
to the optimal solution with probability one.

Several research works in the literature introduce the ap-
plication of the Q-learning algorithm to address the network
slicing problem, e.g., [5]. However, the Q-learning algorithm
often takes a long time to converge to the optimal solution

Fully-connected
hidden layers

Outputs

® Q(s,as)

Fully-connected
hidden layers

Fig. 2: Deep dueling model.

when the state space or action space is large. For the practical
combinatorial resource allocation problem considered in this
work, the state space can be as large as tens of thousands.
This makes Q-learning practically inapplicable, especially for
real-time resource slicing. Therefore, we develop the efficient
algorithm to overcome this shortcoming by leveraging the deep
Q-learning and novel dueling architecture.

V. FAST AND OPTIMAL RESOURCES SLICING WITH DEEP
DUELING NETWORK

We propose deep dueling algorithm, which was originally
developed by Google DeepMind in 2016 [10], to address the
slow-convergence problem of the Q-learning algorithm. The
key idea making the deep dueling superior to conventional
approaches is its novel neural network architecture. In this
algorithm, instead of estimating the action-value function (Q-
function), as in deep Q-learning [15] and deep double Q-
learning [16] algorithms, the values of states and advantages
of actions are separately and simultaneously estimated by two
sequences, i.e., two streams, of fully connected layers. The
values and advantages are then combined at the output layer
as shown in Fig. 2. This idea is from the fact that in many
states it is unnecessary to estimate the value of corresponding
actions as the choice of these actions has no repercussion on
what happens [10]. In this way, the deep dueling algorithm
can achieve more robust estimations of the state value, thereby
significantly improving its convergence rate and stability.

The details of the deep dueling algorithm are provided
in Algorithm 1. Specifically, the training phase consists of
multiple episodes. In each episode, the RMO performs an
action and learns from its observations corresponding to the
taken action. Hence, the RMO needs to tradeoff between the
exploration and exploitation processes over the state space.
Given the current state, the algorithm will choose an action
based on the e-greedy algorithm. The algorithm will start
with a fairly randomized policy and later slowly move to a
deterministic policy. This means that, at the first episode, ¢
is set at a large value, e.g., 0.9, and gradually decayed to a
small value, e.g., 0.1. After that, the RMO will perform the
selected action and observe results, i.e., next state and reward.
This transition is then stored in the replay memory for the
training process at later episodes. The learning process is then

performed based on random samples from the memory pool,
i.e., experience replay mechanism. By doing so, the previous
experiences are exploited more efficiently as the algorithm can
learn them many times. Additionally, by using the experience
mechanism, the data is more like independent and identically
distributed, thereby removing the correlations between obser-
vations. After that, the random samples of transitions from
the replay memory will be fed into the neural network. In
particular, for each state, we formulate four features, i.e.,
radio, computing, storage, and arrival event, as the input of
the deep neural network. In this way, the training process is
more efficient as all aspects of states are taken into account.

Recall that given a policy 7, the values of the Q-function
Q™ (s, as) and state s are expressed as in (16).

Qﬂ-(s;as) == E[Rt‘st = S,Clst = aSyﬂ-]7and

. (16)
Vi(8) = Eagor(s) [Q7 (5, 05)].
The advantage function of actions can be computed as:
G"(s,as) = Q" (s,as) — V" (s, as). (17)

Specifically, the value function) corresponds to how “good it
is in a particular state s” [10]. The state-action pair calculates
the value of performing action ag in state s. The advantage
function separates the state value from the Q-function to
measure the importance of each action.

To estimate values of V and G functions, we use a dueling
neural network in which one stream of fully-connected layers
corresponds to V(s; 5) and the other stream is used to obtain
an |A|-dimensional vector G(s,as;«) with o and § are the
parameters of fully-connected layers. These two streams are
then combined to obtain the Q-function by (18).

(s, as; a, B) = V(s; B) + G(s, as;).

However, Q(s, as; a, 3) is only used to estimate the value of
the Q-function. Moreover, given Q, we cannot obtain V' and
G uniquely. Therefore, (18) is unidentifiable resulting in poor
performance. To address this issue, we combine the outputs
of the two streams as follows:

Q(s, as;, B) = V(s; 8) + (G(s, a5 0) — max §(s, as;).

5 (19)
In this way, the advantage function estimator has zero ad-
vantage when choosing an action. Intuitively, given af =
argmax,_ c4 Q(s,as;, B) = argmax,, e G(s,as;), we
have O(s,a’; o,) = V(s;5). (19) can be transformed into

? s

(20) by replacing the max operator with an average.

Q(s, a3, B) = V<s;5>+(g<s,as;a>—ﬁ S G(s, 05:0)).
as (20)

(18)

Based on (20), the algorithm then updates the neural
network by minimizing the lost functions (line 12) [15] by
using the Stochastic Gradient Descent algorithm that is the
engine of most deep learning algorithms. The parameters of
the target network Q are only updated with the Q-network
parameters every N steps and are remained fixed between
individual updates. In this way, the correlations between

Algorithm 1 Deep Dueling Network Based Resources Slicing
Algorithm

1: Initialize replay memory with capacity D.
2: Initialize the primary network Q@ including two fully-
connected layers with random weights « and S.
3: Initialize the target network Qasa copy of the primary
Q-network with weights & = o and B = B.
4: for episode=1 to T do
5: Based on the e-greedy algorithm, with probability e
select a random action as,, otherwise select as, =
arg max Q*(s¢, as,; a,)
6: Perform action as, and observe reward r; and next
state S;41
Store transition (s, as, , T't, St+1) in the replay memory
Sample random minibatch of transitions
(sj,as,;,7j,8511) from the replay memory
9: Combine the value function and advantage functions
as follows:

(s, as,;a, B8) =V(s;; 8) + (G(sy, as,;)
1
RS

10: Yji =75 + ’ymaxasjﬂ Q(Sj+1va’sj+1;daﬂ)
11: Perform a gradient descent
(yj - Q(Sja aSj; «, 6))2 R
12: After N episodes reset Q = Q
13: end for

step on

the target and estimated Q-values are significantly reduced,
thereby stabilizing the algorithm. It is important to note that
V(s;5) and G(s,as;) are estimated automatically without
any extra supervision or modifications in the algorithm.

VI. PERFORMANCE EVALUATION
A. Parameter Setting

We consider three common classes of slices, i.e., utilities
(class-1), automotive (class-2), and manufacturing (class-3).
Unless otherwise stated, the arrival rates p. of requests from
class-1, class-2, and class-3 are set at 12, 8, and 10 re-
quests/hour, respectively. The completion rates A, of requests
from class-1, class-2, and class-3 are set at 3 requests/hour.
The immediate reward . for each accepted request from class-
1, class-2, and class-3 are 1, 2, and 4, respectively. These
parameters will be varied to evaluate the impacts of the imme-
diate reward on the decisions of the RMO. Each slice request
requires 1 GB of storage resources, 2 CPUs for computing,
and 100 Mbps of radio resources [14]. For the Q-learning
algorithm, we set the discount factor at 0.9 [13]. To evaluate
the performance of the proposed deep dueling network, we
will compare its performance with other deep reinforcement
learning algorithms, i.e., deep Q-learning [15] and deep double
Q-learning [16]. The architecture of the deep neural network
greatly affects the convergence of the algorithm. Intuitively, the
complexity of the algorithm will increase when the number of
hidden layers increases. However, when the number of hidden

layers is small, the algorithm may not converge to the optimal
policy. Similarly, the algorithm will need more time to estimate
the Q-function when the size of hidden layers and mini-batch
size are big. In our experiment, we use two fully-connected
hidden layers together with input and output layers. The size
of the hidden layers and the mini-batch size are set at 64. Both
the Q-learning algorithm and the deep reinforcement learning
algorithms use e-greedy algorithm with the initial value of €
is 1, and its final value is 0.1 [13]. The maximum size of the
experience replay buffer is 10,000, and the target Q-network
is updated every 1,000 iterations [15].

B. Simulation Results

1) Convergence of Deep Reinforcement Learning Ap-
proaches: First, we show the learning process through the con-
vergence of proposed deep reinforcement learning approaches,
i.e., deep Q-learning, deep double Q-learning, and deep du-
eling, in different scenarios. As shown in Fig. 3(a), when
the maximum radio, computing, storage resources are 400
Mbps, 8 CPUs, and 4 GB, respectively (small-scale system),
the convergence rates of the three deep Q-learning algorithms
are considerably higher than that of the Q-learning algorithm.
Specifically, while the deep reinforcement learning approaches
converge to the optimal value within 10,000 iterations, the Q-
learning need more than 10 iterations to obtain the optimal
policy. This is stemmed from the fact that in the system under
consideration, the state space is dimensional and the system
dynamically changes over time. By implementing the neural
network with fully-connected layers, the deep reinforcement
algorithms can efficiently reduce the curse of dimensionality,
thereby improving the convergence rate. We then evaluate

[N
=
[N

B g
3 S 1
9_;; 0.8 E
5} © 0.8
g0.6 g
% —+Q-Learning % 06 —~Q-Learning
004 —->-Deep Q-Learning o —>-Deep Q-Learning
X . x04 .
5 -=-Deep Double Q-Learning| | 5 -=~Deep Double Q-Learning
*q‘;; 0.2 -o-Deep Dueling § 0.2 -e-Deep Dueling
z z

of 0

0 0.01 0.1 0.150.205 5 10 0 20 40 60 80 100
Iterations (x105) Iterations (x103)

(a) (b)

Fig. 3: The convergence of reinforcement learning algorithms
in (a) the small-scale system and (b) the large-scale system.

the performance of the proposed algorithms in a large-scale
system. We increase the radio, storage, computing resources to
2 Gbps, 20 GB, and 40 CPUs, respectively. The arrive rates of
classes are increased by 4 times, i.e., u; = 48, puo = 32, and
w3 = 40 requests/hour, while the completion rates are equal
to 2 requests/hour for all classes. We then observe the conver-
gence rate of the proposed deep reinforcement algorithms as
shown in Fig. 3(b). As the system becomes more complicated
with a large state space, the performance of proposed deep
dueling outperforms all other deep reinforcement learning
techniques. In particular, the deep dueling algorithm only
needs less than 20,000 iterations to converge to the optimal

policy. Significantly, after 20,000 iterations, the average reward
obtained by the proposed deep dueling is approximately 1.5
times greater than those of deep Q-learning and deep double
Q-learning, and 6.5 times greater than that of the conventional
Q-learning algorithm. The reason is that by decoupling the
neural network into two streams, the deep dueling algorithm
can significantly reduce the overestimation of the optimizer.

=
IS

——Greedy
—-Q-Learning (10° iterations)
-=-Q-Learning (10’ iterations)
-e-Deep Dueling

N
[N

—*Greedy
—-Q-Learning
-e-Deep Dueling

=
&

[

o
o

o
I3

Network's average reward
o o k
D]
Network's average reward
N

o
)

[N

2 3 4 5 6 1 2 3 4 5 6
Immediate reward of Class-3 Immediate reward of Class-3

(a) (b)

Fig. 4: The average reward of the system when the immediate
reward of class 3 is varied with (a) the small-scale system and
(b) the large-scale system.

2) Average Reward and Network Performance: Next, we
compare the performance of the proposed solution, i.e., deep
dueling algorithm, with other methods, i.e., Q-learning [5] and
greedy algorithms [17], [18], in terms of average reward and
the number of requests running in the system.

For the small-scale system, Fig. 4(a) shows the average
reward of the system obtained by three algorithms as the
reward of slices in class-3 increases from 1 to 6 units. As ob-
served, with the increasing for the reward of slices from class-
3, the average reward of the system is increased. However,
the average reward obtained by the reinforcement learning
algorithms, i.e., deep dueling and Q-learning, is significantly
higher than that of the greedy algorithm. It is worth noting
that the achieved reward of the Q-learning algorithm is not as
good as the reward obtained by the deep dueling algorithm
even with small-scale scenarios. This is due to the fact that
the Q-learning algorithm has a slow convergence rate due to
the curse of high dimensionality problem. This observation is
more pronounced when we increase the size of the system in
the next simulation.

We then observe the performance of the proposed solutions,
i.e., the Q-learning and the deep dueling network, in the large-
scale system. Fig. 4(b) shows that the average reward obtained
by the deep dueling algorithm is much higher than those of
the greedy and Q-learning algorithms. This is because of the
slow convergence of the Q-learning algorithm to optimality.
Specifically, after 10 iterations, the performance of the Q-
learning algorithm is just as the same as that of the greedy
algorithm. The performance of the Q-learning algorithm can
be improved after 107 iterations, but it is still way inferior to
that of the deep dueling algorithm. These results verify that
the Q-learning algorithm, despite of its optimality, requires
much longer time to converge, compared with our proposed
deep dueling algorithm, and thus the Q-learning algorithm may
not appropriate to implement in practical large-scale network
slicing systems.

©

——Class-1
10 —>-Class-2

®

—=-Class-3

~

g e ooome-
——Class-1
—>-Class-2

—=-Class-3

&)

S
Number of requests running

Number of requests running
o

n
o

N
I3

—Class-1
—>-Class-2
—“-Class-3

Number of requests running
o 5

o

w

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Immediate reward of Class-3 Immediate reward of Class-3 Immediate reward of Class-3
(@) (b) (c)

Fig. 5: Number of request running in the system obtained by (a) the Q-learning algorithm (after 10° iterations), (b) the Q-
learning algorithm (after 107 iterations), and (c) deep dueling algorithm (after 20,000 iterations) when the immediate reward
of class-3 is varied. The dash lines are results of the greedy algorithm.

Fig. 5 shows that the deep dueling and Q-learning algo-
rithms reserve resources for slices which have high immediate
rewards. However, the deep dueling algorithm achieves better
performance compared with the Q-learning algorithm thanks
to the novel dueling network. For example, when the immedi-
ate reward of slices from class-3 is 6, the number of requests
running in the systems is about 16 requests and 11 requests for
the deep dueling and the Q-learning algorithms, respectively.

In summary, the proposed deep dueling algorithm can
achieve an outstanding performance in terms of long-term
average reward and the convergence rate compared with other
reinforcement learning algorithms, e.g., the Q-learning, deep
Q-learning and deep double Q-learning. Importantly, the pro-
posed deep dueling algorithm provides an effective tool for the
network provider to deal with the practical large-scale problem
under uncertainty of users’ demands.

VII. CONCLUSION

In this paper, we develop a dynamic network resource
management framework which allows the network provider
to jointly slice multiple combinatorial resources to different
requests in a real-time manner. To maximize the long-term av-
erage revenue under the uncertainty of slice service demands,
we employ an advanced deep learning architecture, called
deep dueling. Extensive simulations show that the proposed
framework yields up to 40% higher long-term average revenue
with few thousand times faster, compared with state of the art
network slicing approaches.

REFERENCES

[11 A. Manzalini, C. Buyukkoc, P. Chemouil, S. Kuklinski, F. Callegati,
A. Galis, M. -P. Odini, C. -L. I, J. Huang, M. Bursell, N. Crespi,
E. Healy, and S. Sharrock, “Towards 5g software-defined ecosystems,”
IEEE SDN White Paper, 2016.

[2] M. Jiang, M. Condoluci, and T. Mahmoodi, “Network slicing manage-
ment & prioritization in 5G mobile systems,” 22th European Wireless
Conference, Oulu, Finland, Finland, May 2016.

[3] H. M. Soliman, and A. Leon-Garcia, “QoS-aware frequency-space
network slicing and admission control for virtual wireless networks,”
IEEE GLOBECOM, Washington, DC, USA, Dec. 2016.

[4] V. Sciancalepore, K. Samdanis, X. Costa-Perez, D. Bega, M. Gra-
maglia, and A. Banchs, “Mobile traffic forecasting for maximizing 5G
network slicing resource utilization,” IEEE INFOCOM, Atlanta, GA,
USA, May 2017.

(3]

(6]
(71
(8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, K. Samdanis, and
X. Costa-Perez, “Optimising 5G infrastructure markets: The business
of network slicing,” IEEE INFOCOM, Atlanta, GA, USA, May 2017.
A. Aijaz, “Radio resource slicing in a radio access network,” U.S.
Patent Application 15/441,564, filed November 2, 2017.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, ‘“Network
slicing in 5g: Survey and challenges,” IEEE Communications Maga-
zine, vol. 55, no. 5, May 2017, pp. 94-100.

M. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming, Hoboken, NJ: Wiley, 1994.

Z. Wang, T. Schaul, M. Hessel, H. V. Hasselt, M. Lanctot, and
N. D. Freitas, “Dueling network architectures for deep reinforcement
learning,” [Online]. Available: arXiv:1511.06581.

5G Network Slicing for Vertical Industries, Global
mobile Suppliers Association. Available Online:
https://www.huawei.com/minisite/5g/img/5g-network-slicing-for-
vertical-industries-en.pdf

R. G. Gallager, Discrete stochastic processes, Kluwer Academic Pub-
lishers, London, 1995.

C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
no. 34, pp. 279292, 1992.

D. Sattar and A. Matrawy, “Optimal Slice Allocation in 5G Core
Networks,” [Online]. Available: arXiv:1802.04655.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, Feb. 2015, pp.
529-533.

H. V. Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning
with Double Q-Learning,” in AAAI, 2016.

A. Aijaz, “Hap SliceR: A Radio Resource Slicing Framework for 5G
Networks With Haptic Communications,” IEEE Systems Journal, no.
99, Jan. 2017, pp. 1-12.

B. Han, J. Lianghai, and H. D. Schotten, “Slice as an Evolutionary
Service: Genetic Optimization for Inter-Slice Resource Management
in 5G Networks,” IEEE Access, Jun. 2018.

	2019 IEEE
	Draft 1.pdf

