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Abstract—Nanoparticle drug carriers play an important role
in facilitating efficient targeted drug delivery, i.e., improving
treatment success and reducing drug costs and side effects.
However, the mobility of nanoparticle drug carriers poses a
challenge in designing drug delivery systems. Moreover, healing
results critically depend on the rate and time duration of drug ab-
sorption. Therefore, in this paper, we aim to design a controlled-
release drug delivery system with a mobile drug carrier that
minimizes the total amount of released drugs while ensuring a
desired rate of drug absorption during a prescribed time period.
We model the mobile drug carrier as a mobile transmitter,
the targeted diseased cells as an absorbing receiver, and the
channel between the transceivers as a time-variant channel since
the carrier mobility results in a time-variant absorption rate
of the drug molecules. Based on this, we develop a molecular
communication (MC) framework to design the controlled-release
drug delivery system. In particular, we develop new analytical
expressions for the mean, variance, probability density function,
and cumulative distribution function of the channel impulse
response (CIR). Equipped with the statistical analysis of the CIR,
we design and evaluate the performance of the controlled-release
drug delivery system. Numerical results show significant savings
in the amount of released drugs compared to a constant-release
rate design and reveal the necessity of accounting for drug carrier
mobility for reliable drug delivery.

I. INTRODUCTION

In drug delivery systems, drug molecules are carried to the

diseased cell site by nanoparticle carriers, so that the drug is

efficiently delivered to the targeted site and does not affect

healthy cells [1]. Experimental and theoretical studies have

indicated that not only the total drug dosage but also the

rate and time period of drug absorption by the diseased cell

receptors are critical factors in the healing process [2], [3].

Therefore, it is important to design drug delivery systems with

controlled release to minimize the total amount of released

drugs while achieving a desired rate of drug absorption at the

diseased site during a prescribed time period.

To this end, the mobility of drug carriers has to be accurately

modeled due to the fact that after being injected or extravasated

from the cardiovascular system into the tissue surrounding

a targeted diseased cell site, the drug carriers may not be

anchored at the targeted site but may move, mostly via

diffusion [2], [4]–[6]. The diffusion of the drug carriers results

in a time-variant absorption rate of drugs even if the drug

release rate is constant.

The challenge of designing a controlled-release drug deliv-

ery system has been tackled from two perspectives, namely

mathematical modeling [7] and experiments in vitro and vivo

[8]. In particular, the mathematical approach helps explain

the experimental observations and can guide the experiments.

Recently, researchers have started to design drug delivery sys-

tems based on the molecular communications (MC) paradigm

where drug carriers are modeled as transmitters, diseased cells

are modeled as receivers, and drug absorption is modeled as

a random channel [9]. Controlled-release designs based on an

MC framework were proposed in [10]–[13]. However, in these

works, the transceivers were fixed and only the movement of

drug particles was considered. In contrast, in this paper, we

account for the mobility of the transmitter and analyze the

resulting time-variant MC channel to optimize the controlled-

release design. We note that time-variant MC channels with

mobile transceivers were also considered in [14]–[16]. In

[14], a theory for stochastic time-variant channels in mobile

diffusive MC systems was developed. However, a passive

receiver model was used in [14], which may not be suitable

for modeling drug delivery systems since the effect of drug

absorption cannot be captured. A diffusive absorbing receiver

and the average distribution of the first hitting time, i.e., the

mean of the channel impulse response (CIR), were derived for

a one-dimensional environment without drift in [15] and with

drift in [16]. Clearly, none of these works provides a complete

statistical analysis of the three-dimensional (3D) time-variant

channel with an absorbing receiver nor do they consider drug

delivery systems.

In this paper, we analyze the 3D time-variant channel

with diffusive mobile transmitter and absorbing receiver for

a controlled-release drug delivery system. The main contribu-

tions are as follows:

‚ We design a controlled-release profile that minimizes

the amount of released drugs while ensuring that the

absorption rate at the diseased cells does not fall below

a prescribed threshold for a given period of time. Our

proposed design requires a significantly lower amount of

released drugs compared to a design with constant-release

rate.

‚ We derive the first-order (mean) and second-order (vari-

ance) moments of the time-variant CIR and exploit them

for the design of the controlled-release profile.

‚ We derive the probability density function (PDF) and

the cumulative distribution function (CDF) of the time-

variant CIR for evaluation of the system performance.

‚ The performance of the controlled-release system is eval-
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Fig. 1. System model of controlled-release drug delivery with a diffusive
transmitter (Tx) and an absorbing receiver (Rx).

uated in terms of the probability that the absorption

rate exceeds a targeted threshold. Our results reveal that

considering transmitter mobility is crucial for meeting the

system requirements.

We note that whilst this paper focuses on drug delivery, the

derived analytical results for the mean, variance, PDF, and

CDF of the time-variant CIR are expected to be also useful

for other MC applications.

The remainder of this paper is organized as follows. In

Section II, we introduce the system model. In Section III, we

design the controlled-release profile for a drug delivery system

based on the mean and the variance of the time-variant CIR.

In Section IV, we evaluate the performance of the controlled-

release drug delivery system in terms of the probability that the

absorption rate exceeds a target threshold. Numerical results

are presented in Section V and Section VI concludes the paper.

II. SYSTEM AND CHANNEL MODEL

In this section, we introduce the diffusive mobile MC

system model and define the time-variant CIR of the absorbing

receiver.

A. System Model

We apply an MC design framework to model, analyze, and

optimize a controlled-release drug delivery system, see Fig. 1.

The drug delivery system comprises a drug carrier releasing

drug molecules and diseased cells absorbing them. We model

the system environment as an unbounded 3D diffusion en-

vironment with constant temperature and viscosity. The drug

carriers in drug delivery systems are typically nanoparticles,

such as spherical polymers or polymer chains, having a size

not smaller than 100nm [5]. Hence, we model the drug carrier

as a spherical transmitter, denoted by Tx, with radius atx.

Furthermore, we model the Tx as transparent, i.e., it does

not have any effect on the receiver or drug molecules after

they are released from its center. This model is valid since in

reality the drug carrier is designed to carry drug molecules

and interaction with the drug or the receiver is not intended.

The drug carriers can be directly injected or extravasated from

the blood to the interstitial tissue near the diseased cells (e.g.

a tumor), where they start to move. The movement of the

drug carrying nanoparticles in the tissue is caused by diffusion

and convection mechanisms but diffusion is expected to be

dominant in most cases [2], [4]–[6]. At the tumor site, the

drug carrier releases drug molecules of type X, which also

diffuse in the tissue [2]. Hence, we adopt Brownian motion

to model the diffusion of the Tx and the molecules X [1].

When the drug molecules hit the tumor, they are absorbed

by receptors on the surface of the diseased cells [2], [3]. For

convenience, we model the tumor as a spherical absorbing

receiver, denoted by Rx. In reality, the colony of cancer cells

may potentially have a different geometry, of course. However,

as an abstract approximation, we model the cancer cells as one

effective spherical receiver with radius arx and with a surface

area equivalent to the total surface area of the tumor, i.e.,

the absorption on both the actual and the modeled surfaces is

expected to be comparable [4].

The absorption rate ultimately determines the therapeutic

impact of the drug [2], [3]. Thus, we make achieving a desired

absorption rate the objective for the system design. We will

formally define the absorption rate in the next subsection but

before doing so, we define the parameters and assumptions

used in the system model. We assume that the diffusion of the

Tx and molecules X is independent of each other with cor-

responding diffusion coefficients, DTx and DX, respectively.

We denote the time-varying distance between the centers of the

Tx and the Rx at time t by rptq. In a 3D Cartesian space, rptq
can be represented as rptq “ prx, ry, rzq. Then, the distance

between the centers of the transceivers at time zero is denoted

by rpt “ 0q “ r0 “ prx0, ry0, rz0q. We assume that the

Tx can release molecules during a period of time denoted by

TTx. After this period, the drug carrier may be removed by

blood circulation or run out of drugs. We assume that the Tx

releases molecules at its center instantaneously and discretely

over time. Let ti and ∆ti denote the time instant of the i-th

release and the duration of the interval between the i-th and the

pi` 1q-th release, respectively. We have i P t1, . . . , Iu, where

I is the total number of releases during TTx. We note that a

continuous release can be approximated by letting ∆ti Ñ 0,

i.e., I Ñ 8. Furthermore, let αi and A “
řI

i“1
αi denote

the number of drug molecules released at time ti and the total

amount of drugs released during TTx, respectively.

B. Impulse Response of the Diffusive Channel

To evaluate the drug absorption rate at the Rx given the

drug release profile at the Tx, we first need to derive the

CIR. Let hpt, τq denote the hitting rate, i.e., the absorption

rate of a given molecule, τ [s] after its release at time t at

the center of Tx. Note that the distance between the centers

of the Tx and the Rx, i.e., rptq, is a random variable and a

function of t. Hence, hpt, τq may be referred to as the CIR,

which completely characterizes the time-variant channel. In

hpt, τq, variable t denotes the time instant of the release of the

molecules at Tx while variable τ represents the time period

between the release at the Tx and the absorption at the Rx.

For a given rptq, the CIR hpt, τq is given by [17]

hpt, τq “ arx?
4πDXτ3

ˆ

1 ´ arx

rptq

˙

exp

˜

´ prptq ´ arxq2
4DXτ

¸

,

(1)

for τ ą 0, and hpt, τq “ 0, for τ ď 0. From the definition

of hpt, τq, for ∆τ Ñ 0, we can interpret hpt, τq∆τ as the



probability of absorption of a molecule by the Rx between

times τ and τ `∆τ after the release at time t. If αi molecules

are released at the Tx at time ti, the expected number of

molecules absorbed at the Rx between times t and t`∆t, for

∆t Ñ 0, is equal to αihpti, t ´ tiq∆t, for τ “ t ´ ti. During

the period r0, ts, a total amount of At “ ř

i αi,@i|ti ă t,

of drugs are released and thus, an expected total amount of

yptq “ ř

i αihpti, t ´ tiq∆t,@i|ti ă t, of drugs are absorbed

between times t and t ` ∆t, for ∆t Ñ 0. Let gptq denote

the absorption rate of molecules X at the Rx at time t, i.e.,

gptq “ yptq{∆t, ∆t Ñ 0. Then, we have

g ptq “
ÿ

@i|tiăt

αih pti, t ´ tiq . (2)

As mentioned before, the absorption rate gptq at the tumor

directly affects the healing efficacy of the drug. Hence, we

will design the drug delivery system such that gptq does not

fall below a prescribed value.

III. CONTROLLED-RELEASE DESIGN

We first formulate the controlled-release design problem

and then derive the mean and variance of the stochastic time-

variant channel to solve the problem.

A. Problem Formulation

The treatment of many diseases requires the diseased cells

to absorb a minimum rate of drugs during a given period of

time [3]. To design an efficient drug delivery system satisfying

this requirement, we optimize the amounts of released drugs

αi such that the total amount of released drugs, A “ řI

i“1
αi,

is minimized and the absorption rate gptq is equal to or larger

than a targeted rate, θptq, for a period of time, denoted by

TRx. Depending on the properties of the tumor, θptq may vary

with time. Since gptq is a random variable, we will design

the system based on the first and second order moments of

the CIR. In particular, we minimize A “ řI

i“1
αi subject to

the constraint that the mean of gptq minus a certain deviation

is equal to or above a threshold during TRx, i.e., E tgptqu ´
βΓ tgptqu ě θptq for 0 ď t ď TRx, where E t¨u and Γt¨u
denote expectation and standard deviation, respectively, and

β is a coefficient determining how much deviation from the

mean is taken into account. Based on (2), the constraint can

be written as a function of αi as follows

E tgptqu ´ βΓ tgptqu
paq
ě (3)

ÿ

@i|tiăt

αi pE th pti, t ´ tiqu ´ βΓ th pti, t ´ tiquq ě θptq,

where 0 ď t ď TRx. Inequality paq in (3) is due to

Minkowski’s inequality [18]. Note that we may not be able

to find αi such that (3) holds for all values of β and θptq.

However, when E th pti, t ´ tiqu ą βΓ th pti, t ´ tiqu, i.e.,

either β or Γ th pti, t ´ tiqu is small, so that βΓ th pti, t ´ tiqu
is sufficiently small, we can always find αi so that (3) holds for

arbitrary θptq. Since time t is a continuous variable, the con-

straint in (3) has to be satisfied for all values of t, 0 ď t ď TRx,

and thus there is an infinite number of constraints, each of

which corresponds to one value of t. Therefore, we simplify

the problem by relaxing the constraints to hold only for a finite

number of time instants t “ tn “ n∆tn, where n “ 1, . . . , N

and ∆tn “ TRx{N . Then, the optimization problem for the

design of αi can be formulated as

min
αiě0,@i

A “
I
ÿ

i“1

αi (4a)

s.t.
ÿ

i,tiăt

αi pm pti, n∆tn ´ tiq ´ βσ pti, n∆tn ´ tiqq

ě θpn∆tn ´ tiq, for n “ 1, . . . , N, (4b)

where m pt, τq and σ pt, τq are the mean and the standard

deviation of h pt, τq, respectively. In order to solve (4), we

need to derive analytical expressions for m pt, τq and σ pt, τq.

Moreover, since h pt, τq is a function of rptq, which is a

random variable, we first need to derive the distribution of

rptq before deriving m pt, τq and σ pt, τq. Having m pt, τq
and σ pt, τq and treating the αi as real numbers, (4) can be

readily solved as a linear program using existing algorithms or

numerical software such as MATLAB. We note that although

the numbers of molecules αi are integers, for tractability, we

solve (4) for real αi and quantize the results to the nearest

integer values.

Note that the problem in (4) is statistical in nature and

provides instructive guidance for the offline design of the

system.

B. Distribution of the Tx-Rx Distance in a Diffusive System

In this subsection, we derive the distribution of rptq. If

the diffusion of Tx follows Brownian motion in the en-

tire 3D environment, we have rx „ N prx0, 2DTxtq , ry „
N pry0, 2DTxtq , rz „ N prz0, 2DTxtq. Then,

rptq?
2DTxt

, de-

noted by γ, follows a noncentral chi distribution, denoted by

Xkpλq, [19]

γ “ rptq?
2DTxt

“

d

r2x ` r2y ` r2z

2DTxt
„ Xkpλq, (5)

with parameters k “ 3 and λ “
b

r2x0
`r2y0`r2z0
2DTxt

“ r0?
2DTxt

.

Thus, we can obtain the PDF of r as follows

frptqprq paq“ 1?
2DTxt

fγ pγq (6)

pbq“ r

r0
?
πDTxt

exp

ˆ

´r2 ` r2
0

4DTxt

˙

sinh

ˆ

r0r

2DTxt

˙

,

where fγ pγq is the PDF of γ. Equality (a) in (6) exploits the

fact that γ is a function of rptq [20, Eq. 5-16]. Equality (b) in

(6) is obtained from the expression of the PDF fγ pγq [19].

Remark 1: Note that (6) was derived under the assumption

that the Tx can diffuse in the entire 3D environment. In reality,

the Tx cannot be inside the Rx, i.e., it does not interact

with the Rx, and thus will be reflected when it hits the Rx

boundary. Hence, the actual frptqprq may differ from (6), e.g.

frptqprq “ 0 for r ă atx ` arx. However, we note that for

very small r, i.e., r « 0, (6) does approach zero. Hence, (6) is

a valid approximation for the actual frptqprq. The validity of

this approximation is evaluated in Section V via simulations.



C. Statistical Moments of Diffusive Channel

In this subsection, we derive the statistical moments of

the diffusive channel, i.e., mpt, τq and σ2pt, τq. In particular,

mpt, τq is obtained as

mpt, τq “
ż 8

0

hpt, τq
ˇ

ˇ

rptq“r frptqprqdr. (7)

A closed-form expression of (7) is provided in the following

theorem.

Theorem 1: The mean of the impulse response of a time-

variant MC channel with diffusive molecules transmitted by a

diffusive transparent transmitter and absorbed by an absorbing

receiver is given by

mpt, τq “ arx

4
a

π pDXτ ` DTxtqr0τ
exp

ˆ

´ a2
rx

4DXτ
´ r2

0

4DTxt

˙

ˆ
˜

´e
bpt,τq2

4apt,τq

ˆ

bpt, τq
2apt, τq ` arx

˙

erfc

˜

bpt, τq
2
a

apt, τq

¸

`e
cpt,τq2

4apt,τq

ˆ

cpt, τq
2apt, τq ` arx

˙

erfc

˜

cpt, τq
2
a

apt, τq

¸¸

,

(8)

where erfcp¨q is the complementary error function and for

compactness, apt, τq, bpt, τq, and cpt, τq are defined as follows

apt, τq “ 1

4DXτ
` 1

4DTxt
, bpt, τq “ ´ arx

2DXτ
´ r0

2DTxt
,

cpt, τq “ ´ arx

2DXτ
` r0

2DTxt
. (9)

Proof: Substituting (1) and (6) into (7) and using the

integrals given by [21, Eq. (2.3.15.4) and Eq. (2.3.15.7)], we

obtain the expression for mpt, τq in (8).

Remark 2: We note that mpt, τq approaches zero when

t Ñ 8 since rptq increases on average due to diffusion.

Next, we obtain the variance of hpt, τq as

σ2ptq “ φptq ´ m2ptq, (10)

where φptq “ E
 

h2pt, τq
(

. The following lemma gives an

analytical expression for φptq.

Lemma 1: For the considered channel, φptq is given by

φptq “ k̂ptq
ż 8

0

”

exp
´

´âptqr2 ´ b̂ptqr
¯

(11)

´ exp
`

´âptqr2 ´ ĉptqr
˘

ı

ˆ

r ´ 2arx ` a2rx
r

˙

dr,

where

k̂ptq “ a2
rx
e

´ a2
rx

2DXτ
´ r2

0

4DTxt

8DXπτ3r0
?
πDTxt

, âptq “ 1

2DXτ
` 1

4DTxt
,

b̂ptq “ ´ arx

DXτ
´ r0

2DTxt
, ĉptq “ ´ arx

DXτ
` r0

2DTxt
. (12)

Proof: Substituting (1) and (6) into the definition of φptq
and simplifying the expression, we obtain (11).

Remark 3: The expression in (11) comprises integrals of

the form
ş8
0
exp

`

ax2 ` bx
˘

{x dx, where a and b are con-

stants, and cannot be obtained in closed form. However, these

integrals can be evaluated numerically in a straight forward

manner.

IV. PERFORMANCE ANALYSIS

Since gptq is random, we cannot always guarantee gptq ě
θptq. Moreover, since gptq ě θptq is required for proper

operation of the system, we evaluate the system performance

in terms of the probability that gptq ě θptq, denoted by Pθ “
Pr tgptq ě θptqu. In this section, we first present a theoretical

framework for evaluation of the system performance in terms

of Pθ expressed as a function of the PDF and CDF of the

CIR, before finally deriving the PDF and CDF of the CIR.

A. System Performance

The probability Pθ is given in the following theorem.

Theorem 2: The system performance metric Pθ can be

expressed as

Pθ “1 ´ fα1hpt´t1,t1q pθptqq ˚ ¨ ¨ ¨ ˚ f
αǐ´1

hpt´tǐ´1
,tǐ´1q pθptqq

˚ Fαǐhpt´tǐ,tǐq pθptqq , (13)

where ˚ denotes convolution, ǐ “ 1, 2, . . . satisfies ťi ď t,

and ft¨u and Ft¨u denote the PDF and CDF of the ran-

dom variable in the subscript, respectively. In (13), we de-

fine fαǐhpt´tǐ,tǐq pθptqq “ 1{αǐ ˆ fhpt´tǐ,tǐq pθptq{αǐq and

Fαǐhpt´tǐ,tǐq pθptqq “ Fhpt´tǐ,tǐq pθptq{αǐq.

Proof: From the definition of the CDF, we have

Pθ “ 1 ´ Fgptq tθptqu “ 1 ´
ż θptq

0

fgptqpgqdg. (14)

Due to the summation of independent random variables in (2),

i.e., independent releases at ti, we have

fgptqpgq “
`

fα1hpt´t1,t1q ˚ ¨ ¨ ¨ ˚ fαǐhpt´tǐ,tǐq
˘

pgq. (15)

Substituting (15) into (14), and using the integration property

of the convolution, i.e.,
ż θptq

0

`

fα1hpt´t1,t1q ˚ ¨ ¨ ¨ ˚ fαǐhpt´tǐ,tǐq
˘

pgqdg (16)

“ fα1hpt´t1,t1q pθptqq ˚ ¨ ¨ ¨ ˚
ż θptq

0

fαǐhpt´tǐ,tǐqpgqdg,

and using the definition of the CDF, we obtain (13).

According to (13), Pθ can be evaluated based on exact

expressions for the PDF and the CDF of hpt, τq, which will

be derived in the next subsection.

Furthermore, we note that a minimum value of Pθ can be

guaranteed based on statistical moments of the CIR, without

knowledge of the PDF and the CDF, as shown in the following

proposition.

Proposition 1: A lower bound on Pθ “ Pr tgptq ě θptqu is

given as follows

Pθ ě 1 ´ 1

β2
. (17)

Proof: By using (3) and the Chebyshev inequality [20],

we obtain

Pθ

paq
ě Pr

!

|gptq ´ E tgptqu| ď E tgptqu ´ θptq
)

(18)

pbq
ě 1 ´ Γ2 tgptqu

pE tgptqu ´ θptqq2
pcq
ě 1 ´ 1

β2
,



where (a) can be obtained easily by expanding the absolute

value on the right-hand side, (b) is due to the Chebyshev

inequality, and (c) is due to (3). This completes the proof.

Remark 4: Proposition 1 is not only useful for evaluating

the system performance, but also provides a guideline for the

design of the controlled release of drugs. For example, to

ensure Pθ ě 0.75, from (17), we obtain β “ 2. Note that a

useful bound can only be obtained based on (17) when β ą 1.

B. Distribution Functions of the CIR

The PDF of the CIR is given in the following theorem.

Theorem 3: The PDF of the impulse response of a time-

variant channel with diffusive molecules transmitted by a

diffusive transparent transmitter and absorbed by an absorbing

receiver is given by

#

fhprptq,τqphq “ frptqpr1phqq
h1pr1phq,τq ´ frptq pr2phqq

h1pr2phq,τq , for 0 ď h ă h‹,

fhprptq,τqphq Ñ 8, for h “ h‹,
(19)

where h prptq, τq denotes h pt, τq as a function of rptq and

τ , frptqprq is given by (6), r1phq and r2phq, r1phq ă r2phq,

are the solutions of the equation h prptq, τq “ h, h‹ is the

maximum value of h prptq, τq for all values of rptq, and

h1pr, τq is given by

h1pr, τq “ arx?
4πDXτ3

exp

˜

´ pr ´ arxq2
4DXτ

¸

(20)

ˆ
ˆ

arx

r2
´ pr ´ arxq

2DXτ

´

1 ´ arx

r

¯

˙

.

Proof: From (20), we observe that h1pr, τq “ Bhpr,τq
Br “ 0

is equivalent to a cubic equation in r, given by ar3 ` br2 `
cr ` d “ 0, with properly defined coefficients a, b, c, d and

discriminant ∆ “ 18abcd´4b3d` b2c2 ´4ac3 ´27a2d2 ă 0.

Hence, h1pr, τq “ 0 has only one real valued solution, denoted

by r‹. Then, from (20), we obtain that h1pr1, τq ą 0 for r1 ă
r‹, h1pr2, τq ă 0 for r2 ą r‹, and h1pr, τq “ 0 for h “ h‹,

where h‹ “ h pr‹, τq is the maximum value of hpr, τq. Finally,

we derive (19) by exploiting [20, Eq. 5-16] for the PDF of

functions of random variables.

The CDF of hpt, τq is given in the following corollary.

Corollary 1: The CDF of the impulse response of a time-

variant channel with diffusive molecules transmitted by a

diffusive transparent transmitter and absorbed by an absorbing

receiver is given by

Fhprptq,τqphq “ Frptqpr1phqq ` 1 ´ Frptqpr2phqq, (21)

for 0 ď h ď h‹, where Frptqprq is the CDF of r and is given

by

Frptqprq “ 1 ´ Q 3

2

ˆ

λ,
r?

2DTxt

˙

. (22)

Here, λ is defined in (5) and QM pa, bq is the Marcum Q-

function as defined in [19].

Proof: From the definition of the CDF and (19), we have

Fhprptq,τqphq “
ż h

0

fhprptq,τqpȟqdȟ (23)

“
ż h

0

frptqpř1pȟqq
Bhpř1, τq{Bř1

´ frptqpř2pȟqq
Bhpř2, τq{Bř2

dȟ

“
ż r1phq

0

frptqpř1qdř1 ´
ż r2phq

8
frptqpř2qdř2

“Frptqpr1phqq ` 1 ´ Frptqpr2phqq,
where ř1 and ř2, ř1 ă ř2, are the solutions of the equation

h př, τq “ ȟ. Moreover, since
rptq?
2DTxt

follows a noncentral chi

distribution, we obtain (22) as [19]

Frptqprq “ F rptq?
2DTxt

ˆ

r?
2DTxt

˙

“ 1 ´ Q 3

2

ˆ

λ,
r?

2DTxt

˙

.

(24)

This completes the proof.

We note that the analytical expressions for the PDF and

CDF of hpt, τq in Theorem 3 and Corollary 1, respectively,

are not in closed form. Therefore, the evaluation of the

system performance in (13) can be approximated by a discrete

convolution which is easily evaluated numerically.

Remark 5: The results for the mean, variance, PDF, and

CDF of the CIR in Sections III-C and IV-B can also be applied

for applications where both the transmitter and the receiver

undergo diffusion. In this case, we have to replace DX and

DTx in the derived expressions by D1 “ DX ` DRx and

D2 “ DTx ` DRx, respectively. D1 and D2 are the effective

diffusion coefficients capturing the relative movements of the

molecules X and the Rx and the relative movements of the

Tx and the Rx, respectively, see [14].

V. NUMERICAL RESULTS

In this section, we provide numerical results to evaluate

the accuracy of the derived expressions and the efficiency of

the proposed drug delivery system. In the simulations, we use

a particle-based simulation of Brownian motion, where the

transmitter performs a random displacement in discrete time

steps of length ∆tst seconds. The random displacement of

the transmitter in each step is modeled as a Gaussian random

variable with zero mean and standard deviation
?
2DTx∆tst.

Furthermore, in the simulations, we also take into account the

reflection of the Tx when the Tx hits the Rx. Moreover, we

adopt Monte-Carlo simulation by averaging our results over a

large number of independent realizations of the Tx movement.

For all numerical results, we use the set of simulation

parameters in Table I, unless otherwise stated. The parameters

in Table I are chosen to match real system parameters, e.g.

the diffusion constants DX of drug molecules vary from 10´9

to 10´14 m2{s [6], the drug carriers have sizes ě 100 nm [5],

the size of tumor cells is on the order of µm, and the drug

carriers can be injected or extravasated from the cardiovascular

system in the tissue surrounding the targeted diseased cell

site [2], i.e., close to the tumor cells. The dosing periods

in drug delivery systems are on the order of days [7], i.e.,

24 h. For simplicity, we set ∆ti “ TTx{I,@i P t1, . . . , Iu,

and N “ 5, and the value of the required absorption rate is



TABLE I
SYSTEM PARAMETERS USED FOR NUMERICAL RESULTS

Parameter Value Parameter Value

DX [m2{s] 8 ˆ 10´11 DRx [m2{s] 0

atx [m] 1 ˆ 10´7 arx [m] 1 ˆ 10´6

TTx [h] 24 TRx [h] 24

r0 [m] 10 ˆ 10´6 N 5

I 3000 θptqrs´1s 1
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β = 0

β = 0.4

β = 1

β = 2

Fig. 2. Optimal release coefficients αi as a function of release time ti
[h] for different system parameters. The black horizontal dotted line is the
benchmark when the αi are not optimized.

set to θptq “ 1 s´1. We choose I relatively large to obtain

small intervals ∆ti. All simulation results are averaged over

105 independent realizations of the environment.

In Fig. 2, we plot the controlled-release coefficients αi

versus the corresponding release time ti [h] for different

system parameters. The coefficients are obtained by solving

the optimization problem in (4) with β “ t0, 0.4, 1, 2u for

DTx “ 10´14 m2{s and β “ t0, 0.4u for DTx “ t5, 10u ˆ
10´14 m2{s. As mentioned in the discussion of (3), we cannot

choose large values of β when the diffusion coefficient is

large, i.e., the standard deviation is large, as the problem

may become infeasible. Fig. 2 shows that for all considered

parameter settings, we should first release a large number of

molecules for the absorption rate to exceed the threshold.

Then, in the static system with DTx “ 0m2{s, the optimal

coefficient decreases with increasing time, since a fraction of

the molecules previously released from the Tx linger around

the Rx and are absorbed later. However, for the mobile time-

variant channels, the Tx eventually diffuses away from the

Rx as time t increases and hence, molecules released at later

times by the Tx are far away from the Rx and may not reach

the Rx. Therefore, at later times, the amount of drugs released

has to be increased for the absorption rate to not fall below

the threshold. For higher DTx, the Tx diffuses away from the

Rx faster and thus, the coefficients αi have to increase faster.

This type of drug release is called a tri-phasic release [8].

Once we have designed the controlled-release profile, we can

implement this by choosing a suitable drug carrier as shown in

[8]. Moreover, as expected, with larger β, we need to release
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Fig. 3. E tgptqu and Γ tgptqu between the 1000-th release and the 1002-
th release, i.e., at about 8 h, for three different designs. Design 1 (green
line): naive design without considering Tx movement with DTx “ 10´13

m2{s and β “ 0; design 2 (blue line) and 3 (red line): optimal design with
`

DTxrm2{ss, β
˘

“
`

10
´13, 0

˘

,
`

10
´14, 1

˘

, respectively.

more drugs to ensure that (4) is feasible. The black horizontal

dotted line in Fig. 2 is a benchmark where the αi,@i, are not

optimized but naively set to αi “ α1. For this naive design,

A “ α1I « 1.65 ˆ 107, whereas with the optimal αi, for

β “ 0 and DTx “ 10´13 [m2{s], A “ 1.2 ˆ 107, i.e., equal

to 73% of the naive design, and for β “ 1 and DTx “ 10´14

[m2{s], A “ 7.6ˆ106, i.e., equal to 46% of the naive design.

This highlights that applying the optimal controlled-release

profile can save significant amounts of drugs and still satisfy

the therapeutic requirements. Moreover, as observed in Fig. 2,

the required values of αi increase as ti increases and thus

the naive design with fixed αi, i.e., the benchmark, cannot

ultimately satisfy the required absorption rate.

In Fig. 3, we plot the mean and standard deviation of the

absorption rate, E tgptqu and Γ tgptqu, between the 1000-th

release and the 1002-th release for three designs, where we

adopted DTx “ 10´13 m2{s and β “ 0 for designs 1 and

2, and DTx “ 10´14 m2{s and β “ 1 for design 3. Note

that the considered time window, e.g., between the 1000-th

release and the 1002-th release, is chosen arbitrarily in the

middle of TTx to analyze the system behavior. For design 1,

the Tx diffuses with DTx “ 10´13 m2{s but the controlled

release is designed without accounting for the Tx mobility,

i.e., the adopted αi are given by the green line in Fig. 2

obtained under the assumption of DTx “ 0m2{s. For designs

2 and 3, the mobility of the Tx is taken into account. The

black dashed line marks the threshold θptq that gptq should

not fall below. It is observed from Fig. 3 that when the Tx

diffuses but the design does not take into account the mobility,

the requirement that the expected absorption rate, E tgptqu,

exceeds θptq, is not satisfied for most of the time. For design 2

with β “ 0, we observe that E tgptqu ą θptq always holds but

E tgptqu ´Γ tgptqu ą θptq does not always hold. For design 3

with β “ 1, we observe that E tgptqu´Γ tgptqu ą θptq always

holds since β ą 0 enforces a gap between E tgptqu and θptq. In

other words, even if gptq deviates from the mean, it can still

exceed θptq. Fig. 3 also shows that E tgptqu first increases
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Fig. 4. Pθ as a function of time t [h] between 1000-th release and 1002-th
release, i.e., at about 8 h.

after a release and then decreases, due to the diffusion of

the molecules. Furthermore, Fig. 3 confirms the accuracy of

our derivations as the simulation results match the analytical

results. Note that in the simulations, unlike the analysis, we

have considered the reflection of the Tx when it hits the Rx.

Therefore, the good agreement in Fig. 3 suggests that the

reflection of the Tx does not have a significant impact on

the numerical results and the approximation in (6) is valid.

In Fig. 4, we present the system performance in terms of Pθ,

for the time period between the 1000-th and 1002-th releases,

i.e., at about 8h. The lines and markers denote simulation and

analytical results, respectively. Fig. 4 shows a good agreement

between the analytical and simulation results. In Fig. 4, we

observe that Pθ increases with increasing β because the design

for larger β enforces a larger gap between E tgptqu and θptq,

as can be seen in Fig. 3. Moreover, for a given β, Pθ will be

different for different DTx. In particular, for larger DTx, Pθ is

smaller due to the faster diffusion and less certainty about the

CIR. Moreover, in Fig. 4, the green line shows that the naive

design, i.e., design 1 in Fig. 3, has very poor performance.

In Fig. 4, we also observe that between two releases, Pθ first

increases due to the released drugs and then decreases due

to drug diffusion. Furthermore, in Fig. 4, we show the lower

bound on Pθ derived in Proposition 1 for DTx “ 10´14 m2{s
and β “ 2, where (17) yields Pθ ě 0.75. Fig. 4 shows that

the red dash-dotted line, i.e., Pθ for DTx “ 10´14 m2{s and

β “ 2, is above the horizontal black dashed line, i.e., Pθ “
0.75.

VI. CONCLUSIONS

In this paper, we considered a drug delivery system with a

diffusive drug carrier and absorbing cells and modeled it as a

time-variant channel between diffusive MC transceivers. We

provided a statistical analysis of the time-variant CIR. Based

on this statistical analysis, we designed the optimal controlled-

release profile which minimizes the amount of released drugs

while ensuring a targeted absorption rate of the drugs at the

Rx for a prescribed time period. The probability of satisfying

the constraint on the absorption rate was adopted as a system

performance criterion and was evaluated. We observed that

ignoring the reality of Tx mobility in designing the release

profile leads to unsatisfactory performance.
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