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Abstract—Due to the limited computing resources of swarm
of drones, it is difficult to handle computation-intensive tasks
locally, hence the cloud based computation offloading is widely
adopted. However, for the business which requires low latency
and high reliability, the cloud-based solution is not suitable,
because of the slow response time caused by long distance
data transmission. Therefore, to solve the problem mentioned
above, in this paper, we introduce fog computing into swarm of
drones (FCSD). Focusing on the latency and reliability sensitive
business scenarios, the latency and reliability is constructed as
the constraints of the optimization problem. And in order to
enhance the practicality of the FCSD system, we formulate
the energy consumption of FCSD as the optimization target
function, to decrease the energy consumption as far as possible,
under the premise of satisfying the latency and reliability
requirements of the task. Furthermore, a heuristic algorithm
based on genetic algorithm is designed to perform optimal task
allocation in FCSD system. The simulation results validate that
the proposed fog based computation offloading with the heuristic
algorithm can complete the computing task effectively with the
minimal energy consumption under the requirements of latency
and reliability.

Index Terms—Swarm of drones, fog computing, computation
offloading, latency and reliability, genetic algorithm

I. INTRODUCTION

Swarm of drones, which are considered as an intensely

promising development direction of Unmanned Aerial Vehi-

cles (UAVs), has made great progress in recent years. Swarm

of drones are composed by numerous small and low-cost

UAVs, through collaborating with each other, the drones

can show strong ability to accomplish the tasks which are

difficult for a single large UAV. As a consequence, swarm

of drones are widely used for a variety of applications, such

as agriculture, smart city, search and rescue, remote sensing,

military, etc [1]. For most of these applications, drones are

brought to deal with computation-intensive tasks, such as path

planning, pattern recognition, etc [2]. However, due to its

limited resources (e.g., battery power, computing capability),

the single drone is too difficult to handle the complicated task

locally [3]. Therefore, to address the computation-intensive

tasks mentioned above, some researches considered com-

putation offloading to a cloud server, and then obtain the
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result from the cloud [4]. In this manner, the capability of

swarm of drones is greatly enhanced in a virtual way. And

it is suitable for some business (e.g., topographic mapping,

resource exploration, environmental monitoring, etc.) which

are not sensitive to latency and reliability. But in practice,

quite a few computing tasks which the drones need to process,

have low latency and high reliability requirements, such

as military object recognition, disaster rescue, emergency

obstacle avoidance, etc [5] [6]. However, cloud servers are

generally located far away from the drones, and long-distance

data transmission will lead to high latency, even in some harsh

environments, there is no working wireless infrastructure

to connect the drones and cloud. Hence, the cloud based

computation offloading is not suitable to address the latency

and reliability sensitive business.

In order to further enhance the ability of swarm of drones to

cope with computation-intensive tasks, specifically focusing

on those tasks with low latency and high reliability require-

ments, we introduce fog computing [7] into swarm of drones.

The drones which close to the initiator drone are thought

to be fog computing nodes to complete the computing task

collaboratively.

Fog computing is a novel computing paradigm which is

not intended to replace cloud computing but to compliment

it. Recently, there are many researches about fog comput-

ing enhancing cloud computing. In [8], authors considered

leveraging buses as fog computing servers to provide fog

computing services for the mobile users on bus and share the

pressure of roadside cloudlets. The authors in [9] proposed

combined fog-cloud architecture to reduce the latency of

service. In [10], authors formulated a computation offloading

game to improve the quality of experience of IoT users in

hierarchical fog-cloud computing architecture. But there is no

existing research to introduce fog computing into the work

of swarm of drones, as a supplementary solution for the

computation offloading of cloud computing.

In practice, swarm of drones usually work in harsh environ-

ments, and inevitable disturbances (e.g., hardware damage,

software breakdown, communication link failure, etc.) will

lead to the failure of the task. Hence, besides considering

the latency guarantee, a proper reliability-guarantee mecha-

nism is especially needed. However, there are few existing

researches about fog (or edge) based computation offloading

both considering the latency and reliability guarantee [11].

Therefore, in order to complete the computing task within

low latency and high reliability requirements, we construct a
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certain mathematical model for system’s latency and reliabil-

ity during task execution, and take the latency and reliability

as the constraints of the optimization problems formulated,

thus the computation offloading scheme must be able to meet

the requirements of the business on latency and reliability.

A big challenge for swarm of drones utilizing fog com-

puting to deal with computing task is their limitation of

battery endurance, hence, under the premise of ensuring the

completion of the task within low latency and high reliabil-

ity requirements, we formulated the energy consumption of

whole swarm of drones as the target function of optimiza-

tion problem, to reduce the overall energy consumption and

extend the working time of the swarm of drones as far as

possible. Since the formulated problem is NP-hard, we design

a heuristic algorithm based on genetic algorithm to solve the

problem.

In summary, the main contributions of this paper are as

follows:

• To enhance the ability of swarm of drones to handle

complicated tasks, we introduce fog computing into

swarm of drones (FCSD), as a supplementary solution

for the cloud based computation offloading.

• To meet the latency and reliability requirements of the

computing tasks, we construct a certain mathematical

model for system latency and reliability during task

execution.

• To improve the practicality of the FCSD system in

practice, the energy consumption of FCSD is constructed

as the optimization target function, to reduce the energy

consumption so that extend the working time of swarm

of drones.

• To solve the NP-hard problem formulated, we design a

latency and reliability constrained minimum energy con-

sumption algorithm based on genetic algorithm (LRGA-

MIE).

The rest of the paper is organized as follows. The system

model and problem formulation are presented in Section

II. Section III presents the offloading algorithm proposed.

The simulation results and analyses are given in Section IV.

Finally, Section V conclude the paper.

II. SYSTEM MODEL AND PROBLEM

FORMULATION

In order to enhance the ability of swarm of drones address-

ing computation-intensive tasks which are sensitive to latency

and reliability, the FCSD system is proposed. The architecture

of FCSD is shown in Fig. 1.

The drone dr0 has a computing task Ψ0 ,

{D0, α0, T0, R0}, where D0 denotes the input size of

the total task; T0 and R0 represent the latency and the

reliability constraints, respectively. We define E0 as the total

required amount CPU cycles to complete the task Ψ0. The

number of CPU cycles E0 is modeled as E0 = α0D0 ,

where α0(α0 > 0) depends on the computational complexity

of the task [12]. The drone dr0 requests nearby drones dri
that can serve as the fog nodes to complete the task Ψ0

collaboratively. These drones available nearby, denoted by a

set D = {dr1, dr2, . . . , drp}, are equipped with storage and

Fig. 1. The computation offloading architecture of FCSD

computation resources. We define f0 as the CPU frequency

of the drone dr0. Similarly, the CPU frequency of the drones

available nearby, denoted by a set F = {f1, f2, . . . , fp}.

The coordinate of the drone dr0 is (x0, y0, z0). The

C = {(x1, y1, z1), (x2, y2, z2), · · · , (xp, yp, zp)} are the

three-dimensional coordinates of the drones available nearby,

respectively.

The distance between the drone dri ∈ D and the drone dr0
can be given by

g0,i = [(x0 − xi)
2 + (y0 − yi)

2
+ (z0 − zi)

2
]
1
2
, g0,i ≤ r, (1)

where r is the maximum communication radius of individual

drones. According to [8] [13], the uplink rate from dr0 to dri
can be given as

RUL(0, i) = WUL log2

(

1 +
PTx(g0,i−γ |h0|)

N0

)

, (2)

where WUL represents the uplink channel bandwidths be-

tween the drone dr0 and dri; PTx denotes the transmission

power of the drone dr0; γ is the path loss exponent which

ranges from 2 ≤ γ ≤ 5 ; h0 is the complex Gaussian channel

coefficient which follows the complex normal distribution

CN(0,1); N0 is the additive white Gaussian noise(AWGN).

The task Ψ0 would be partition into several subtasks by the

drone dr0 and distributed to multiple drones. In practice, how

to partition a task depends on not only application, but also

the requirements, which is worth studying further. Therefore,

for simplicity, it can be assumed that the task can be divided

into any proportion with arbitrary precision, and there is no

overlap between any two subtasks [11]. According to the

status of the dr0 and dri ∈ D, the initiator drone dr0 can

make different task offloading and allocation decisions1. We

define ρ (0 ≤ ρ ≤ 1) as the offloading coefficient, therefore,

the part of the task Ψ0 which need to be executed locally,

can be described as ρΨ0, and the part of the task which need

to be offloaded to the drones available nearby is (1− ρ)Ψ0.

Then, we denote the subtask offloaded to the drone dri as

1In practice, the drone interacts with the surrounding drones to complete
the formation, networking, collaborative works, etc., which enables the drone
to be aware of the status of the surrounding drones. [14]



λi(1 − ρ)Ψ0, where λi ∈ [0, 1], and
p
∑

i=1

λi = 1. We define

λ = [λ1, λ2, . . . , λp]
T as the task allocation vector.

After decision, the drone dr0 and the drones dri ∈ D are

orchestrated to perform distributed computing to complete

the task Ψ0 collaboratively. These low-cost drones fly slowly

and tend to form a relatively stable formation, rather than

constantly changing [1]. In the meantime, the transmission

latency of the subtask is extremely short when the data size

is small. Therefore, we assume that the relative distance

and the states of the drones will not change during the

task assignment process, and each assigned subtask will be

executed immediately on the drone dri and dr0.

A. Latency Model

The latency of the drone dr0 processing the subtask ρΨ0

is defined as

TLocal =
ρα0D0

f0
. (3)

When the drone dr0 offloading the subtask λi(1 − ρ)Ψ0

to the drone dri, the size of the transmitted data will be

βλi(1 − ρ)D0, where β (β ≥ 1) represents a ratio of the

transmitted data size to the original task data size due to

transmission overhead [12]. Thus, the transmission latency

of the subtask from the drone dr0 to the drone dri is

Ti
UL = βλi(1−ρ)D0

RUL(0,i) . (4)

And the computation latency of the subtask addressed on the

drone dri is

Ti
Comp = α0λi(1−ρ)D0

fi
. (5)

Due to the data size of the result of each subtask is much

smaller than the input one, the latency caused by downlink

transmission can be neglected [15]. The total execution la-

tency of the subtask completed on the drone dri is given by

Ti = TUL
i + T

Comp
i

=
βλi(1− ρ)D0

RUL(0, i)
+

α0λi(1− ρ)D0

fi
.

(6)

Therefore, the total execution latency of the task Ψ0 can

be described as

TTotal = max
i∈p

{TLocal, Ti}

= max
i∈p

{

ρα0D0

f0
,
βλi(1− ρ)D0

RUL(0, i)
+

α0λi(1− ρ)D0

fi

}

.
(7)

To meet the latency requirement of the task Ψ0, the total

execution latency TTotal should meet the constraint TTotal ≤ T0.

B. Reliability Model

The swarm of drones usually work in harsh environments,

and inevitable disturbances (e.g., hardware damage, software

breakdown, communication link failure, etc.) will lead to the

failure of the whole task, and always with serious conse-

quence. Therefore, a proper reliability-guarantee capability is

especially needed to ensure the successful completion of the

mission.

According to the widely accepted reliability model pro-

posed by Shatz [16], the system reliability is that “ the

product of the probability that each processor is operational

during the time of processing the tasks assigned to it, and

the probability that each communication link is operational

during the period of the data transmission.”The failure of the

drones and communication links follow a Poisson process

[16], further, the failure rates of the drone dr0 and dri are

defined as ν0 and νi, respectively, and the failure rate of the

communication links between dr0 and dri is defined as µ0,i.

Therefore, the computation reliability of the drone dr0 and

dri can be represented as e
−νi

ρα0D0
f0 and e

−νi
λi(1−ρ)α0D0

fi ,

respectively. And the communication reliability between dr0

and dri can be represented as e
−µ0,i

λi(1−ρ)βD0
RUL(0,i) . The reliability

of the subtask which executed locally can be represented as

RLocal = e
−ν0

ρα0D0
f0 . (8)

Then, the reliability of the subtask which distributed to the

drone dri can be represented as

Ri = e
−νi

λi(1−ρ)α0D0
fi

−µ0,i
λi(1−ρ)βD0

RUL(0,i) . (9)

Therefore, the reliability of the swarm of drones during the

execution time of the task Ψ0 can be given by

RTotal = RLocal

p
∏

i=1

Ri

= e
−ν0

ρα0D0
f0

+
p
∑

i=1

(

−νi
λi(1−ρ)α0D0

fi
−µ0,i

λi(1−ρ)βD0
RUL(0,i)

)

.

(10)

To meet the reliability requirement of the task Ψ0, the total

reliability RTotal should meet the constraint RTotal ≥ R0.

C. Energy Consumption Model

To improve the practicality of the FCSD system, how

to minimize the energy consumption, under the premise of

ensuring the completion of the task within latency and relia-

bility requirements, must be taken into account. Therefore, a

mathematical model that minimizes the energy consumption

of FCSD processing a single task is constructed.

1) Computational energy consumption: The computational

energy consumption of the drone dr0 and dri can be given

by

E
Comp

Local = kfσ
0 T

Local; (11)

E
Comp
i = kfσ

i T
Comp
i , (12)

respectively, where kfσ
0 and kfσ

i are the computation power

of the drone dr0 and dri. According to [17], the k > 0 and

the σ ≥ 2 (which usually close to 3), are the positive constant.

As in [18], the k and the σ can be set as 1.25× 10−26 and

3, respectively.

Therefore, the total computational energy consumption of

the swarm of drones is represented as

E
Comp
Total = kfσ

0 TLocal +

p
∑

i=1

kfσ
i T

Comp
i

= kfσ
0

ρα0D0

f0
+

p
∑

i=1

kfσ
i

α0λi(1− ρ)D0

fi
.

(13)



2) Transmission energy consumption: The transmission

energy consumption of the drone dr0 and the drone dri can

be given as

ETrans
Local = PTxT

UL
i ; (14)

ETrans
i = PRxT

UL
i , (15)

respectively, where PTx and PRx denote the transmitting

and receiving power of the drone dr0 and dri, respectively,

which are regarded as constant [18]. Therefore, the total

transmission energy consumption of the FCSD system can

be given by

ETrans
Total =

p
∑

i=1

ETrans
Local +

p
∑

i=1

ETrans
i

=

p
∑

i=1

PTR

βλi(1− ρ)D0

RUL(0, i)
+

p
∑

i=1

PSR

βλi(1− ρ)D0

RUL(0, i)
.

(16)

In summary, the total energy consumption of the swarm of

drones can be represented as

ETotal = E
Comp
Total + ETrans

Total

= kfσ
0

ρα0D0

f0
+

p
∑

i=1

kfσ
i

α0λi(1− ρ)D0

fi
+

p
∑

i=1

PTx

βλi(1 − ρ)D0

RUL(0, i)
+

p
∑

i=1

PRx

βλi(1− ρ)D0

RUL(0, i)
.

(17)

D. Problem Formulation

To sum up, a problem to minimize the energy consumption

of FCSD within latency and reliability constraints, is modeled

as follows:

P : (ρ, λi) = argminETotal (18)

s.t.



























ρ+
p
∑

i=1

λi(1− ρ) = 1 (19a)

TTotal ≤ T0 (19b)

RTotal ≥ R0 (19c)

0 ≤ λi, ρ (19d)

III. LRGA-MIE ALGORITHM

To find the optimal solution of the problem P , we design

a latency and reliability constrained minimum energy con-

sumption algorithm based on the real-code genetic algorithm

(LRGA-MIE) [19].

Genetic algorithm (GA) is a kind of widely used heuristic

algorithm due to its advantages of better global search-

ing capability, strong robustness, parallel processing capa-

bility, etc. In the real-coded GA, each individual Xi =
{xi1, xi2, · · · , xi(p+1)} in the population represents a possible

solution of the optimization problem, which would be initially

set to a random value. And then, through the constant

evolution of selecting, crossing over and mutating the initial

population, an optimal individual is found. Different from the

unconstrained optimization problem, the problem P formu-

lated has several constraints including equality and inequality

constraints (i.e., Eq. (19a), (19b), (19c) and (19d)). However,

GA cannot solve constrained optimization problem directly.

Therefore, we adopt exterior penalty function method [20]

to transform the constrained problem into an unconstrained

optimization problem.

In the following, the design details of LRGA-MIE algo-

rithm are explained.

The fitness function of LRGA-MIE is reconstructed as

follows:

f(X) =















ETotal(X) X ∈ F ;

ETotal(X) + h(g)
p+4
∑

j=1

Ej(X) + ξ(X, g) X ∈ S − F ,
(20)

where F is the feasible region in the search space S, and

S − F denotes the infeasible region. h(g) represents the

penalty factor, which is a large number and usually taken

a strictly increasing positive sequence that tends to infinity as

the number of iterations increases. Ej(X) is the constraint

violation value of the infeasible individuals for the jth

constraint, and ξ(X, g) indicates an additional heuristic value

for infeasible individuals in the gth generation. Ej(X) and

ξ(X, g) can be expressed as

Ej(X) =



































max(0,−X(j)) 1 ≤ j ≤ p+ 1;

| X(1) +
p+1
∑

i=2

X(i)(1−X(1))− 1 | j = p+ 2;

max(0, TTotal − T0)) j = p+ 3;

max(0, R0 − TTotal)) j = p+ 4,

(21)

ξ(X, g) = Wor(g)− min
X∈S−F

{

ETotal(X) + h(g)
p+4
∑

j=1

Ej(X)

}

, (22)

respectively, where ETotal(X) represents the fitness value of

the gth generation feasible individuals. Wor(g) records the

feasible individual with the worst fitness through g generation

evolution, and guarantee that the fitness of the feasible

individuals are always better than the infeasible individuals

during the course of the iteration. Whose value can be updated

by

Wor(g) = max

{

Wor(g − 1),max
X∈F

{ETotal(X)}

}

. (23)

In the LRGA-MIE algorithm, each chromosome, namely

each individual Xi in the population is designed as a one-

dimensional real array with p + 1 genes, which should be

randomly initialized with real number in the searching space

S firstly. Then, the fitness value of each individual would be

calculated according to Eq. (20) to evaluate the population.

Next, the genetic operators are performed to update the initial

population. And the specific genetic operators are given as

follows:

Selection: In this paper, 2-tournament selection strategy

with elitism preservation2 is adopted for its advantages of

simplicity and efficiency. Firstly, the individuals with the

lowest fitness values (i.e., elitism individuals) are directly

retained into the next generation of populations. Then, the

remaining individuals are randomly selected in pairs and the

individual with lower fitness value will be retained to the next

generation.

2Analyzing the convergence and the time complexity of GA is an ex-
tremely challenging theoretical issue in the evolutionary computation area,
which is beyond the scope of this paper. But it has been proved that the GA
with elitism preservation must converge to the global optimal solution [21].



Crossover: Crossover is to passed the original good genes

onto the offspring. Where two new children individuals (i.e.,

X
′

1
, X′

2
) are generated by a linear combination of the two

parent individuals (i.e., X1, X2). The relationship between

offspring and parents can be described as






X
′

1
= δX1 + (1 − δ)X2;

X
′

2
= δX2 + (1 − δ)X1,

(24)

respectively, where δ is a random number on interval (0, 1).
Mutation: Mutation operation determines the local search

capability of the LRGA-MIE and improves the diversity

of individuals in the population. In this paper, the non-

uniform mutation operator is applied. When the individual

Xi = {xi1, xi2, · · · , xil, · · · , xi(p+1)} mutates into the new

individual X
′

i
= {xi1, xi2, · · · , x

′
il, · · · , xi(p+1)}, the new

gene x′
il can be calculated as

x′
il=







xil + (1 − xil)(1 − q(1−g/G)b) if random(0, 1) = 0,

xil + xil(1− q(1−g/G)b) if random(0, 1) = 1.
(25)

Where q is a random number in the range of [0, 1] with

uniform distribution. g is the current evolution generation, and

G represents the maximum evolution generation. b is a system

parameter, which determines the degree of dependence of the

random number perturbations on the evolution generation g.

The value of b is in the range of [2, 5]. random(0, 1) denotes

any value of 0 or 1 with equal probability.

To minimize the energy consumption in Eq. (17), the basic

steps of LRGA-MIE are shown in Algorithm 1.

The time complexity of LRGA-MIE can be presented by

O (G ∗ S ∗ (p+ 1)), where S represents the population size.

According to [22], S and G are linear functions with respect

to p+1, hence the time complexity of LRGA-MIE is O
(

p3
)

.

Algorithm 1 LRGA-MIE algorithm
Require: p, µ0,i , νi, ν0 , D, F , Ψ0, G, S

pc: Crossover probability, pm: Mutation probability.

Ensure: BestFitness, BestSolution

1: Randomly initialize each individual Xi in the Population

2: globalBestFitness = 0

3: for Generation:1 to G do

4: localBestFitness = 0

5: for each individual Xi ∈ Population do

6: Calculate the value of Ej(X) using equation (21)

7: end for

8: Calculate the the value of ξ(X, g) and Wor(g) using equation (22) and

(23)

9: for each individual Xi ∈ Population do

10: Calculate the fitness value f(Xi) using equation (20)

11: if f(Xi) < localBestFitness then

12: localBestFitness = f(Xi)
13: localBestSolution = Xi

14: end if

15: end for

16: if localBestFitness < globalBestFitness then

17: globalBestFitness = localBestFitness

18: BestSolution = localBestSolution

19: end if

20: Select individuals from the Population;

21: if rand < pc then

22: crosspop = cossover(Population, pc)

23: end if

24: if rand < pm then

25: mutatepop = mutate(crosspop, pm)

26: end if

27: Update the Population: Population = mutatepop

28: end for

29: return BestSolution, globalBestFitnes

TABLE I
SYSTEM PARAMETERS OF FCSD

Parameter Value Parameter Value

WUL 1 MHz f0, fi Unif([0.2, 0.9] GHz)

N0 -100 dBm (x0, y0, z0) (0 m, 0 m, 0 m)

PTx 1.258 W (xi, yi, zi) randomly in 100 m3 area

PRx 1.181 W ν0, νi Unif([0.001, 0.3])

γ 3 µi Unif([0.001, 0.3])

h0 CN(0,1) fc 1 GHz

k 1.25 × 10−26 W c 2 MHz

σ 3 µc 0.17

r 100 m3 νc 0.00001

β 1 (xc, yc, zc) (2000 m, 2000 m, 2000 m)

IV. PERFORMANCE AND EVALUATION

In this section, to testify the performance of the FSCD

system with LRGA-MIE algorithm, a set of simulation results

are presented. Referring to [8], [18], [23]–[27], the system

parameters of FCSD are summarized in TABLE I.

The parameters of the algorithm are set as follows: The

maximum number of iterations is 300. The population size

(i.e., G) is 100. The crossover and mutation probability (i.e.,

pc and pm) are set as 0.8 and 0.1, respectively. And the value

of Wor(0) is set as 105.

In the following simulations, the parameters of the task

Ψ0 are set as follows, unless otherwise specified or used as

variables. D0 is set as 1 MB. α0 is set as 1900/8 to represent

a computational intensive task [17]. T0 and R0 are set as

0.8 s and 0.99, respectively. And we assumed that there are

a total of 10 drones available nearby that can serve as fog

computing nodes to help dr0 achieved the computing task Ψ0,

i.e., p = 10. The numerical results in this section are based

on an average value over 3000 Monte Carlo simulations.

A. Latency Performance Comparison of Three Computation

Architectures
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Fig. 2. Latency performance comparison of three computation architecture

Fig. 2 shows the latency performance comparison of three

computation architectures, i.e., cloud computing, local com-

puting and fog computing. With the increasing of the input

data size, the cloud computing curve is intensely higher than

the local computing curve and fog computing curve. The

reason is that the transmission latency of cloud computing

architecture is growing linearly with the increasing of the

input data size, due to the long distance data transmission

and limited bandwidth between cloud and the drone dr0.

Furthermore, the local computing curve is relatively lower

than the cloud computing curve but relatively higher than the

fog computing curve. This is because that the drone dr0 has

a certain amount of computing ability. When the computing

task is relatively smaller, it is able to handle the task locally in

a relatively low computation latency and without transmission



latency. But, when the input data size increased, limited by

its computing ability, the local computing manner cannot

complete the computing task with lower latency. The fog

computing latency, as we can see, is always lower than other

two kinds of computing manners, this is because that the

transmission latency of fog computing is relatively lower

due to the surrounding fog nodes are intensely close, and

meantime the computation latency is relatively lower as well,

because of it integrates the computational ability of numerous

fog nodes. When the input data size of the task Ψ0 is 0.5 MB,

we can observe that the latency performance of fog computing

improved by 93.12% and 85.42% compared with the cloud

computing and local computing respectively. Therefore, the

fog computing based computation offloading is suitable for

latency sensitive business of swarm of drones.

B. Reliability Performance Comparison of Different Algo-

rithms
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Fig. 3. Reliability performance comparison of different algorithms

In this section, we analyze the high efficiency of the

LRGA-MIE algorithm in improving reliability in FCSD by

comparing it with the Max-Min [28], Weighted Round Robin

(WRR) [29] and Min-Min [30] algorithm, and also the

random task assignment. The simulation results are shown

in Fig. 3. As we can see, when the input data size is

relatively smaller, the Max-Min, WRR, Min-Min and LRGA-

MIE algorithms all have good performance, compared to

the random task assignment. Specifically, when the input

data size is 0.1 MB, the reliability of these algorithms are

all higher than 0.95. However, with the increasing of the

input data size, the reliability performance of the Max-Min,

WRR, Min-Min, LRGA-MIE algorithms decrease in different

degree. This is because the increase of input data size will

increase the processing latency of some fog nodes and even

the entire FCSD system, according to Eq. (7). Furthermore,

no matter which fog nodes increase in transmission latency or

computation latency, the total reliability of the FCSD system

will be decreased, according to Eq. (17). But for LRGA-

MIE algorithm, as we can see from the Fig. 3, it has always

maintains intensely higher reliability. As the input data size

increase from 0.2 MB to 0.6 MB, the reliability of LRGA-

MIE only decrease from 0.9997 to 0.9989. And when the

input data size is 0.6 MB, we can observe that the reliability

of LRGA-MIE is higher than that of Max-Min, WRR, Min-

Min algorithm and random task allocation strategy by 0.4674,

0.529, 0.5041 and 0.683, respectively. Therefore, the LRGA-

MIE algorithm is better suited for optimizing reliability with

global consideration of computation capability, transmission

capability and failure rate.

C. Energy Consumption Performance Impact by Latency

Constraint and Reliability Constraint
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Fig. 4. Energy consumption performance impact by latency constraint and
reliability constraint

In this section, we discuss the impact of latency and

reliability constraints on total energy consumption of FCSD.

The simulation results are shown in Fig. 4. As we can

see, when the latency constraint is fixed, the total energy

consumption will gradually decrease with the reducing of

reliability constraint. Similarly, when the reliability constraint

is fixed, the total energy consumption will gradually de-

crease with the improving of latency constraint. This is

because whether the reliability constraint is reduced or the

latency constraint is increased, the feasible domain of the

optimization problem is extended, and thus more solutions

with low energy consumption performance can be obtained.

However, we can observe that when the reliability is fixed,

e.g., R0 = 0.99, as the latency constraint increases gradually,

the energy consumption curve will drop rapidly first, i.e., T0

ranges from 2 s to 2.5 s, then the rate of decline will slow

down and finally the curve will be tend to be gentle, i.e., T0

ranges from 2.5 s to 2.9 s. It is because that, in this reliability

constraint, the computing task Ψ0 can be completed within 2.5

s. When the latency constraint is greater than 2.5 s, the latency

constraint is not the main factor hindering the performance of

the system, therefore, the increasing of the latency constraint

will not have a significant impact on the energy consumption

performance of FCSD.

D. Energy Consumption Performance Comparison of Differ-

ent Algorithms

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Input Data Size, D
0
(MB)

0

5

10

15

20

25

30

35

40

T
o

ta
l 
E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
, 

E
T

o
ta

l(J
)

LRGA-MIE

Max-Min

Min-Min

Random

WRR

0.095 0.1 0.105

1.5

2

0.45 0.46

27.5

28

28.5

Fig. 5. Energy consumption performance of different algorithms

In this section, we analyze the energy consumption per-

formance of different algorithms in FCSD. The simulation

results are shown in Fig. 5. We can observe that the random



task assignment has the worst energy consumption perfor-

mance. When the input data size is relative smaller, although

not as good as LRGA-MIE algorithm, the performance of

the WRR, Max-Min and Min-Min algorithms are not bad,

compared to the random task assignment. However, with the

increasing of the input data size, the energy consumption of

the Max-Min, Min-Min and WRR algorithms and random

task assignment increase rapidly. As we can see, the energy

consumption of Max-Min algorithm approaches that of the

WRR algorithm, and the Min-Min algorithm is slighter better

than the Max-Min and WRR algorithms. But the LRGA-MIE

algorithm maintains good performance all along, due to its

strong global search ability. It shows that under the premise

of ensuring low latency and high reliability requirements of

the computing task, the LRGA-MIE algorithm has intensely

good performance in reducing the energy consumption in

FCSD, and it has strong adaptability and stability to the

growth of the input data size. When the input data size is

0.5 MB, the energy consumption performance of the LRGA-

MIE algorithm improved by 44.87%, 41.16%, 41.12% and

34.77%, compared with the random task assignment, Max-

Min, WRR and Min-Min algorithm, respectively.

V. CONCLUSION

In this paper, to solve the problem that the cloud based

computation offloading is not suitable for addressing the

latency and reliability sensitive task, we introduced the

fog computing based computation offloading into swarm of

drones (FCSD). And specifically focusing on the latency and

reliability business scenarios and improving the practicality

of FCSD, an optimization problem to minimize the energy

consumption of FCSD within latency and reliability con-

straints is constructed. In order to solve the NP-hard problem

we formulated, the LRGA-MIE algorithm was proposed.

The simulation results demonstrated that the LRGA-MIE can

minimize the energy consumption of FCSD, on the basis of

completing the computing task within latency and reliability

requirements. In future research work, two things are on

our agenda. One is to reduce the algorithm complexity of

LRGA-MIE to further improve its practicability. The other is

to utilize some new technologies (e.g., cognitive radio [31],

orbital angular momentum [32], etc.) to solve the problem

of spectrum resource shortage when the number of UAV

increases rapidly.
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