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Abstract—Recent research on Software-Defined Networking
(SDN) strongly promotes the adoption of distributed controller
architectures. To achieve high network performance, designing
a scheduling function (SF) to properly dispatch requests from
each switch to suitable controllers becomes critical. However,
existing literature tends to design the SF targeted at specific
network settings. In this paper, a reinforcement-learning-based
(RL) approach is proposed with the aim to automatically learn
a general, effective, and efficient SF. In particular, a new
dispatching system is introduced in which the SF is represented as
a neural network that determines the priority of each controller.
Based on the priorities, a controller is selected using our proposed
probability selection scheme to balance the trade-off between
exploration and exploitation during learning. In order to train
a general SF, we first formulate the scheduling function design
problem as an RL problem. Then a new training approach is
developed based on a state-of-the-art deep RL algorithm. Our
simulation results show that our RL approach can rapidly design
(or learn) SFs with optimal performance. Apart from that, the
trained SF can generalize well and outperforms commonly used
scheduling heuristics under various network settings.

Index Terms—Reinforcement Learning, Software-Defined Net-
working, Scheduling Function Design

I. INTRODUCTION

Software-Defined Networking (SDN), a newly-emerged net-
work paradigm, is notable for decoupling the control logic
from the data forwarding function and forming a logically
centralized control plane. With the separation of control and
data planes, SDN greatly simplifies network management
and enables efficient network configuration. To improve the
scalability of SDN, distributed controller architectures [4], [11]
have become a notable invention where multiple controllers
are jointly deployed for scalable request processing.

Apparently, high network performance depends on effective
utilization of controller resources. This can be achieved by
properly dispatching requests originated from every switch
to suitable controllers chosen by a scheduling function (SF).
Obviously, SF plays a vital role in the overall network perfor-
mance. Motivated by this understanding, we aim to address
the scheduling function design (SFD) problem in this paper.

Particularly, the designed SF must satisfy both the time
efficiency requirement (R1) and the generalization requirement
(R2). In view of the fact that request dispatching must be
performed in real time with minimum delay, the designed SF
needs to be sufficiently efficient in practice. Moreover, SDN

networks can vary significantly in the number and capacities of
controllers. Thus, the designed SF should perform consistently
well over different network settings.

Existing studies have considered either manual or automated
design of similar functions for scheduling and resource allo-
cation [10], [14], [15]. Specifically, manually designed SFs
such as weighted round-robin and first-come first-serve have
been widely used in operating systems and cloud computing
[16]. Obviously, the process of designing useful SFs is time-
consuming and requires a high level of domain expertise. To
address this difficulty, evolutionary computation (EC) tech-
niques have been proposed to automatically design SFs for
standard job shop scheduling problems [14], [15]. However,
the evaluation process in EC is time-consuming and costly
since numerous randomly generated SFs must be extensively
evaluated in either simulated or real-world environments.

Due to the above limitations, a new learning approach is
highly desirable for our SFD problem. Recently, reinforcement
learning (RL) has been successfully applied to various resource
management problems [12], [21] and is considered to be
a powerful paradigm for designing SFs with several key
advantages. First, no domain knowledge of the environment
is required. RL can automatically learn the optimal solution
while interacting with the unknown dynamic environment
through a trial-and-error process. Second, RL can design new
SFs mainly based on experiences/data obtained from an old SF
through a technique known as experience replay [13]. Thus,
in comparison to an EC approach, the cost of training any
new SFs can be greatly reduced. Third, the scheduling problem
under a specific network setting can be naturally formulated as
a Markov Decision Process (MDP) (detailed discussion can be
found in Section III-B), aiming to find an optimal policy using
existing RL algorithms. In particular, a policy is a mapping
from network states to a dispatching decision.

Despite the clear advantages offered by RL, several major
issues must be addressed. (1) The representation of a general
policy remains a challenge. Typically, a policy can be directly
represented as a neural network (NN) with fixed numbers of
output nodes and each node represents one particular controller
in the network. Such a representation apparently violates R2

since the same policy is expected to function effectively in
networks with different numbers of controllers. Moreover, as
the number of controllers increases, the NN inevitably in-
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creases its complexity, which leads to long computational time
to make a scheduling decision, potentially violating R1 too. (2)
It is difficult to maintain a good balance between exploration
and exploitation for effective RL. Particularly, when multiple
controllers are deployed, we expect to select each controller
with a certain probability instead of deterministically choosing
one controller. In such a way we can explore and learn the
benefit of using each controller. However, this could easily
cause performance degradation without carefully controlling
the level of exploration. As far as we know, none of the
existing works have considered and solved the above issues.

In this paper, a new RL-based SFD method is proposed with
the aim to automatically learn an effective and efficient SF for
general use. The following contributions have been achieved.
(1) Instead of representing the SF as an RL policy, a new
dispatching system is proposed as a practical implementation
of an RL policy, in which the SF is represented as an NN
taking the states of each individual controller as input and out-
putting its “priority”. (2) Given the priorities of all controllers,
a probability selection scheme is proposed as part of the
dispatching system to cope with the exploration-exploitation
dilemma. With the proposed selection scheme, only controllers
with high priorities have the possibilities to be selected. As
a consequence, the long-term network performance can be
improved without sacrificing exploration whenever a determin-
istic controller selection scheme is adopted. (3) Along with the
new dispatching system, a new training system is developed
based on a state-of-the-art actor-critic RL algorithm [19]. In
particular, a new gradient calculation technique is derived
for learning the SF. Apart from that, a new training scheme
is proposed so as to constantly and adaptively improve the
performance of the SF under a variety of network settings.

II. RELATED WORK

In recent years, distributed controller architectures [4], [11]
have been widely adopted in SDN to enhance the network
performance. Although multiple controllers can be deployed
in the control plane, the network performance still heavily
relies on effective utilization of the controller resources. Thus,
designing an effective and efficient SF for request dispatching
is of great importance.

In the literature, there exist SFs in the form of heuristics
designed by human experts. For example, a weighted round-
robin heuristic is designed to proportionally forward requests
to controllers based on their processing capacities. BLAC [10]
randomly sampled a small number of controllers and sent
requests to the least loaded one. Similar approaches can also be
found in literature [8], [22]. Although such manually designed
SFs are intuitive and simple in nature, the design process is
time-consuming and requires substantial domain knowledge.
Moreover, the performance of manually designed SFs could
also vary significantly, depending on specific network settings.

To address these limitations, EC techniques have been
widely applied for automatically designing SFs. For instance,
Su et al. [14] proposed a multi-objective Genetic Programming
(GP) approach for handling dynamic job shop scheduling

problems. Although promising results have been obtained in
the literature, these SFs are generally designed offline and
cannot easily and quickly adapt to the never-ending changes
in the network environment [5]. Besides, each newly evolved
SF must be extensively tested in either simulated or real-world
environments, which is time-consuming and costly.

Recently, a completely different design approach based on
RL has been studied in the literature [6], [12], [21]. Tesauro
et al. [21] proposed an RL-based approach to automatically
allocate the server resources in data centers. DeepRM [12]
tackled the multi-resource cluster scheduling problem using
policy search to optimize various objectives, e.g., average
job completion time and resource utilization. Chinchali et
al. [6] leveraged the delay-tolerant feature of IoT traffic and
developed an RL-based scheduler to handle traffic variation so
that the network utilization can be constantly optimized.

All these RL-based methods assume that the policy is
represented by an NN. The dimension of the outputs is fixed
and essentially equal to the number of controllers in an SDN
network. However, when the network environment changes,
e.g., more controllers are added due to the traffic growth, the
trained policy is no longer applicable. Therefore, existing RL
methods cannot be directly utilized to solve our SFD problem.

In view of above reasons, a new RL-based approach is
proposed. According to our discussion in Section I, our
approach satisfies both R1 and R2 and has the key strength
of leveraging RL to effectively schedule requests within the
SDN network so as to optimize the network performance.

III. UNDERSTANDING THE SFD PROBLEM

In this section, we will introduce the SFD problem by
discussing the key concepts and modeling the problem as an
MDP that lays the foundation of an RL-based solution.

A. The SFD Problem in SDN

Before introducing the SFD problem, we first introduce
the network environment where the SF is applied. To ease
discussion, let us consider an SDN network composed of
Nc controllers and Ns switches. Specifically, the processing
capacities of the Nc controllers can be captured through
α = [α1, ..., αNc

] where αnc
(nc = 1, ..., Nc) represents the

maximum number of requests that controller Cnc can process
within a second. Packets arrive at switches constantly in the
data plane. Note that when a new packet arrives at a switch,
the switch will generate a request and pass it to a controller for
processing. The packet arrival rate, therefore, is identical to the
rate at which requests are generated by switches. We assume
that packets arrive randomly at switches with respective arrival
rates λ = [λ1, ..., λNs ]. Similar to existing works [10], [23],
we assume that the time for processing each request by the
same controller is roughly identical. However, it should also
be noted that since controllers have different capacities, the
processing time would change from one controller to another.

Once a request is generated at a switch, it will be imme-
diately forwarded to a controller for processing with the help
of our dispatching system. Since requests are generated (and



dispatched) at different time, the dispatching of each request is
considered as a separate time step of our dispatching system.
This assumption can be flexibly supported with different
implementation of the dispatching system. For example, we
can install a separate and identical dispatching system on
each switch to handle its request. The communication delay
between the switches and controllers can be described by
a matrix D, where each element Dnc

ns
represents the delay

between switch Sns and controller Cnc .
After processing any request, the controller will send a

response back to the corresponding switch. The time inter-
val measured by the switch between sending a request and
receiving the response is defined as the request response time
τ . Apart from request processing, controllers will periodically
report their status u = [u1, ..., uNc

] in terms of current
resource utilization to all switches. Without loss of generality,
we also assume that each controller maintains a request queue
and processes requests in an FIFO manner [10].

With a properly designed SF, we expect to reduce the
average request response time. To achieve this, R1 is crucial to
avoid potential network performance degradation. We consider
that the NN can meet R1 because small feed-forward NNs
can be quickly processed with the support of efficient and
performance-optimized software (e.g., TensorFlow [3]) and
dedicated processing chips [1]. In addition to R1, a carefully
designed SF must generalize well (i.e., R2). Since the cost
of evaluation or training an SF in a production network can
be high, the SF needs to be evaluated or trained in advanced.
Note that different SDN networks can vary significantly in
terms of number and capacities of controllers. Even within
the same network, the number of controllers may change
dynamically to accommodate the traffic fluctuation. Thus, a
generally applicable SF should be able to immediately cope
with these variations. To achieve this goal, we need to first
model an SFD problem as an MDP.

B. Modeling the SFD Problem as an MDP

An MDP is usually described by a 4-tuple (S,A,P,R). At
each time step t, an agent observes its current state st ∈ S
while interacting with an unknown environment and takes an
action at ∈ A chosen from a policy πθ. A policy πθ is
often considered as a parametric function of θ, which maps
S to a probability distribution over A. After performing at,
the agent receives a reward given by the reward function
R(st, at) and enters the next state st+1 decided by the state
transition probabilities P(st+1|st, at). The goal for RL in a
finite horizon T is to learn the policy πθ so as to maximize
the expected long-term cumulative reward defined below:

Vπθ (s) = E

{
T∑
t=0

R(st, at)|s0 = s, πθ

}
(1)

The SFD problem can be naturally formulated as an MDP.
Specifically, the network reaches a new time step t is defined
whenever one new request is generated by a switch in the data
plane. At each time step t, st contains all current and historical
network information, such as λ and u; at is the controller
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Fig. 1: Dispatching System Design.

selected by the policy πθ and πθ is the dispatching system
(Fig.1) to be introduced in Section IV. After dispatching the
requests to the chosen controller, the network keeps operating
until the next request is generated. At that moment the network
enters the next state st+1. In order to train πθ towards
optimizing our objective (i.e., minimizing the average request
response time), we define the reward as

R(st, at) =
∑
j∈Jt

1

τj
(2)

where τj is the response time of request rj and Jt stands for
the set of requests, for which the corresponding response from
controllers have been received by the respective switches in
between two consecutive time steps t and t+ 1.

Clearly, each request rj contributes 1
τj

to the total reward.
Guided by this reward, an RL algorithm is strongly motivated
to receive more responses from controllers and to reduce
the average response time simultaneously. By maximizing the
cumulative reward in (3), we can therefore fulfill our goal of
reducing the request response time and improving the network
performance.

max
θ

Vπθ (s) = max
θ

E


T∑
t=0

∑
j∈Jt

1

τj
|s0 = s, πθ

 (3)

IV. PROPOSED RL-BASED APPROACH FOR SFD

Our proposed RL-based approach for SFD consists of two
major systems: the dispatching system in Fig. 1 and the
training system in Fig. 2. In particular, the dispatching system,
which is also known as the RL policy, chooses a suitable
controller for each incoming packet so as to minimize the
response time. On the other hand, the training system is in
charge of optimizing the SF under varied network settings for
general use.

A. Dispatching System Design

By modeling the SFD problem as an MDP, RL algorithms
can be utilized to design a general, efficient, and effective SF.
However, as we mentioned in Section I, existing policy rep-
resentation fails to meet both R1 and R2. Thus, a new policy
representation must be designed. Inspired by the successful use
of dispatching rules for supporting diverse job shop scheduling
tasks [14], [15], we decide to employ an SF to determine the
priority for each controller to process every incoming packet.
Consequently, the same SF is capable of dispatching requests
in a network with arbitrary number of controllers. Moreover,



we adopt NN in this paper to improve the expressiveness and
trainability of the SF. It is important to note that in job shop
scheduling problems, the job with the highest priority will
always be processed first according to the dispatching rule. In
comparison, we choose to give more controllers non-negligible
opportunity of processing a request, thereby encouraging the
exploration during the training process in hope of achieving
higher performance.

In line with this idea, a new dispatching system has been
designed in Fig. 1. The system consists of three modules - the
state extractor ϕ, the SF fθ, and the probability projector γ.
In particular, when a new request is generated at a switch at
time t, the dispatching system will select a controller using
the following steps: First of all, ϕ extracts the specific state
information snc,t for each controller from the raw entire
network information st. Then the state information snc,t of
each controller will be processed individually and sequentially
by the SF fθ which outputs a corresponding priority value
onc,t. Given all controllers’ priorities ot = [o1,t, ..., oNc,t], γ
is activated to map ot into dispatching probabilities pt. Based
on pt, a controller is selected to process the new request.

Obviously, the output priority onc,t of controller Cnc
de-

pends heavily on its state input snc,t as shown in Fig. 1.
Thus, selecting suitable state information for each controller is
critical. Intuitively, the preference of choosing controller Cnc

relies on its history. If its response time τnc or utilization unc

dramatically increased recently, the controller is very likely to
be heavily loaded in the near future. Sending requests to that
controller is likely to result in long response time. Similarly,
the request arrival rate λns,t at switch Sns

at time step t should
also be included because the controller’s future utilization is
directly affected by the number of requests originated from
switch Sns

. Apart from that, the preference of choosing Cnc

also depends on its processing capacity αnc
and communica-

tion delay Dnc
ns

. Therefore, the information mentioned above
should all be included in Cnc

’s state information snc,t.
Given the controller state snc,t, fθ computes the controller’s

priority onc,t through an NN parameterized by θ which will be
optimized using an adapted RL algorithm elaborated in Section
IV-B and IV-C. The calculated priorities of all controllers ot =
[o1,t, ..., oNc,t] are then forwarded to the next system module.

After receiving the priorities ot from all controllers, the
probability projector γ maps the priorities into dispatching
probabilities pt = [p1,t, ..., pNc,t]. One of the most widely
used mappings is the softmax function [20]. However, we do
not consider it as an appropriate option because a non-zero
probability will always be assigned to a controller even though
the controller is clearly not a suitable candidate for processing
the pending request (e.g., the controller is too far away from
a switch or has very low capacity). This will inevitably result
in network performance degradation. On the other hand, a
deterministic approach which always selects the controller
with the highest priority is also inappropriate. Because purely
exploiting the currently best controller prevents an RL algo-
rithm from exploring other suitable controller candidates that
can bring more benefits in reducing the average response time.

To balance the trade-off between exploration and exploita-
tion, an Euclidean projection method [24] is adopted here. In
particular, we define õt = [õ1,t, ..., õNc,t] as the normalized
priorities of ot and is sorted in descending order, where õi,t
represents the normalized priority of the controller with the
ith highest priority. Note that ot is the output of the NN
which is guaranteed to be non-negative by using a softplus
activation function in the output layer. We expect to compute
the Euclidean projection of õt to pt so that the Euclidean
distance between õt and pt can be minimized.

Existing studies [24] showed that the Euclidean projection
problem can be solved by assigning non-zero probabilities to
the m controllers with the highest priorities while setting 0
probabilities to the remaining controllers. The exact solution
to the Euclidean projection problem is further given as follows:

pi,t =

{
õi,t +

1
m (1−

∑m
j=1 õj,t), if 1 ≤ i ≤ m

0, otherwise
(4)

where m is a hyper-parameter for our dispatching system.
With (4), the requests will be always dispatched to “appro-

priate” controllers (i.e., controllers with high priorities) so as
to improve the long-term network performance. Furthermore,
by manipulating the value of m, we can explicitly control the
level of exploration.

B. Adapting PPO to Train the SF
Among existing RL algorithms, proximal policy optimiza-

tion (PPO) is selected for training the SF because of sev-
eral reasons. First of all, PPO can perform multiple epochs
of minibatch policy update using previously sampled data,
greatly improving sample efficiency. Secondly, PPO employs
only first-order optimization which is more computationally
efficient compared to other RL algorithms [17]. Finally, PPO
has been widely and successfully used in many problem
domains. Studies [19] have shown that PPO can outperform
many state-of-the-art algorithms such as TRPO [17] and A2C
[13] on many difficult RL problems. It is particularly effective
at training functions modeled as deep NNs. While we only
use PPO in this paper, our research does not rule out the
possibilities of using other RL algorithms.

As a prominent and highly efficient actor-critic algorithm,
PPO uses an NN to approximate the value function which
is then used to train the SF. In order to apply PPO, an NN
denoted as fω parameterized by ω representing the value
function is required. In line with R2, the number of inputs
to fω should not change even when the network setting alters.
In our simulation studies, we found it useful to feed fω with
high-level statistics s′t that accurately capture the performance
and operation of our SDN network in the recent past. Thus, in
our experimental study, the inputs s′t for fω contain the total
control plane capacity, the weighted average communication
delay, the overall request arrival rate, and the recent history of
both average response time and the control plane utilization.

Given the value function fω , PPO obtains the optimal policy
πθ by maximizing the following clipping function:

C = max
θ

E {min(rt(θ)At, clip(rt(θ), 1− ε, 1 + ε)At)} (5)



where ε is a hyper-parameter (e.g., 0.2), At is the advantage
function that can be estimated through fω [18], and rt(θ) =
πθ(at|st)
πθold (at|st)

. It is straightforward to see that the policy πθ can
be improved by repeatedly updating the policy parameters θ
along the direction of ∂C

∂θ .
In particular, for any state st, the gradient ∂C

∂θ can be
calculated as below:

∂C

∂θ
=

0, if

{
rt < 1− ε
At < 0

or

{
rt > 1 + ε

At > 0
or πθ = 0

At

πθold

∂πθ
∂θ , otherwise

(6)
Note that πθ in Fig. 1 combines the mapping function

γ described in (4) and the NN fθ. Therefore, calculating
∂C
∂θ requires extra effort. A new technique is developed in
this paper to calculate ∂C

∂θ which will be illustrated by the
following example.

Gradient Calculation Example: In this example, we con-
sider a network with 3 controllers and set the hyper-parameter
m in (4) to be 2. Assume that the 3 controllers’ priorities at
time step t is ot = [o1,t, o2,t, o3,t] and o1,t ≥ o2,t ≥ o3,t. Then
the sorted and normalized priorities õt can be represented as

õt = [
o1,t∑3
j=1 oj,t

,
o2,t∑3
j=1 oj,t

,
o3,t∑3
j=1 oj,t

] (7)

The dispatching probabilities in (4) can be determined as:

pi,t =

{
õi,t + 0.5× õ3,t = oi,t+0.5×o3,t∑3

j=1 oj,t
, i = 1, 2

0, i = 3
(8)

Following the chain rule, the gradient of πθ can be calculated
as below if the controller with the ith highest priority is
selected:
∂πθ(st, at)

∂θ
=
∂pi,t

∂o1,t

∂o1,t

∂θ
+
∂pi,t

∂o2,t

∂o2,t

∂θ
+
∂pi,t

∂o3,t

∂o3,t

∂θ

=

∂oi,t
∂θ

+ 0.5
∂o3,t
∂θ∑3

j=1 oj,t
−

(oi,t + 0.5o3,t)(
∂o1,t
∂θ

+
∂o2,t
∂θ

+
∂o3,t
∂θ

)

(
∑3

j=1 oj,t)
2

(9)

where ∂onc,t

∂θ = ∂fθ
∂θ is the gradient of the SF fθ given the

controller state snc,t.
Note that this new technique for calculating the derivative

can be easily extended to the case with arbitrary number of
controllers. With the help of TensorFlow [3], the derivative
calculation can also be fully automated in our training system,
regardless of how many controllers are involved.

C. Training System Design

In this section, we will discuss how to simultaneously train
both the SF fθ and the value function fω .

To understand the training process, we first define a network
setting as a 3-tuple Env = (α,λ,D) including the controller
capacities, packet arrival rates, and communication latencies.
An episode is further defined as one network simulation based
on a specific setting Env, which starts from an initial state
where no packets have started to flow through the network
and ends when the simulation time reaches a predefined value
tmax. Simulation details will be provided in Section V.

V(s)

Dispatching 
System

Network
Simulator

Adapted 
PPO

Value Function

f!

at

st+1 , rt

Training Data Collection

f✓

Scheduling Function

g✓ g!

✓

[st , at, rt]

Parameter Updating

Fig. 2: Training System Design.

Algorithm 1: PPO-based Algorithm for SF Training.

1 for Each network setting Ns = 1 : Nset do
2 for Each episode Ne = 1 : Nep do
3 while t < tmax do
4 Perform one learning iteration update:
5 (1) Collect training data (st,at, rt): Run

dispatching system in network simulator for
n time steps;

6 (2) Adapt PPO to compute gradients gw and
gθ;

7 (3) Update NN parameters: θold ← θ and
ωold ← ω

8 end while
9 end for

10 end for

As shown in Algorithm 1, the training is performed in
a sequential manner. In particular, Nset network settings
[Env1, ...,EnvNset

] will be simulated in sequence. For each
Env, PPO is used to train the SF for Nep episodes. Within
each episode, multiple learning iterations are performed.

In particular, a learning iteration consists of n-time-step
simulation. As shown in Fig. 2, within each learning iter-
ation, the dispatching system equipped with fθold

is used
for dispatching requests in the network simulator for n time
steps. After collecting the corresponding information including
states, actions, and rewards from the simulated network, PPO
is further activated to train the SF.

V. SIMULATION

This section reports the performance evaluation of the
proposed RL-based approach for SFD.

Simulation Setting: In our simulation, we adopt the same
NN architecture given in PPO [19] for both the SF fθ and
value function fω , which is a fully connected multilayer per-
ceptron with two hidden layers of 64 units and tanh activation.
Meanwhile, we set the hyper-parameters following the PPO
Mujoco setting [19] and m in (4) to be 2. Each network setting
is trained for 2 episodes and each episode is initialized with 0%
utilization for all controllers and 0 packets in the network. The
requests are generated following the Poisson distributions with
predefined arrival rates. Each episode runs for 240 seconds
which is assumed to be sufficiently long for the network to
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Fig. 3: Training performance of our proposed SF on Env 1.

TABLE I: Network settings for training and testing.

Training Testing
Env 1 Env 2 Env 3 Env 4 Env 5 Env 6 Env 7

Total request arrival
rate λ (×1000pkt/s) 5 4 6 15 20 15 25

Num. controller Nc 2 2 2 3 4
Processing capacities
α(×1000pkt/s) [9, 9] [15, 6] [9, 12] [6, 9, 12] [6, 9, 12, 15]

Communication
delay D(s)

[0.002,
0.02]

[0.01,
0.01]

[0.005,
0.04] \ \

enter and stay in a stationary condition. For each episode, we
set 1024 simulation steps as one learning iteration.

During our simulation, the SF is trained with one switch
since the learned SF will be individually deployed on each
switch as we mentioned in III-A and training the SF with one
switch can also reduce the training costs. Although the SF is
trained with one switch, it can effectively work in the network
with multiple switches deployed, which will be demonstrated
in the testing section.

Training Performance: We start with demonstrating the
training performance when only one network setting (Env 1 in
Table I) is utilized for training. The learning curves showing
the total reward and average response time averaged across
five runs of the algorithm are demonstrated in Fig. 3. It can
be observed from Fig. 3(a) that, the cumulative reward grows
quickly from around 200, 000 to above 300, 000 within 60s of
the corresponding simulated network operation time. Similarly,
a sharp decrease in average response time can also be observed
from Fig. 3(b) which indicates that the trained SF can rapidly
converge to the optimal performance.

In order to train a generally applicable SF, we then perform
the training over a series of different network settings as
described in Section IV-C. In particular, 3 network settings
(Env 1 - Env 3 shown in Table I) are used during the training
process. The corresponding training performance is similar to
Fig. 3, which is excluded here due to the space limit.

Testing Performance: To demonstrate the effectiveness
of our proposed approach, we compare the trained SFs
obtained at different training stages with two competing
scheduling heuristics: random (Rand) and weighted round-
robin (Weighted RR) [10]. The topologies we use are South
American (Env 4 and Env 5 in Table I) and Asian Sprint
networks (Env 6 and 7 in Table I) [2]. Due to various
network sizes, the number of controllers deployed in each
network is different as shown in Table I. The locations of
controllers are decided by k-center [9]. Given the topology, the
communication delay between any two nodes in the network

(a) South American Network with
arrival rate 15000pkt/s (Env 4).

(b) South American Network with
arrival rate 20000pkt/s (Env 5).

(c) Asian Network with arrival rate
15000pkt/s (Env 6).

(d) Asian Network with arrival rate
25000pkt/s (Env 7).

Fig. 4: Testing performance comparison of random heuristic
(Rand), weighted round-robin heuristic (Weighted RR), and
our proposed trained SF (Proposed) on 2 regional Sprint
Network. The performance improvement of our proposed SF
is shown by using the SF obtained at different training stages.

is calculated using Dijkstra’s algorithm [7].
The simulation begins with Env 4 where 3 controllers are

deployed. The total number of requests generated by the
entire data plane is average to be 15000pkt/s. It can be seen
from Fig. 4(a) that the response time of our SF is initially
similar to Rand. However, as the SF is trained with more
network settings, its response time significantly drops from
105ms to 60ms, which is 40% lower than both Rand and
Weighted RR. Similar conclusions can also be drawn from
Fig. 4(b)-(d) where different network settings are applied.
This is expected because our SF takes both the controller
capacity and communication delay into account during request
scheduling. On the other hand, Rand evenly schedules requests
regardless of the communication delay or the controller capac-
ity. Compared with Rand, Weighted RR distributes requests
based on the controller capacity and achieves slightly better
performance in general. However, in the network that spans
large geographic areas, the communication delay contributes
a significant proportion to the average response time. Solely
considering the controller capacity obviously cannot achieve
good performance.

To verify this, we compare the request distributions of
different approaches used in a switch in Env 6. We can see
from Fig. 5 that both Rand and Weighted RR schedule requests
as we expected. On the other hand, instead of dispatching
requests to all controllers as both Rand and Weighted RR
do, our SF only schedules requests to controllers with low
communication delay (i.e., Ctl1 and Ctl2) without overloading
them, achieving the lowest response time (30ms).



Fig. 5: Request distribution over 4 controllers obtained from
a switch in Env 6. For the proposed method, we use the SF
obtained at the final training stage.

Another interesting phenomenon we can notice from Fig.
4(c) is that Rand outperforms Weighted RR on response time
in Env 6. The most likely reason is that the controller with
smaller capacity is placed nearer to the switches compared
to the larger-capacity one in the network. Thus, Rand sends
more requests to nearby controllers, potentially reducing the
response time. Apart from that, all three approaches achieve
similar throughput in Fig. 4(a) and Fig. 4(c), which is expected
since the overall arrival rate is still below the whole network
capacity and none of the controllers is overloaded.

We also compare the performance of our trained SF with a
different request arrival rate. As shown in Fig. 4(b), we notice
that the throughput of Rand is 700pkt/s smaller than Weighted
RR due to controller overloading. In particular, the total arrival
rate in Fig. 4(b) is 20000pkt/s and each controller will evenly
receive around 6666pkt/s in Rand. Thus, the controller with
6000pkt/s capacity will be inevitably overloaded, leading to the
increase of response time and decrease of throughput. In com-
parison to Rand, the throughput of our trained SF increases
as more network settings are trained, which effectively sends
requests to near controllers without overloading them. Similar
phenomenon can be seen in Fig. 4(d).

Furthermore, it should be noted that, although our SF is
trained in networks with two controllers, our testing results
clearly show that it can generalize well to networks with more
controllers. Therefore, our RL approach can design general
and efficient SFs.

VI. CONCLUSIONS

To effectively utilize the multi-controller resources in SDN,
it is of great importance to design an SF that dispatches
requests from switches to appropriate controllers. Motived by
this, we propose an RL-based approach to solve the SFD
problem by automatically learning an effective and generally
applicable SF. Specifically, we formulate the SFD problem as
an RL problem and a dispatching system is developed where
an SF is in the form of an NN to calculate the priority of every
controller. After that, a specially designed selection scheme
is applied to make the final dispatching decision using the
obtained priorities. Along with the new dispatching system, a
new training approach is developed which constantly improves
the performance of the SF under different network settings via
an adapted RL algorithm. Our simulation study showed that

by using the newly proposed training approach, the SF can
quickly converge to the optimal performance. Apart from that,
the trained SF can generalize well and achieve significantly
better performance compared with other heuristics.
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