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Abstract—In this paper, a neural network-aided bit-interleaved
coded modulation (NN-BICM) receiver is designed to mitigate the
nonlinear clipping distortion in the LDPC coded direct current-
biased optical orthogonal frequency division multiplexing (DCO-
OFDM) systems. Taking the cross-entropy as loss function, a
feed forward network is trained by backpropagation algorithm to
output the condition probability through the softmax activation
function, thereby assisting in a modified log-likelihood ratio
(LLR) improvement. To reduce the complexity, this feed-forward
network simplifies the input layer with a single symbol and
the corresponding Gaussian variance instead of focusing on
the inter-carrier interference between multiple symbols. On the
basis of the neural network-aided BICM with Gray labelling,
we propose a novel stacked network architecture of the bit-
interleaved coded modulation with iterative decoding (NN-BICM-
ID). Its performance has been improved further by calculating
the condition probability with the aid of a priori probability that
derived from the extrinsic LLRs in the LDPC decoder at the last
iteration, at the expense of customizing neural network detectors
at each iteration time separately. Utilizing the optimal DC bias
as the midpoint of the dynamic region, the simulation results
demonstrate that both the NN-BICM and NN-BICM-ID schemes
achieve noticeable performance gains than other counterparts,
in which the NN-BICM-ID clearly outperforms NN-BICM with
various modulation and coding schemes.

Index Terms—DCO-OFDM, LDPC code, BICM-ID, clipping,
neural network

I. INTRODUCTION

Visible light communications (VLC) have become an
emerging short-range communication technique for the indoor
scenarios to complement the radio frequency (RF) systems
[1]. With such distinct advantages as the abundant unli-
censed spectrum, low cost and security, VLC systems can
support the communication and illumination simultaneously
by adopting the intensity modulation and direct detection
(IM/DD) to guarantee the real non-negativity for driving the
light emitting diode (LED). To achieve a higher transmission
rate, the optical orthogonal frequency division multiplexing
(OFDM) has attracted much attention for the multi-carrier
VLC applications in comparison with the single-carrier pulse
modulation schemes, e.g. the on-off keying (OOK) and pulse
position modulation (PPM), due to its spectral efficiency and
robustness against the inter symbol interference (ISI).

In multi-carrier VLC systems, there are many variants of
optical OFDM modulation schemes to generate the real and
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non-negative intensity signals [2], [3]. Particularly, DCO-
OFDM exhibits the highest spectral efficiency with simple
implementations, in which the Hermitian symmetry can ensure
the real-valued property and the DC bias can handle the
non-negativity constraint [4]. For the optical front-end, the
transfer characteristic of an LED after the pre-distortion can
be modeled as a dynamic-range-limited nonlinearity, where
the linear dynamic range is limited between the minimum
and maximum input current [5], [6]. The double-sided clip-
ping should be adopted to accommodate DCO-OFDM signals
within the dynamic range constraint. However, the DCO-
OFDM signals with high peak-to-average power ratio (PAPR)
show a considerable sensitivity to the nonlinear distortion
caused by the double-sided clipping operation inevitably. The
efficient methods to mitigate the nonlinear distortion are the
bit-interleaved coded modulation (BICM) receivers combined
with the clipping nonlinearity. Taking advantage of the near
Shannon performance and high throughput iterative decod-
ing, BICM potentially chooses the low density parity check
(LDPC) coding scheme to exhibit a significant robustness to
the impulsive interference [7], [8].

In the context of the conventional LDPC coded BICM re-
ceivers, the maximum a posteriori (MAP) demapper derives
the mismatched extrinsic log likelihood ratio (LLR) values due
to the nonlinear inter-carrier distortion caused by double-sided
clipping operations, resulting in a serious degradation. The
MAP-BICM is the BICM receiver based on the MAP detection
with the assumption of the Gaussian noise, which suffers from
the mismatched soft output when the clipping distortion incurs.
Most previous works have focused on the improved BICM
designs based on the clipping distortion, mainly consisting of
BICM receiver based on maximum sequence likelihood (MSL-
BICM), BICM receiver based on Gaussian mixture model
(GMM-BICM) and so on [9], [10]. For example, MSL-BICM
is an enhanced near-optimal BICM design for the clipped
DCO-OFDM system by revising the LLR criterion based on
the maximum sequence likelihood [9]. Since the revised LLR
criterion consumes extra complexity with increasing subcarri-
ers and suffers from the imperfect channel state information
(CSI), MSL-BICM shall be limited by inter-carrier distortion
between the numerous subcarriers. GMM-BICM models the
channel conditional probability that the equalizer outputs as
the mix-Gauss distribution and obtains the modified LLR
values [10]. Despite several advantages including modeling
the probability distributions with any required accuracy level
and convenience of using the expectation maximization (EM)
algorithm, GMM are statistically inefficient for modeling in
a nonlinear manifold of the data space [11]. It leads to a
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Fig. 1. Block diagram of the LDPC coded DCO-OFDM system employing
a NN-aided BICM receiver.

limitation in performance when using the GMM to model
channel conditional probability after the clipping operation.

Recently, machine learning (ML) has attracted growing
interest in the potential applications of the physical layer,
including channel estimation and detection, equalization and
channel decoding etc. [12]–[16]. In [14], the authors propose
a deep learning-based maximum likelihood detector, named
DetNet, with a unfolding architecture by adopting the pro-
jected gradient descent algorithm. Besides the robustness to
the imperfect CSI, a neural network (NN) detector in [15]
is expected to learn a much better model with the data
in a nonlinear manifold. Firstly, the concept of symbol-by-
symbol detection and sequence detection are put forward [17],
and the authors established a framework of NN with the
cross-entropy loss function following the softmax activation
function to output the probability of the estimations. Several
works have discussed the similar methods [18]–[20]. These
advances trigger interest in developing the BICM receiver
based on the NN, where the layered neuron model aims at
recovering the desired transmitted symbols from the corrupted
signals.

Motivated by this goal, we propose a reduced complexity
NN-aided BICM receiver for the LDPC coded DCO-OFDM
system, in which a feed-forward NN is trained to learn the
channel condition probability. Instead of focusing on the inter-
carrier distortion between multiple received symbols, this basic
NN architecture simplifies the input of the single symbol
and corresponding AWGN variance to reduce complexity.
With the cross-entropy loss function, the NN is trained by
backpropagation algorithm to output the condition probability
through the softmax activation function, thereby assisting in
the LLR improvement. The rest of this paper is organized as
follows. In Section II, we propose a reduced complexity NN-
aided BICM receiver design for the LDPC coded DCO-OFDM
system. Specifically, we present a hybrid architecture and
implementation for the receiver with NN in Section III, includ-
ing computational complexity and improvement of overfitting.
Utilizing the optimal DC bias, simulation results demonstrate
that the NN-aided BICM receiver with different modulation
and coding schemes, compared with other counterparts in
Section IV. Conclusions are drawn in Section V.

II. SYSTEM MODEL

Fig.1 shows an LDPC coded DCO-OFDM system combined
with the NN-aided BICM receiver. At the transmitter, an rate-
R LDPC encoder encodes the independent bit streams. To

break the fading correlation, the coded bit streams are per-
muted by a quasi-random interleaver Π. Consider the labelling
rules, each M interleaved bit streams are mapped onto a
modulated 2M -QAM symbol in the 2M -ary constellation set
χ. BICM can be defined as a concatenation of the rate-R
LDPC encoder with 2M -ary memoryless modulator, which is
separated by the interleaver Π.

For driving the LED, the transmitter enjoys the inten-
sity electrical signals with real and non-negative prop-
erties via an intensity modulation and direct detection
(IM/DD) scheme. Specifically, the information-carrying sym-
bols

[
S1, ..., SN/2−1

]
are allocated over N subcarriers by fol-

lowing the Hermitian symmetry Sk = S∗N−k, k = 1, ..., N/2−
1, except that the 0-th and N/2-th ones being set to zero. The
real-valued time-domain signals [s0, ..., sN−1] can be obtained
by an N point inverse fast Fourier transform (N-IFFT) at the
expense of 50% reduction in spectral efficiency, as follows

sn =
1√
N

N−1∑
k=0

Ske
j 2πnk

N , n = 0, ..., N − 1. (1)

Due to a dynamic-range constraint on the LED, the DCO-
OFDM signals sn are biased with a DC bias µ and the
resulting double side clipping regarding the clipped signals
s̃n can be expressed as

s̃n =

 Ωb, ifsn ≤ Ωb − µ
sn + µ, ifΩb − µ < sn ≤ Ωt − µ
Ωt, ifsn > Ωt − µ

(2)

where the top and bottom clipping levels denote Ωt and Ωb
respectively. According to the Bussgang theorem, the clipped
signals can also be calculated by

s̃n = αsn + dn, n = 0, ..., N − 1 (3)

where α is the attenuation factor and dn is the clipping
distortion [21]. The attenuation factor equals to

α = Q(φb − φ)−Q(φt − φ) (4)

where Q (φ) represents the Gaussian Q-function of φ [5]. In
addition, φ is the ratio of DC bias and signal power φ = µ/σs
over a range of the minimum value φb and maximum ones φt,
i.e., φb = Ωb/σs and φt = Ωt/σs. The clipped signal s̃n drives
the intensity of a LED to generate the visible light signal sµ(t).
In [2], the electrical power of the transmitted signals sµ(t) can
be evaluated by

Pe(δb, δt, σs) = σ2
s(Q(δb)−Q(δt) + δbg(δb)− δtg(δt)

+ δ2bQ(−δb) + δ2tQ(δt))
.

(5)

where the standardized normal distribution g(φ) equals to
g(φ) = 1√

2π
exp(−φ

2

2 ), the difference values δb and δt denote
φb − φ and φt − φ respectively.

Typically, the VLC channel can be modeled as a low-pass
time-invariant channel plus the AWGN noise. The correspond-
ing received optical signal is converted into the electrical signal
ỹn by the the photodiode (PD). After performing N point fast
Fourier transform (N-FFT), the signals yn are transformed into
the frequency domain symbols Yk. The symbols Yk contains
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the attenuated symbol Sk with factor α and the channel
frequency response Hk, the clipping distortion Dk and the
AWGN noise Wk with zero mean and variance σ2

n on the
k-th OFDM subcarrier respectively [7], i.e.,

Yk = αHkSk +HkDk +Wk. (6)

For convenience, the channel response is normalized as Hk =
1,∀k.

The NN-aided BICM receiver is trained to learn the condi-
tion probability p(Yk|Sk), where the received signal Yk suffers
from a clipping distortion. This network adopts the fully
connected feed-forward architecture followed by an output
layer with the softmax activation function, in which the L−1
hidden layers with tanh activation function can be chosen.
Here, the tanh function is written as

tanh(x
(l)
j ) =

2

1 + e−2x
(l)
j

− 1 (7)

d(l) and x(l)j denote the number of neurons and the j-th neuron
in the layer l respectively, 1 ≤ l ≤ L − 1, 1 ≤ j ≤ d(l).
The input layer contains d(0) = 3 elements, including the
real and imaginary components Re{Yk}, Im{Yk} and the
variance σ2

n. The L-th layer outputs the condition probability
p(Yk|Sk) through the softmax function, in which d(L) equals
to size of the 2M -ary constellation set. The NN is carried out
with the cross-entropy loss function. For the gradient descent
optimization, the backpropagation algorithm aims at training
such a network efficiently with the scaled conjugate gradient
(SCG) method. The NN can assist in the LLR calculation by
obtaining the sum of the probability p(Yk|Smk ) in set of the
symbol Sk whose the m-th bit equals to b.

In the maximum a posteriori (MAP) demapper, the LLR
Lk,mDEM of the m-th bit in symbol Sk, k = 1, ..., N/2 − 1 is
calculated by equation [9]

Lk,mDEM = log

∑
Smk ∈χ

m
1

p(Yk|Smk )∑
Smk ∈χ

m
0

p(Yk|Smk )
, m = 1, ...,M, (8)

where χmb stands for the set of symbols whose the m-th
bit is b = 0, 1. The LLRs are passed through a quasi-
random deinterleaver Π−1 and sent to the LDPC decoder. The
iterative decoding of LDPC codes can be viewed as a serial
concatenation with an inner variable-node decoder (VND)
and an outer check-node decoder (CND). The extrinsic LLRs
between the VND and CND are iteratively updated to form the
final decisions until all the parity-check equations are satisfied
or the maximum number of iterations is reached [22].

III. HYBRID BICM RECEIVER WITH NN

A. Network Architecture and Implementation

In the conventional BICM receivers, the conditional
probability p(Yk|Sk; θ) with clipping parameters set θ =
{α,Hk, Dk} is usually formulated as Gaussian model, which
does not accurately characterizes the effect of the clipping
distortion. Moreover, for the clipped DCO-OFDM, the inter-
carrier distortion caused by nonlinearity distortion in MAP
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Fig. 2. Hybrid LDPC coded BICM receiver with the NN.

demodulator makes the error distribution function extremely
complicated than the Gaussian assumption. Several research
works devote to improving the demodulation performance with
the design of NN [13]–[15], but it still remains a challenge on
the soft decision calculation after the NN.

In [10], the authors exploit the discriminative strategy, such
as GMM, to model the error distribution and get the soft
output. However, the potential of GMM techniques is restricted
by the limitations of the discriminative model, in which the
estimated GMM parameters for each Eb/N0 require extensive
iterative computations. We believe that the feedforward NN
with a simplified structure offers a dramatic capability to
model the nonlinear function p(Yk|Sk; θ) by training the
network weights with error derivatives from back propagation
algorithm. Theoretically, the feedforward NN with three layers
has been proven to approximate any continuous nonlinear
function with an arbitrary degree of precision, in the condition
of enough hidden neurons [23]. In [19], the feedforward NN
belongs to an undercomplete denoising autoencoder that is
trained to reconstruct the original data from the corrupted
inputs, as long as the encoder function is deterministic. In
this paper, we propose a hybrid design of the NN-aided
BICM receiver, in which the feedforward NN learns the
embedded conditional probability and the soft input soft output
(SISO) demapper derives its LLR value. This hybrid design
is reasonable for combining the generalization ability on the
NN and the inferential capability on the Bayesian network.

Different from the multi-symbol design of the input layer
in other structures, the proposed NN only takes a single
received symbol Yk, k = 1, ..., N/2−1 and the corresponding
variance σ2

n as input, instead of the inter-carrier interference
(ICI) cancellation among multiple subcarriers. For the DCO-
OFDM, ICI can be expressed as a polynomial nonlinear
function of N complex symbols Sk, in which the NN for
ICI elimination would consume numerous neurons with extra
layers []. Instead, our network only aims at establishing a
nonlinear analytic function between Yk and Sk by considering
the noise variance and clipping distortion. Notice that whether
the input includes variance σ2

n or not will have a strong
influence on the performance, because the Gaussian noise can
help the network optimization. As a consequence, our network
can decrease the size of network architecture by employing
fewer layers, thereby simplifying the optimization process and
reducing the computation complexity.

The implementation of the NN-aided receiver contains the
training and testing procedure. In the training procedure, we
train the NN using a data-driven strategy when given the
modulation order M , code rate R and electrical training
Eb/N0 γe. The training dataset ϕ takes the recieved symbol Yk
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and the corresponding variance σ2
n as input, and the probability

mass function (PMF) pϕ(Sk) of the transmitted symbol Sk that
defined on the 2M -ary space χ as target respectively. PMF
pϕ(Sk) takes the form of indicator function, i.e.,

pϕ(Sk) = [I{Sk = χ1} I{Sk = χ2} · · · I{Sk = χ2M }] (9)

where I{·} denotes the indicator function, χj is a specific con-
stellation point in the j-th labelling index and the maximum
value of the labelling index satisfies max(j) = 2M .

To output the soft decision, the NN converts the linear
aggregation x(L)j of inputs a(L−1)i from the previous (L−1)-th
layers into the posterior probability pϕ(Sk|Yk; θ) by using the
softmax activation function [17],

pϕ(Sj |Yk; θ) =
exp(x

(L)
j )∑

j

exp(x
(L)
j )

(10)

It’s also noted that pϕ(Sk) is the prior probability of Sk in
the training set ϕ, pϕ(Sk|Yk; θ) is the posterior probability
that the NN outputs.

Like the multiclass classification, the output layer uses
the softmax function to derive the posterior probability
pϕ(Sk|Yk; θ) and the loss function J(ω; θ) can be chosen as
cross-entropy between the target PMF pϕ(Sk) and the output
of the softmax pϕ(Sk|Yk; θ), given by

J(ω; θ) = − 1

|ϕ|
∑
k∈ϕ

∑
j∈χ
I{Sk = Sj} log pϕ(Sj |Yk; θ). (11)

Thus, the NN weights are fine-tuned by optimizing the cross-
entropy, which is equivalent to the maximum likelihood prin-
ciple. According to the Bayes’ theorem, the conditional prob-
ability pϕ(Yk|Sk; θ) equals to pϕ(Sk|Yk; θ), suppose pϕ(Sk)
is uniformly distributed. Then, the NN can produce the condi-
tional probability p(Yk|Sk; θ), because the output pϕ(Sk|Yk; θ)
can be converted into the likelihood pϕ(Yk|Sk; θ). For the
testing procedure, the MAP demapper can exploit the prob-
ability pϕ(Yk|Sk; θ) that the NN outputs to calculate the LLR
Lk,mDEM by the equation (8), where the following steps have
been discussed in section II.

B. Backpropagation Performance Analysis

Here, we consider the numerical analysis of feedforward
network for minimizing the loss function J(ω; θ) with weights
trained by backpropagating error derivatives. The inputs are
propagated through the neuron layer by layer in the forward
pass to generate the outputs. By calculating the gradient
of the loss function, the resulting error derivatives are fed
back to adjust weights iteratively in the hidden layers by
the gradient descent. For each layer, the neuron takes the
nonlinear activation function of the weighted combination x(l)j
with respect to its inputs a(l−1)i ,
• Linear aggregation

x
(l)
j =

d(l−1)∑
i=0

w
(l)
ij a

(l−1)
i , 1 ≤ l ≤ L (12)

Algorithm 1: Hybrid BICM receiver with NN
Training procedure:
Input: symbols Yk ∈ ϕ, Eb/N0 γt, PMF pϕ(Sk)
Output: weights ω
for all (Yk, σ

2
n, pϕ(Sk)) ∈ ϕ do

Initialize weights w(l)
ij and biases w(l)

0j ∈ (0, 1) randomly;
Get σ2

n according to γt;
for 1 ≤ l ≤ L do

Calculate outputs a(l)i from Eq.(12) and Eq.(13);
end
Calculate cross-entropy J(ω; θ) from Eq.(11);
Derive gradient derivatives from Eq.(19) and Eq.(20);
Update weights by Eq.(22) with learning rate η;

end

Testing procedure:
Input: Re{Yk}, Im{Yk}, σ2

n

Output: p(Yk|Sk; θ)
for 1 ≤ l ≤ L do

Calculate outputs p(Yk|Sk; θ) from Eq.(12) and Eq.(13);
end
Calculate LLRs Lk,m

DEM from Eq.(8)

• Activation function

a
(l)
j =

{
tanh(x

(l)
j ), 1 ≤ l ≤ L− 1

softmax(x
(l)
j ), l = L

(13)

where w
(l)
ij means the weight value from the i-th input in

(l− 1)-th layer to the j-th input in l-th layer and d(l) denotes
the number of the neurons. Notice that the tanh and softmax
function are used in the hidden and output layers, respectively.

Backpropagation is an automatic differentiation technique
used to adjust the weights by following the gradient-based
optimization with error derivatives of J(ω; θ) [24]. In the
output layer, the gradient derivative can be obtained by the
chain rule,

∂J(ω; θ)

∂w
(L)
ij

=

d(L)∑
i=0

∂J(ω; θ)

∂a
(L)
i

∂a
(L)
i

∂x
(L)
j

∂x
(L)
j

∂w
(L)
ij

. (14)

We can compute each factor in multiplication as

∂J(ω;θ)

∂a
(L)
i

= ∂

∂a
(L)
i

(−
∑

j∈d(L)

I{Sk = Sj}loga(L)j )

= −I{Sk = Si} 1

a
(L)
i

(15)

∂a
(L)
i

∂x
(L)
j

= ∂

∂x
(L)
j

exp(x
(L)
i )

d(L)∑
i=0

exp(x
(L)
i )

= a
(L)
j (1− a(L)j )I {j = i} − a(L)i a

(L)
j I {j 6= i}

(16)

∂x
(L)
j

∂w
(L)
ij

= a
(L−1)
i . (17)

Therefore, ∂J(ω;θ)
∂w

(L)
ij

is derived by
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Algorithm 2: Stacked BICM-ID receiver with NN
Training procedure:
while iteration ≤ max do

if iteration=1 then
Input: symbols Yk ∈ ϕ, Eb/N0 γt, PMF pϕ(Sk)
Output: weights ω
for all (Yk, σ

2
n, pϕ(Sk)) ∈ ϕ do

Train net1 the same as Algorithm 1;
end

else
Input: symbols Yk ∈ ϕ, Eb/N0 γt, PMF pϕ(Sk),

p(Sk)
Output: weights ω
for all (Yk, σ

2
n, p(Sk), pϕ(Sk)) ∈ ϕ do

Train net2 the same as Algorithm 1;
end

end
iteration=iteration+1;

end

Testing procedure:
while iteration ≤ max do

if iteration=1 then
Input: Re{Yk}, Im{Yk}, σ2

n

Output: p(Yk|Sk; θ)
for 1 ≤ l ≤ L1 do

Calculate net1 outputs p(Yk|Sk; θ) from Eq.(12)
and Eq.(13);

end
Calculate LLRs Lk,m

DEM from Eq.(8);
Calculate p(Sk) from feed back Lk,m

A,DEM by Eq.(24)
and return p(Sk) back to the training procedure;

else
Input: Re{Yk}, Im{Yk}, σ2

n, p(Sk)
Output: p(Yk|Sk; θ)
for 1 ≤ l ≤ L2 do

Calculate net2 outputs p(Yk|Sk; θ) from Eq.(12)
and Eq.(13);

end
Calculate LLRs Lk,m

DEM from Eq.(23);
end
iteration=iteration+1;

end

∂J(ω;θ)

∂w
(L)
ij

= (−I{Sk = Sj}(1− a(L)j ) +
d(L)∑

i=0,i6=j
I{Sk = Si}a(L)j )a

(L−1)
i

= (I{Sk = Sj}(a(L)j − 1) + (1− I{Sk = Sj})a(L)j )a
(L−1)
i

= (a
(L)
j − I{Sk = Sj})a(L−1)i

(18)

Let δ(L)j = a
(L)
j − I{Sk = Sj}, the derivative can be

simplified as
∂J(ω; θ)

∂w
(L)
ij

= δ
(L)
j a

(L−1)
i (19)

For the hidden layer 1 ≤ l ≤ L− 1,

∂J(ω;θ)

∂w
(l)
ij

=
d(l)∑
i=0

∂J(ω;θ)

∂a
(l)
i

∂a
(l)
i

∂x
(l)
j

∂x
(l)
j

∂w
(l)
ij

=
d(l+1)∑
i=0

δ
(l+1)
i w

(l+1)
ij tanh′(x

(l)
j )a

(l−1)
i

(20)
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where tanh′ denotes the derivative of tanh function and the
term δ

(l)
j = ∂J(ω;θ)

∂x
(l)
j

, which satisfies

δ
(l)
j =

d(l+1)∑
i=0

δ
(l+1)
i w

(l+1)
ij tanh′(x

(l)
j ). (21)

According to the equation (21), all the delta values δ
(l)
j

can be calculated recursively by the δ(l+1)
i from the previous

layers. Afterwards, the weights can be updated by using
gradient descent with a learning rate η,

w
(l)
ij =

 w
(l)
ij − η

d(l+1)∑
i=0

δ
(l+1)
i w

(l+1)
ij tanh′(x

(l)
j )a

(l−1)
i , 1 ≤ l ≤ L− 1

w
(l)
ij − ηδ

(L)
j a

(L−1)
i , l = L

(22)

IV. STACKED BICM-ID RECEIVER WITH NN

The LDPC coded BICM-ID receiver can be viewed as an
iterative architecture with an inner MAP demodulator and
an outer LDPC decoder. The LLR LE,DEM(Smk ) on the m-
th bit is calculated and fed into the decoder to estimate the
transmitted message bit by equation

LE,DEM(Smk ) = log

∑
Sm
k
∈χm1

p(Yk|Sk)
∏M
m′=1,m′ 6=m p(Sm

′
k )

∑
Sm
k
∈χm0

p(Yk|Sk)
∏M
m′=1,m′ 6=m p(Sm

′
k )

(23)

where the p(Sm
′

k ) refers to the a priori probability of the set
of symbols Sk taking the same m-th bit.

It has been claimed that the BICM-ID receiver can not
achieve a further performance gain with the Gray labelling.
To address this challenge, we propose a stacked BICM-ID
design with the feed-forward NN, as shown in Fig. 3. Taking
the hybrid NN-aided BICM scheme at the first iteration, the
stacked NN includes the a priori probability p(Sk) to the
input layer additionally. The a priori probability p(Sk) can
be given by

p(Sk) =

M∏
m=1

1

2
(1 + tanh(

Lk,mA,DEM
2

)Smk ) (24)

where Lk,mA,DEM denotes the LLR LA,DEM corresponding to
the m-th bit on the constellation Sk [25]. With the nonlinear
clipping distortion, this stacked architecture can output the
condition probability p(Yk|Sk) at the i-th iteration based on
the a priori probability p(Sk) at the (i − 1)-th iteration,
resulting in an iterative improvement on the calculation of
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TABLE I
THE PARAMETERS OF THE NN-AIDED BICM DESIGN FOR LDPC CODED

DCO-OFDM

System Model Values
Code Length Nc 1296/1944/2304

Code Rate 1/2
Modulation QPSK 16-QAM 64-QAM 256-QAM
Labelling Gray

IFFT/FFT Size 64/256/1024
CL 9dB(16-QAM) 10dB(64-QAM)

Neural Network
Loss Function cross-entropy

Gradient Descent optimization Scaled Conjugate Gradient
Training Dataset 50Nc

Training Eb/N0
FFT-64: 13dB(16-QAM) 10dB(64-QAM)

FFT-1024: 10dB(16-QAM) 9dB(64-QAM)

Hidden Layers NN1: [32 16 8], NN2: [128 64 32]
NN3: [128 64 32 16], NN4: [512 128 64 32]

the extrinsic LLR LE,DEM . Since the NN changes with
the a priori probability p(Sk) at each iteration, we should
customize the specific architecture in a stacked fashion from
the NN at the last iteration. In the training procedure, we
should search the appropriate hidden layer and training Eb/N0

γe separately at each iteration, whose the complexity will
linearly increase with the iteration nummber.

V. SIMULATION RESULTS

In this section, we present the numerical results of the
NN-aided BICM receiver in the LDPC coded DCO-OFDM
systems, where the parameters are shown in Table I. The
channel bandwidth occupies N subcarriers with Hermitian
symmetry, resulting in N/2 − 1 information-carrying subcar-
riers. Given the Gray labelling, we select a 2M -ary quadrature
amplitude modulation (QAM) constellations combined with
a rate-R LDPC code as the coding and modulation scheme.
Here, we consider the structured LDPC codes in the IEEE
802.11 protocol (WIFI-R1/2) [26], where the coded length is
set to Nc. The belief propagation decoding is used and the
maximum number of iterations is set to 50.

We adopt the double hard clipping to fit the linear dynamic
range of LED, whereas the nonlinear transfer characteristic
can be compensated by the pre-distortion. In the following,
the optimal DC bias µ that maximizes SNDR is chosen as
the midpoint µ = 1

2 (Ωb + Ωt) to balance the dynamic region,
where the Ωb equals to zero and Ωt are selected according
to the clipping level Ψ [27]. Here, the parameter Ψ of the
nonlinear distortion is evaluated by

Ψ = 10log10(
Ω2
t

E(s2n)
). (25)

Specifically, the clipping level Ψ of the 16-QAM and 64-QAM
are respectively set to 9 dB and 11 dB. The bit error rate (BER)
curves are plotted versus electrical Eb/N0 γe, denoted as

γe = 10 lg

(
Pe(δb, δt, σs)

2εMRσ2
n

)
(26)

where the bandwidth utilization factor ε is denoted by ε =
1
2 −

1
N in DCO-OFDM.
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Fig. 4. BER performance of the NN-aided BICM in the LDPC coded DCO-
OFDM systems with 16-QAM (FFT-64).
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Fig. 5. BER performance of the NN-aided BICM in the LDPC coded DCO-
OFDM systems with 64-QAM (FFT-64).

We present the specific training parameters of the NN
design, such as the size of training dataset, the training
Eb/N0 γt and the hidden layers etc., as shown in Table I.
There are 4 network architectures with different hidden layers,
which are denoted as NN1-NN4. It indicates that the NN-
aided BICM works well after training a small sample dataset
with 50Nc bits. To investigate the impact of the NN on the
performance of BICM receiver, we pick up the robust feed-
forward architecture and the appropriate training Eb/N0 values
γt for the corresponding coded modulation schemes from the
candidate options in the subsection of Neuaral Network. In the
following simulations, we compare our proposed NN-BICM
receiver with the MAP-BICM, GMM-BICM and MLSD-
BICM counterparts. Different from the GMM-BICM using
EM algorithm, NN-BICM trains only once on the appropriate
γt rather than training the related parameters corresponding to
each Eb/N0 value.

Fig. 4 illustrates the BER comparisons of the NN-aided
BICM receiver and other receiver schemes. First, we consider
an LDPC coded DCO-OFDM system with 64 subcarriers
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Fig. 6. BER performance of the NN-aided BICM in the LDPC coded DCO-
OFDM systems with 16-QAM (FFT-1024).

and 16-QAM. In the NN-BICM design and the GMM-BICM
design, we choose the NN with the hidden layers [32 16 8]
and training Eb/N0 γt = 13 dB. The curve of the MAP-BICM
is given as reference. However, there exists a noticeable gain
on the performance of the MLSD-BICM with two and four
iterations, which indicates that MLSD-BICM can achieve an
additional improvement with the increasing iterations when
combating the nonlinear distortion. Eventhough, it can be
observed that the NN-BICM design clearly outperforms the
MLSD-BICM with 4 iterations, MAP-BICM and GMM-BICM
by about 0.2 dB, 0.5 dB and 1.5 dB respectively at a BER of
1e-4, which demonstrates the superiority of the NN architec-
ture.

In Fig. 5, the BER curves of the the NN-aided BICM
receiver and other designs for the LDPC coded DCO-OFDM
system with 64-QAM and the 64 subcarriers are presented.
The NN with the hidden layers [32 16 8] and training Eb/N0
γt = 15 dB is considered. BER results show that all the
curves are becoming slow down when the nonlinear distortion
imposes a strong impact on the higher order modulation.
Specifically, NN-BICM provides a remarkable performance
gain than GMM-BICM and MAP-BICM by about 1.2 and 1.8
dB respectively at a BER of 1e-3. Moreover, we can see that
the MLSD-BICM with 4 iterations exhibits better performance
than the NN-BICM at low Eb/N0 region from 7.5 to 9.5 dB,
while it suffers at high Eb/N0 region that larger than 9.5 dB.
The NN-BICM outperforms MLSD-BICM by about 0.5 dB at
1e-5 as the Eb/N0 γe increases, which can verify the benefits
of the NN design.

Fig. 6 shows the BER performance of the 16-QAM modula-
tion between the NN-aided BICM receiver and other designs
with 1024 subcarriers. The NN with the hidden layers [32
16 8] and training Eb/N0 γt = 13 dB is adopted. It is
obvious that NN-BICM achieves a noticeable performance
gain by about 0.8 to 1 dB over the other counterparts at
a BER of 1e-4. We observe that neither GMM-BICM nor
the MLSD-BICM can improve the performance gain in this
situation that the LDPC coded DCO-OFDM system with 1024
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Fig. 7. BER performance of the NN-aided BICM in the LDPC coded DCO-
OFDM systems with 64-QAM (FFT-1024).

subcarriers suffers from the the clipping level of 9 dB. GMM-
BICM fails modeling the mix-Gauss distribution, since the
conditional probability p(Yk|Sk; θ) approach to be Gaussian
distributed when the subcarriers N → ∞. While the MLSD-
BICM struggles to improve the gain when the MLSD has the
difficulty in searching the optimal solution over the space of
MN possible candidate symbol sequence with an exponential
growth of the increasing N . In Fig. 7, the superiority for the
NN-aided BICM is more evident with the higher modulation
order. We can see that the GMM-BICM exhibits a remarkable
deterioration about 0.6 dB performance gap, in comparison
with the MAP-BICM scheme.

Fig. 8 depicts the BER comparisons between the NN-BICM
and stacked NN-BICM-ID schemes when adopting 64 subcar-
riers and 16-QAM in the LDPC coded DCO-OFDM system
with the clipping level 9dB. In NN-BICM, the hidden layer
[32 16 8] and training Eb/N0 γt=13 dB are considered. The
NN-BICM scheme gets the channel conditional probability
through the feed-forward network and calculates modified
LLRs LE,DEM by the soft demapper. Traditionally, NN-BICM
can feed the a priori knowledge in the decoder back to the
demapper iteratively to develop a candidate iterative method.
However, as depicted in Fig. 8, we find that the Gray mapping
can not achieve a further performance gain with the increasing
iterations by using this method, whereas the performance of
NN-BICM with 2 iterations is similar to the first iteration.
On the other hand, the stacked NN-BICM-ID uses the same
parameters as NN-BICM at the first iteration, and employs
the different hidden layers and the training Eb/N0 γt=10 dB
at the second iteration. It shows that NN-BICM-ID, which
employs the architecture NN1 and NN2 at the each iteration
time respectively, outperforms NN-BICM by about 0.6 dB at
a BER of 1e-5, which exhibits a significant performance gain
with the same iteration time. Besides, NN-BICM-ID with the
architecture of NN1 and NN4 provides a similar performance
as that of NN1 and NN2 at the cost of the extra hidden
neurons.
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Fig. 8. BER performance of the NN-aided BICM-ID in the LDPC coded
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VI. CONCLUSION

In this paper, we introduce a novel NN-BICM and NN-
BICM-ID receiver in the LDPC coded DCO-OFDM system
respectively. These feed-forward networks are simplified by
establishing the input layer with a single symbol and the
corresponding variance of the Gaussian noise, in addition with
a feed back of the a priori probability from the LDPC de-
coder for the NN-BICM-ID design alternatively. Both revised
BICM/BICM-ID receivers can improve the LLR values by
adopting the loss function of cross-entropy and the softmax
activation function. The numerical results show that NN-BICM
and NN-BICM-ID can provide a better BER performance than
other counterparts.
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