
BFT Protocols for Heterogeneous Resource
Allocations in Distributed SDN Control Plane

Ermin Sakic∗†, Wolfgang Kellerer∗
∗Technical University Munich, Germany, † Siemens AG, Germany

E-Mail:∗{ermin.sakic, wolfgang.kellerer}@tum.de, † ermin.sakic@siemens.com

Abstract—Distributed Software Defined Networking (SDN)
controllers aim to solve the issue of single-point-of-failure and
improve the scalability of the control plane. Byzantine and faulty
controllers, however, may enforce incorrect configurations and
thus endanger the control plane correctness. Multiple Byzantine
Fault Tolerance (BFT) approaches relying on Replicated State
Machine (RSM) execution have been proposed in the past to
cater for this issue. The scalability of such solutions is, however,
limited. Additionally, the interplay between progressing the state
of the distributed controllers and the consistency of the external
reconfigurations of the forwarding devices has not been thor-
oughly investigated. In this work, we propose an agreement-and-
execution group-based approach to increase the overall through-
put of a BFT-enabled distributed SDN control plane. We adapt
a proven sequencing-based BFT protocol, and introduce two
optimized BFT protocols that preserve the uniform agreement,
causality and liveness properties. A state-hashing approach which
ensures causally ordered switch reconfigurations is proposed, that
enables an opportunistic RSM execution without relying on strict
sequencing. The proposed designs are implemented and validated
for two realistic topologies, a path computation application and
a set of KPIs: switch reconfiguration (response) time, signaling
overhead, and acceptance rates. We show a clear decrease in
the system response time and communication overhead with the
proposed models, compared to a state-of-the-art approach.

I. INTRODUCTION AND PROBLEM STATEMENT

Software Defined Networking (SDN) centralizes the
decision-making in a dedicated controller component. Con-
cepts for achieving crash-fault-tolerance and scalable operation
of the controller have been presented in the past [1], [2].
By means of a logical distribution of controller replicas and
the state synchronization, the controller instances are able to
synchronize the results of their individual computations and
come to consistent decisions independent of the instance that
handled the client request. However, these approaches are
based on weak crash-tolerant algorithms (e.g. RAFT [3] and
Paxos [4]) that are unable to cater for malicious and incorrect
(e.g., buggy [5]) controller decisions that have an individ-
ual controller instance fault as a root cause. Recent works
have thus highlighted the importance of deploying Byzantine
Fault Tolerance (BFT) protocols for achieving consensus, in
scenarios where a subset of controllers is faulty due to a
malicious adversary or internal bugs. Realizing a BFT SDN
control plane comes with an additional controller deployment
overhead, previously shown to range between 2FM + FA + 1
[6] and 3(FM + FA) + 1 [7] controller instances required to
tolerate up to FM strictly Byzantine and FA fail-crash failures.

To support stateful controller-based applications (i.e.,
resource-constrained routing, load-balancing, stateful fire-
walls), the controllers synchronize their internal state updates.
Traditional BFT designs [7], [8] require active participation
of all replicas in the system. Thus, they leverage an RSM
approach to handle the client requests, where a majority of
controller instances must come to the agreement about the

order of the client requests, before subsequently executing
them. Finally, the controllers reach consensus on the output of
the computation in order to ensure the causality of subsequent
decisions. We have identified two issues with this approach.

First, to preserve causality, the non-faulty replicas always
participate in all system operations. In the absence of faults,
more replicas execute the decision-making requests than re-
quired to make progress, thus strongly limiting the execution
throughput of the system. Namely, the application execution
is handled by each controller instance in the cluster. In het-
erogeneous environments, where particular controller replicas
can be assigned a higher resource set compared to the others,
this leads to an under-utilization of fast replicas, as the system
progresses at best at the speed of the b |C|+1

2 c+1 fastest replica
(|C| is the number of deployed controllers) [2]. Second, these
BFT implementations rely on reaching a successful agreement
about the sequence number mapping for each arriving client
request, prior to its actual execution. The agreement phase thus
necessarily increases the total processing time of individual
requests. We claim that the serialization of requests is a mean
to an end and that the causality of configurations on individual
external devices (i.e., switches) is a sufficient constraint.

II. OUR CONTRIBUTION

In this work we make a point that an optimal separation
of the controller cluster into sufficiently-sized agreement and
execution (A&E) groups leads to an overall higher utilization
in request processing. In our approach, faster replicas may
be leveraged in the intersection of different A&E groups,
while slower replicas may run at their assigned speed without
negatively influencing the faster replicas. To identify the A&E
groups, we extend an existing ILP formulation for controller-
switch assignment procedure [6]. The solver identifies an A&E
group for each deployed switch element, while maximizing the
overlap of the members of different groups. The formulation
considers the execution capacity of individual controllers, as
well as the switch-controller delays as its constraints. The
solver executes during runtime, thus optimizing the assignment
upon each discovered Byzantine/fail-crash failure.

To cater for the second issue, we adopt the classical Practical
BFT (PBFT) approach [8] to realize a distributed sequencer
in order to minimize the fail-over time in the case of a leader
failure. We additionally introduce a group-based variant of this
protocol, that leverages the partitioning of the total controller
set into multiple A&E groups. Finally, in addition to the two
agreement-based designs above, we present an opportunistic
protocol design. With the opportunistic approach, successful
handling of a client request implies reaching a consensus on a
consistent device reconfiguration while preserving the causal-
ity of decisions, subsequent to the actual request handling. We

ar
X

iv
:1

90
2.

02
51

9v
2

 [
cs

.N
I]

 2
2

Fe
b

20
19

achieve the causality and agreement by reaching consensus: i)
on the controller state at the time of application execution;
ii) on the actual computed output result (to guarantee the
consistency of decisions).

We have implemented these three BFT protocols and have
analyzed the overheads of switch reconfiguration time, the
communication overhead and the request acceptances rates.
We ran our evaluation for emulated Open vSwitch-based
Internet2 and Fat-Tree topologies, comprising up to 34 Open
vSwitch instances and up to 13 controllers, while considering
a varied number of tolerated Byzantine failures.

Paper structure: Sec. III introduces the overall system
model. Sec. IV details the proposed BFT protocols. Sec. IV-D
discusses the ILP formulation for the optimal controller-switch
assignment. Sec. V presents the evaluation methodology. Sec.
VI discusses the results. Sec. VII summarizes the related work.
Sec. VIII concludes this paper.

III. SYSTEM MODEL

In [6], we discussed the often neglected differentiation
between state-independent (SIA) and state-dependent (SDA)
SDN applications. The SDA require an up-to-date and syn-
chronized application state in order to serve the client requests.
In this work, we consider solely the global SDA operations
where successfully handled client requests result in stateful
write operations to the replicated data-store. The subsequent
client request executions that result in new writes to the same
state must consider the preceding writes for their correctness.
The value of the write operation is determined by an execution
of a multi-phase BFT protocol. We distinguish accepting and
rejecting protocol executions. Rejecting executions are caused
by replicas that interrupt the run because of a missing consen-
sus in one of the protocol phases (caused by e.g., conflicting
seq. no. proposals, faulty controllers and packet loss). We
assume that clients retransmit the requests until a successful
execution has been acknowledged by the controllers.

Our SDN architecture is comprised of: i) controllers
that individually execute an instance of a BFT process; ii)
the switches that implement a comparison mechanism for
matching controller configuration messages (as per [6]); iii)
the clients; iv) a REASSIGNER component that maintains
the switch-controller assignments (as per [6]). The request-
initiating clients comprise northbound clients (e.g., applica-
tions, administrators) and the switches capable of forwarding
the client requests as (OpenFlow) packet-in messages to the
SDN controllers (e.g., routing, load-balancing requests). The
target clients represent the configuration targets, e.g., switches
that are (re)configured as a result of request handling.

We assume a fair-loss link abstraction, where a message
(re-)transmitted infinitely often is eventually delivered at the
recipient. Packets may be arbitrarily dropped, lost, delayed,
duplicated and delivered out of order during any of the BFT
protocol phases. The SDN control plane is realized in either
in-band or out-of-band manner. Control messages exchanged
between the controller, switches and clients are assumed to be
signed, thus ensuring: i) the integrity of messages exchanged
using the SDN data plane; ii) message forging is impossible.

State-updates distribution assumes an eventually syn-
chronous model as per [9], where different replicas possess
different views of the current configuration state for a limited
time duration. Eventually, given an appropriately long quies-
cent period, all correct replicas converge to the same state.

We assume that a bounded number of controllers may exhibit
Byzantine behavior and/or fail-crash failures, respectively.

IV. BFT CONSENSUS PROTOCOLS AND THE
CONTROLLER-SWITCH ASSIGNMENT METHODOLOGY

The proposed protocols guarantee the following properties:
• Uniform Agreement: When a correct replica commits a

particular internal state/switch update (i.e., computes a
particular response), all correct replicas eventually com-
mit the same update.

• Liveness: All correct replicas eventually finalize the
processing of each client request. The resulting run is
declared either accepting or rejecting.

• Causality: The updates to the controller data-store and
the per-switch configuration updates are executed in a
causally dependent order. The controller’s decision to
reconfigure a switch take into account all preceding
configurations of that switch.

We assume a deployment of a total of 2FM + FA + 1
controllers per agreement and execution (A&E) group in order
to tolerate an upper bound of individual FM Byzantine and
FA fail-crash controller failures in that particular A&E group.

In the remainder of this section, we introduce the three BFT
protocols: the agreement-based MPBFT and SBFT protocols,
and the opportunistic OBFT (ref. Table I).

TABLE I
OVERVIEW OF PRESENTED BFT PROTOCOLS.

Alg. Name Type No. Rounds

MPBFT Modified PBFT Agreement-
based 2

SBFT Serialized A Priori BFT Agreement-
based 3

OBFT Opportunistic A
Posteriori BFT Opportunistic 2

A. Pre-serialization model MPBFT (agreement-based)

Modified PBFT (MPBFT) imposes a single A&E group
where each active controller replica is tasked with execution of
an agreed command. The workflow of MPBFT is visualized
in Fig. 1. A request-initiating client initially invokes its ap-
plication request to all active controller replicas (REQUEST
phase). For each incoming client request, each controller
replica assigns a unique sequence number and distributes
this sequence number proposal to the other controllers in the
cluster (PREPARE phase). The replicas compare the sequence
number proposals. If the correct majority of proposals are
matching (i.e., the same sequence number is proposed by the
majority of correct replicas), successful global agreement has
been reached. At the begin of the COMMIT phase, each correct
replicas executes the client request. The execution output is
subsequently broadcasted by each replica to the remainder of
the cluster and the collected output responses are once again
compared in all replicas. Each controller deduces the correct
majority response and eventually commits the output to its
local data-store (i.e., a store of reservations) and finally reports
the agreed output to the target clients (REPLY phase). After
collecting FM+1 consistent output messages, the target clients
(e.g., switches) decide to apply the new configuration.

MPBFT is a variation of PBFT [8] that requires no leader
and is thus tolerant to individual node failures. Compared
to PBFT, we shorten the protocol execution by one round.

Whereas PBFT proposes a PRE-PREPARE round, MPBFT
skips this round by leveraging a client-initiated atomic multi-
cast execution and a distributed sequencer. Namely, each new
client request is multicasted to each replica of the system.
The replicas propose a new seq. number for the request by
incrementing the current counter as per Alg. 1. The seq.
numbers for new client requests are assigned based on the
current state of a local atomic counter. Following an arrival of
a new request, the replicas yield the lowest unallocated seq.
number value and propose this seq. number to the remaining
replicas. After collecting a sufficient amount of matching
PREPARE messages, all correct replicas decide to accept the
seq. number contained in the correct majority proposal as the
final seq. number for this request. Table III summarizes the
exact amounts of required matching messages to progress the
protocol execution.

If no correct majority vote is achieved during the agreement
process on either the sequence number or the computed output,
the replicas respond with a rejection status. If sufficient rejec-
tion messages are collected, the current execution is cancelled
and the run is declared rejecting. Concurrent client requests
can lead to same sequence numbers being assigned to different
requests at different replicas, thus resulting in rejecting runs.

The execution capacity of MPBFT is limited by the slowest
replica in the system. Consider the scenario FM = 1, FA = 0
depicted in Fig. 1. Each controller Ci is able to service request
workload up to a capacity of Pi per observation interval.
The portrayed system is thus able to service computations
up to max(

∑
i=1..N λi) ≤ min(Pi), or 500 requests/interval

(imposed by the capacity of C4 and C5). Thus, Client 1 (with
processing requirement of λ1 = 500) and Client 2 (λ2 = 400)
cannot be serviced concurrently. One can alternatively portray
the depicted rates as continuous execution workloads. While
active participation of C4 and C5 in the system is unnecessary
to tolerate a single Byzantine fault, they are included in
execution and signaling and are necessary to progress the
system state. MPBFT’s communication overhead is quadratic
(ref. Table IV). With alternative protocol designs SBFT and
OBFT, we next leverage the additional execution capacity by
partitioning the control plane into multiple A&E groups.

B. Pre-serialization model SBFT (agreement-based)
With Serialized A Priori BFT (SBFT), agreement and

execution processes are administered by multiple A&E groups.
We assign for each request-initiating client (i.e., a northbound
application, an edge switch) an A&E group according to the
algorithm presented in Sec. IV-D. To tolerate FM Byzantine
and FA fail-crash failures in the scope of a single A&E group,
each group must comprise 2FM +FA+1 controllers. Multiple
execution groups can process the client requests concurrently.
SBFT design is depicted in Fig. 2. Compared to MPBFT,
SBFT introduces the PRE-PREPARE step, where the replicas
belonging to the A&E group propose and subsequently notify
the remainder of the replicas of an assigned sequence number.
In an accepting run, the group replicas collect the responses
in the PREPARE phase and reach consensus by collecting
d |C|+FM+1

2 e matching sequence number proposals. Finally, the
replicas of the A&E group execute the request in the COMMIT
phase and broadcast the response to all remaining replicas. If
FM + 1 matching outputs are received, the replicas apply the
internal state reconfiguration and notify the target clients of
the final result during REPLY. The communication overhead

Algorithm 1 Logical Sequencer: Ordering of client requests
Notation:
MP Client request (e.g. flow request)
MC Replica message (seq. no. proposal) initiated at a remote controller
C Set of available SDN controllers
RID Unique client request identifier
Rmappings Mapping of client request ids to unique seq. numbers
Satomic Atomic sequencer that yields the current seq. number

1: upon event on-client-request < MP , RID > do
2: ...
3: proposed_seq_no = propose_seq_no(RID)
4: ...
5:
6: upon event on-new-replica-sync-update < MC , RID > do
7: ...
8: switch PHASE do
9: case MPBFT-PREPARE:

10: propose_seq_no(RID)
11: case SBFT-PRE-PREPARE:
12: propose_seq_no(RID)
13: ...
14:
15: function PROPOSE_SEQ_NO(RID)
16: if RID ∈ Rmappings then
17: return Rmappings[RID]
18: else
19: while Satomic ∈ Rmappings.values() do
20: Satomic = Satomic + 1

21: Rmappings[RID] = Satomic

22: return Rmappings[RID]

Client 1
λ1 = 500

C1
P1 = 500

C2
P2 = 800

C3
P3 = 900

C4
P4 = 500

C5
P5 = 500

Client 2
λ2 = 400

REQUEST PREPARE COMMIT REPLY

Fig. 1. MPBFT Model: In REQUEST phase, the clients initiate new ex-
ecutions. During PREPARE, the controller replicas agree on the execution
order by reaching consensus on the assigned sequence number for the clients’
requests. Each controller executes the request in the COMMIT phase. During
REPLY, target clients are notified of reconfigurations. Client 2’s requests
cannot be serviced as a result of a limited processing capacity of the
controllers.

of SBFT is bounded O(3|A||C|), and grows linearly for a fixed
A&E group size.

Causality: To ensure that the causality property holds in
MPBFT and SBFT, the controllers execute the sequenced
request in order agreed during PREPARE. The replicas execute
the COMMIT phase only if the outputs (i.e., the added reserva-
tions) for the preceding requests were seen by the executing
replica. Thus, before handling subsequent requests, the status
of preceding runs (accepting/rejecting) must be determined.

C. Post-negotiation model OBFT (opportunistic)

Opportunistic A Posteriori BFT (OBFT) is a speculative
take on SBFT, where computations of the client requests

Client 1
λ1 = 500

C1
P1 = 500

C2
P2 = 800

C3
P3 = 900

C4
P4 = 500

C5
P5 = 500
Client 2
λ2 = 400

REQUEST PRE-
PREPARE PREPARE COMMIT REPLY

Fig. 2. SBFT Model: Compared to MPBFT, SBFT allows for more efficient
allocation of execution resources, since execution is separated into multiple
A&E groups. This comes with an overhead of a PRE-PREPARE step, required
to reach consensus on the sequence number allocated to the request.

execute prior to reaching consensus about the computed output
values. A global sequencer is not used in OBFT and thus
PRE-PREPARE and PREPARE phases are omitted. Instead,
each replica maintains the hashes of current switch configu-
rations, as well as a state array containing the hashes of the
configurations of the switches at the time of request executions
(TORC hashes). Following the output computation in the
COMMIT phase, the replicas come to consensus about the
updated switch state in the PRE-REPLY phase. This workflow
is depicted in Fig. 3.

In contrast to MPBFT and SBFT, in their COMMIT phase,
the replicas belonging to the same A&E group compute the
outputs, and in addition to the computed response outputs,
they broadcast the hash arrays denoting their view of the target
clients’ configurations. Each accepting replica that is not part
of the serving A&E group evaluates its actual current local
view of the switch states, and iff : i) FM + 1 matching output
values have been computed by the A&E replicas; and b) their
current view of switch configuration hashes is matching with
those of the A&E replicas; they answer with an accepting
status. The execution replicas (belonging to the A&E group),
instead compare the proposed hash array with their local
TORC hashes for the target client (i.e., target switches) and
notify other A&E replicas of their status. If sufficient (ref.
Table III) positive confirmations have been collected at the
end of PRE-REPLY phase, each active controller internally
commits the output proposed by the correct majority of
the A&E group. The A&E group members then notify the
configuration targets of the agreed output in REPLY phase.
OBFT’s comm. overhead is quadratic and grows with |C|.

D. Dynamic Controller-Switch (Re)Assignment Procedure

In our design, each request-initiating client (i.e., a north-
bound client or a switch) is assigned a unique controller agree-
ment and execution (A&E) group. Groups assigned to different
switches are allowed to partially or fully overlap. Only the
assigned controllers are required to contact the target clients
and apply reconfigurations. Similarly, only these controllers
are contacted by the request-initiating clients with new applica-
tion requests. Our ILP formulation of the assignment problem
aims to minimize the total overlap between the members of the
active A&E groups, so to minimize the synchronization delay
during the consensus executions. The proposed reassignment

Client 1
λ1 = 500

C1
P1 = 500

C2
P2 = 800

C3
P3 = 900

C4
P4 = 500

C5
P5 = 500

Client 2
λ2 = 400

REQUEST COMMIT PRE-REPLY REPLY

Fig. 3. OBFT model: An opportunistic protocol variation, where A&E group
members execute their clients’ requests prior to the distribution of reference
state configurations based on which the computations were executed. The
internal controller state and the target clients are updated only if the consensus
on the reference state configurations could be reached for the correct majority
of global controller instances (ref. Table III).

Algorithm 2 Hash comparison in the OBFT-COMMIT phase
Notation:
RID Unique client request identifier
HV Current configuration hashes for the switches
HVC[RID] Switches’ config. hashes prior request computation (TORC)
find-path() An exemplary SDN application logic operation
consensus() Returns consensus message according to the number of

minimum required confirmations (ref. Table III)
mC

RID
A COMMIT message for round RID

MC
RID

Set of buffered COMMIT messages for RID

1: procedure HANDLE NEW CLIENT REQUEST
2: upon event on-received-client-request (CLRID

) do
3: R = find-path(CLRID

.routing_request)
4: for all SW ∈ R do
5: current-hash[SW] = hash(SW.state)
6: mC

RID
.hash, mC

RID
.path = current-hash, R

7: broadcast-to-cluster-members(mC
RID

)

8:
9: procedure HANDLE INCOMING COMMIT MESSAGE

10: upon event new-replica-sync-message(mC
RID

) do
11: P

RID
C = consensus(MC

RID
, <val, state-hash-array>)

12: on-init-obft-pre-reply(PRID
C ,inline-with-replica-view(PRID

C))
13:
14: function INLINE-WITH-REPLICA-VIEW(PRID

C)
15: for all SW ∈ P

RID
C .path do

16: if HV[SW] == P
RID
C .hash[SW] then

17: pass ()
18: else if HVC[RID][SW] == P

RID
C .hash[SW] then

19: pass ()
20: else return (REJECT)
21: return (ACCEPT)

mechanism, the objective function and the constraints extend
the formulation presented in [6]. For brevity, we do not discuss
each constraint in detail here, but refer the reader to the
summary in Table V and [6]. The procedure is executed once
at the system startup and dynamically during runtime, on each
detected controller failure.

For each switch Si we can derive a bitstring RSi
comprised

of ones for replicas actively assigned to Si and zeros for the
unassigned replicas. We then formalize the objective function:

TABLE II
NOTATION USED IN TABLES III, IV AND V.

Symbol Meaning
C Set of active controllers in the system

FM No. of tolerated Byzantine faults in a single A&E group

Req(t)
Time-variant no. of controllers [6] that must be assigned

to each switch, to tolerate the Byzantine failures
S Set of switches in the system

PCi
Total available controller Ci’s capacity.

LCLk
, LSj

Request processing load stemming from the northbound
client CLk and edge switch Sj , respectively.

DC,S Max. tolerable delay for controller-switch communication.
A Controller replicas belonging to a single A&E group

|Magr|
Sum of the tolerated Byzantine failures and the majority

of correct replicas per A&E group: d |A|+FM+1
2

e

|Mglob|
Sum of the tolerated Byzantine replicas and the majority

of all correct active replicas: d |C|+FM+1
2

e
CMP Comp. overhead of executing the packet comparison
E Comp. overhead of executing SDN application operation

TABLE III
THE AMOUNT OF MATCHING MESSAGES REQUIRED TO REACH CONSENSUS

IN THE RESPECTIVE PROTOCOL PHASE (WORST-CASE).

Algorithm PRE-
PREPARE PREPARE COMMIT PRE-

REPLY REPLY

MPBFT N/A |Mglob| FM + 1 N/A FM + 1
SBFT |Magr| |Mglob| FM + 1 N/A FM + 1
OBFT N/A N/A |Magr| |Mglob| FM + 1

min
∑
Sj∈S

∑
Si∈S,Si 6=Sj

HD(RSj , RSi) (1)

where HD(RSj , RSi) denotes the Hamming distance be-
tween the assignment bitstrings for Sj and Si. Combined with
the adapted minimum assignment constraint depicted in Table
V, we ensure the building of minimum-sized A&E groups that
fulfill the capacity and delay constraints of the clients.

V. EVALUATION

To evaluate the different BFT protocols, we realized a
centralized path computation application that executes in each
of the deployed controller replicas. Based on the sequence
and current state of link reservations, the routing algorithm
leverages Dijkstra algorithm to choose the optimal (cheapest)
path w.r.t. bandwidth resource consumption, and thus implic-
itly load-balances the embedded flows in the given topology.

TABLE IV
COMPUTATIONAL AND COMMUNICATION OVERHEAD OF THE

INTRODUCED BFT PROTOCOLS.

Alg. Computational Overhead Communication Overhead
MPBFT O(2|C|CMP+ |C|E) O(2|C||C|)
SBFT O(CMP(2|C|+ |A|)+ |A|E) O(3|A||C|)
OBFT O(2|C|CMP+ |A|E) O(|A|(|C|+1)+|C|(|C|−1))

TABLE V
CONSTRAINTS USED IN BUILDING THE A&E GROUPS.

Constraint Formulation

Min. Assignment
∑

Ci∈C
ACi,Sj

== Req(t), ∀Sj ∈ S

Unique Assignment ACi,Sj
≤ 1, ∀Ci ∈ C, Sj ∈ S

Bounded Capacity

∑
Sj∈S

ACi,Sj
∗ LSj

≤

PCi
−

∑
CLk∈CL

LCLk
, ∀Ci ∈ C

Delay Bounds ACi,Sj
∗ dCi,Sj

≤ DC,S , ∀Ci ∈ C, Sj ∈ S

The BFT protocol executions take the source-destination pair
and the required bandwidth as an input for the service request.
Subsequently, the protocol computes the optimal path in the
COMMIT phase and notifies the switches on the path of new
reservation in the REPLY phase. To evaluate the designs of
all three protocols, we consider the following performance
metrics: i) time required to apply a new switch reconfiguration,
measured from the time of a client request arrival until the con-
firmation of the last switch reconfiguration; ii) the acceptance
rate for the new arrivals; ii) the total communication overhead.

To validate our claims in a realistic environment, we have
emulated the Internet2 topology, as well as a fat-tree data-
center topology, encompassing 34 and 20 switches, respec-
tively. The controllers in the Internet2 scenario were placed
so to maximize the system coverage against failures as per
[6], [10]. The controllers of the fat-tree topology were placed
on the leaf-nodes as per [6], [11]. The state synchronization
between the controllers and the resulting switch reconfigura-
tions occur in in-band control mode. To provide for realistic
delay emulation, we derive the link distances from the publicly
available geographical Internet2 data1 and inject the propaga-
tion delays using Linux’s tc tool. A single client was placed at
each switch of the Internet2 topology, while two clients were
placed at each leaf-switch of the fat-tree topology. The arrivals
for incoming service requests are modeled using n.e.d. [11].

To generate the hashes for per-switch configuration state
(ref. Sec. IV-C), we used Python’s hashlib implementation and
the SHA256 secure hash algorithm, defined in FIPS 180-2
[12]. We used Gurobi to solve the ILP formulated in Sec.
IV-D. The measurements were executed on a commodity PC
equipped with AMD Ryzen 1600 CPU and 32 GB RAM.

VI. DISCUSSION

1) Total reconfiguration time for the internal controller and
the switch state: Fig. 4a and Fig. 4b depict the accumulated
response time starting with the reception of a client request
at a controller replica until the last reconfiguration in one of
the switches on the detected path. The total number of active
controllers was fixed to |C| = 10 and the measurement was
executed for A&E group sizes varying between |A| = 3 and
|A| = 7 (FM = 1 and FM = 3, respectively) controllers.
Rejecting executions were not considered. Both Fat-Tree and
Internet2 topologies depict the benefit of opportunistic execu-
tion and a lower number of phases in OBFT in all scenarios.

In Fig. 5a and Fig. 5b, we vary the total number of deployed
active controllers. The figures portray how MPBFT provides
equal performance for the controller constellations where the
A&E group size in SBFT and OBFT approximately equals the
total number of active controllers (all controllers belong to the
same A&E group). After provisioning additional replicas (case
for |C| = [7..13]), the performance of MPBFT starts to suffer
compared to both SBFT and OBFT, as it requires interactions
between all instances of controllers for successful request
handling, whereas SBFT and OBFT continue to operate at the
level of a constant A&E group size. OBFT offers the best per-
formance in both topologies. This is due to SBFT and MPBFT
requiring additional rounds to handle the request sequencing,
compared to OBFT, that ensures the causality property holds
per-switch, even in the case of unordered executions. MPBFT

1Internet2 topological data (provided by POCO project) - https://github.
com/lsinfo3/poco/tree/master/topologies

https://github.com/lsinfo3/poco/tree/master/topologies
https://github.com/lsinfo3/poco/tree/master/topologies

25 26 27 28

Switch Reconfiguration Delay [ms] < D

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 P

ro
b

a
b

ili
ty

SBFT, FM = 1, | | = 10

SBFT, FM = 2, | | = 10

SBFT, FM = 3, | | = 10

OBFT, FM = 1, | | = 10

OBFT, FM = 2, | | = 10

OBFT, FM = 3, | | = 10

(a) Fat-Tree topology

26 27 28

Switch Reconfiguration Delay [ms] < D

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 P

ro
b

a
b

ili
ty

SBFT, FM = 1, | | = 10

SBFT, FM = 2, | | = 10

SBFT, FM = 3, | | = 10

OBFT, FM = 1, | | = 10

OBFT, FM = 2, | | = 10

OBFT, FM = 3, | | = 10

(b) Internet2 topology

Fig. 4. Total accumulated switch reconfiguration (system response) time for
varied sizes of A&E groups for max. tolerated Byzantine failures FM =
[1..3], FA = 0 and a fixed total number of active controllers |C| = [10].
OBFT shows dominantly lower commit delays in all depicted scenarios.

suffers further since the commands execute on each of the
controller replicas. Hence, its consensus requires on average an
inclusion of a larger number of replicas compared to SBFT and
OBFT. Internet2 topology depicts a lower discrepancy between
SBFT and OBFT and highlights the benefit of sequencing
in geographically distributed scenarios where network delays
cause a longer asynchronous period and thus a higher probabil-
ity of execution overlaps (confirmed by Fig. 6). The maximum
path lengths are higher for Internet2 topology, thus resulting
in a higher number of overlapping reservations that cause
execution rejections/stalling period in opportunistic OBFT.

2) Acceptance rates for arriving requests: In Fig. 6 we vary
the per-client arrival rates λ for incoming client requests. In the
case of λ = 4, up to 64 requests/second are processed by the
cluster in Internet2 topology. Opportunistic execution of OBFT
and subsequent hash comparison tends to result more often in
rejecting runs, compared to SBFT that serializes all requests
prior to their processing. MPBFT results in a relatively high
percentage of rejections, due to a higher chance of conflicting
sequence number handouts that may occur concurrently since
all replicas are involved in proposals during PREPARE phase.

3) Communication overhead: Fig. 7 depicts the scaling of
communication overhead with the increase of the total number

24 25 26 27 28 29 210 211

Switch Reconfiguration Delay [ms] < D

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 P

ro
b

a
b

ili
ty

MPBFT, FM = 1, | | = 4

MPBFT, FM = 1, | | = 7

MPBFT, FM = 1, | | = 10

MPBFT, FM = 1, | | = 13

SBFT, FM = 1, | | = 4

SBFT, FM = 1, | | = 7

SBFT, FM = 1, | | = 10

SBFT, FM = 1, | | = 13

OBFT, FM = 1, | | = 4

OBFT, FM = 1, | | = 7

OBFT, FM = 1, | | = 10

OBFT, FM = 1, | | = 13

(a) Fat-Tree Topology

26 27 28 29 210

Switch Reconfiguration Delay [ms] < D

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 P

ro
b

a
b

ili
ty

(b) Internet2 Topology

Fig. 5. Total accumulated switch reconfiguration (system response) time for
varied numbers of active controller replicas |C| = [4..13], FA = 0 and an
A&E group size of |A| = 3. While OBFT portrays the lowest reconfiguration
delays, its performance is similar to SBFT and MPBFT for small control
planes (especially for Internet2), slightly better compared to SBFT and largely
dominant compared to MPBFT for larger topology sizes.

= 1 = 2 = 4

Arrival Rate [# Requests per Seconds per Client]

0

10

20

30

40

50

60

70

80

90

A
cc

e
p
ta

n
ce

 R
a
ti

o
 [

%
]

SBFT

OBFT

MPBFT

Fig. 6. Acceptance rates for incoming client requests in fat-tree topology and
FM = 1, |C| = 4. SBFT tends to execute a higher number of successful runs
compared to: i) MPBFT, due to its larger number of active replicas involved
in sequencing process and ii) OBFT, due to its opportunistic design, where
consistency of outputs is agreed upon after execution has finished.

of active controllers. Controller-to-Switch (C2S) communica-
tion overhead increases with the number of controllers that ex-
ecute the operation and communicate their result to the target
switches. Thus, following an output response computation, in
MPBFT each controller distributes the newly computed config-
urations to switches, hence the linear overhead increase. Since
the size of the A&E group remains unchanged throughout all
depicted scenarios, SBFT and OBFT show a constant low C2S

overhead. The Controller-to-Controller (C2C) overhead scales
with the number of active controllers involved in the A&E
group. For MPBFT and OBFT, this increase is quadratic. For
SBFT, the C2C overhead increase is linear. It should be noted
that the linear evolution holds only for constant A&E group
sizes, i.e., for fixed FM and FA.

M
PB

FT
, |

| =
 4

M
PB

FT
, |

| =
 7

M
PB

FT
, |

| =
 1

0

M
PB

FT
, |

| =
 1

3

, |
| =

 4

, |
| =

 7

, |
| =

 1
0

, |
| =

 1
3

OBFT
, |

| =
 4

OBFT
, |

| =
 7

OBFT
, |

| =
 1

0

OBFT
, |

| =
 1

3
0

25

50

75

100

125

150

175

200

S
ig

n
a
lin

g
 o

v
e
rh

e
a
d
 [

p
p
s]

C2S Average Packet Load

C2C Average Packet Load

SB
FT

,

SB
FT

,

SB
FT

,

SB
FT

,

Fig. 7. Signaling overhead [pps] when serving 16 requests/second for a varied
number of controllers |C| = [4..13] and a fixed A&E group size |A| = 3.
SBFT possesses the lowest overhead (linear growth), followed by OBFT and
MPBFT, that show a quadratic growth scaling with |C|.

Additional notes: While SBFT and MPBFT ensure a single
execution and validation of inputs for client requests (i.e.,
each client sequence number is mapped to a unique request),
OBFT executes client requests speculatively, prior to reaching
consensus. Thus, Byzantine clients may attempt affecting the
order of execution, or generate execution contentions. Meter-
ing mechanisms for misbehaving clients and their exclusion
could cater for this case. They are, however, not in the scope
of this work.

VII. RELATED WORK

Agreement-based approaches have focused on the optimiza-
tion of sequencing procedure by minimizing the number of
replicas that actively participate in sequence proposals [13],
[14]. REBFT [13] keeps only a subset (2F + 1 of a total
of 3F + 1) replicas active during normal case operation. It
activates the passive replicas only after a detected replica fault.
Such approaches rely on a trusted counter implementation to
prevent equivocation, the capability of a malicious replicas
to send conflicting proposals to other members. Since we do
not assume a centralized proposer, we prevent equivocation by
deciding new seq. numbers individually, without the overhead
of a trusted counter nor passive replica activation delay.

Speculative BFT protocols have been investigated in [15],
[16]. However, these approaches conclude about the consensus
of the computed decisions based on the comparison of the
instantaneous outputs and assume a stateless operation. In the
contrast, in OBFT we leverage the agreement procedure that
relies on external outputs, i.e., stateful per-switch configura-
tions that are inherent to network management scenarios.

Omada [17] is a sequencing-based BFT design that as-
signs replicas with either agreement or execution roles and
parallelizes the agreement phase. It highlights the benefit of
selecting a configuration with the lowest number of agreement
groups. Contrary to our work, the authors assume a centralized

sequencer per agreement group. Distinguishing causality prop-
erty per configuration target is not discussed nor leveraged in
their protocol. Similarly, Omada does not provide an insight
into opportunistic approaches to execution handling.

VIII. CONCLUSION

We have implemented two agreement-based and an op-
portunistic BFT protocol for the purpose of SDN controller
state synchronization, and have analyzed their overheads in
an emulated environment using software switches and emu-
lated network delays. The evaluated KPIs include the switch
reconfiguration times, the request acceptance rates and the
communication overhead. We have shown how our opportunis-
tic BFT approach leverages agreement of switch state at the
time of request computation to ensure the causality during
request reconfiguration. It offers considerably lower response
time compared to the sequencing-based approaches. However,
this benefit comes at the expense of a lower acceptance rate
and quadratic communication overhead. For those metrics, the
A&E group-based sequencing approach SBFT presents a bet-
ter alternative. Both approaches result in a higher throughput
compared to MPBFT, which adapts the PBFT protocol.

ACKNOWLEDGMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement number 780315 SEMIOTICS. We are grateful to
Nemanja Deric, Arled Papa, Johannes Riedl and the reviewers
for their useful feedback and comments.

REFERENCES

[1] D. Suh et al., “On performance of OpenDaylight clustering,” in NetSoft
Conference and Workshops (NetSoft), 2016 IEEE. IEEE, 2016.

[2] E. Sakic et al., “Response Time and Availability Study of RAFT
Consensus in Distributed SDN Control Plane,” IEEE Transactions on
Network and Service Management, 2017.

[3] H. Howard et al., “Raft Refloated: Do we have Consensus?” ACM
SIGOPS Operating Systems Review, vol. 49, no. 1, 2015.

[4] L. Lamport et al., “Paxos made simple,” ACM Sigact News, vol. 32,
no. 4, 2001.

[5] P. Vizarreta et al., “Mining Software Repositories for Predictive Mod-
elling of Defects in SDN Controller,” in IFIP/IEEE International Sym-
posium on Integrated Network Management, 2019.

[6] E. Sakic et al., “MORPH: An Adaptive Framework for Efficient and
Byzantine Fault-Tolerant SDN Control Plane,” IEEE Journal on Selected
Areas in Communication, 2018.

[7] H. Li et al., “Byzantine-resilient secure software-defined networks with
multiple controllers in cloud,” IEEE Transactions on Cloud Computing,
vol. 2, no. 4, 2014.

[8] M. Castro et al., “Practical Byzantine fault tolerance,” in OSDI, vol. 99,
1999.

[9] A. Miller et al., “The honey badger of BFT protocols,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2016.

[10] D. Hock et al., “POCO-framework for Pareto-optimal resilient controller
placement in SDN-based core networks,” in Network Operations and
Management Symposium (NOMS), 2014 IEEE. IEEE, 2014.

[11] X. Huang et al., “Dynamic Switch-Controller Association and Control
Devolution for SDN Systems,” arXiv preprint arXiv:1702.03065, 2017.

[12] National Institute of Standards and Technology, “FIPS 180-2 with
change notice, "Secure Hash Standard",” 2004.

[13] T. Distler et al., “Resource-efficient Byzantine fault tolerance,” IEEE
Transactions on Computers, vol. 65, no. 9, 2016.

[14] J. Liu et al., “Scalable Byzantine Consensus via Hardware-assisted
Secret Sharing,” IEEE Transactions on Computers, 2018.

[15] R. Kotla et al., “Zyzzyva: speculative byzantine fault tolerance,” ACM
SIGOPS Operating Systems Review, vol. 41, no. 6, 2007.

[16] P. Mohan et al., “Primary-Backup Controller Mapping for Byzantine
Fault Tolerance in Software Defined Networks,” in GLOBECOM 2017-
2017 IEEE Global Communications Conference. IEEE, 2017.

[17] M. Eischer et al., “Scalable Byzantine Fault Tolerance on Heterogeneous
Servers,” in Dependable Computing Conference (EDCC), 2017 13th
European. IEEE, 2017.

	I Introduction and Problem Statement
	II Our contribution
	III System Model
	IV BFT Consensus Protocols and the Controller-Switch Assignment Methodology
	IV-A Pre-serialization model MPBFT (agreement-based)
	IV-B Pre-serialization model SBFT (agreement-based)
	IV-C Post-negotiation model OBFT (opportunistic)
	IV-D Dynamic Controller-Switch (Re)Assignment Procedure

	V Evaluation
	VI Discussion
	VI-1 Total reconfiguration time for the internal controller and the switch state
	VI-2 Acceptance rates for arriving requests
	VI-3 Communication overhead

	VII Related Work
	VIII Conclusion
	References

