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Abstract—This paper deals with mmWave overloaded multi-
user multi-input multi-output (MU-MIMO) detection, where the
number of receive antennas is less than that of transmitted
streams. Belief propagation (BP) is well known strategy for
achieving large-scale MU detection (MUD) with low-complexity
and high-accuracy. However, in mmWave massive MUD, the BP-
based signal detector is subject to ill convergence behavior of
iterative detection due to under-determined problem induced by
spatial overloading and strong correlation among user channels
induced by narrow angular spread of receive signal and line-
of-sight (LOS) environments. To alleviate these impairments, we
propose a novel iterative MUD approach based on beam-domain
subspace marginalized BP (SMBP). Exploiting the approximate
sparsity of beam-domain channels, the maximum likelihood
(ML) principle is used to combine the strongly correlated
signal subspace with reduced dimension while the BP-based
detection is used for the remaining complementary subspace.
The space partitioning criterion is adaptively determined based
on channel state information (CSI) so that the two subspaces
are as orthogonal as possible. Numerical results show that the
proposed method is able to serve a massive number of wireless
connections with low computational complexity even in the LOS
environment, while providing excellent BER performance.

I. INTRODUCTION

Large multi-input multi-output (MIMO), which can simul-
taneously provide a high degree of spatial multiplexing gain
and high detection reliability, has been regarded as one of
the most promising technologies in the physical layer of
wireless communication systems [1], [2]. In uplink scenarios,
overloaded massive multi-user MIMO (MU-MIMO) aimed at
simultaneously supporting more wireless connections than the
number of receive antennas at a base station (BS) plays a
crucial role for dealing with the explosive increase in the
number of wireless terminals [3]-[6]. However, large-scale
MU detection (MUD) in strongly correlated fading channels
caused by the narrow angular spread of receive signal and line-
of-sight (LOS) environments assumed for mmWave MIMO
communications, has not been sufficiently investigated.

As low-complexity MUD solutions, linear spatial filters
such as minimum mean square error (MMSE) filters are often
utilized. However, the matrix operations based on the high
dimensional channel matrix are unavoidable, resulting in high
computational burden and large circuit scale of the receiver.
Additionally, the performance is considerably worse than that
of optimal maximum likelihood (ML) detection. To improve
the detection capability while reducing the computational

cost, stochastic iterative detection schemes based on belief
propagation (BP) have been proposed [7]-[13]. The BP-based
signal detector can take advantage of the law of large numbers
to simplify the computation of conditional symbol expectation.
The most noticed BP-based detector is approximate message
passing (AMP) [10], [11], which is systematically derived
from an exact approximation of Gaussian BP (GaBP) [8], [9]
in the large-system limit occurring when the input and output
dimensions, M and N respectively, increase to infinity for a
given compression rate p = N/M. These algorithms consist
of only scalar-wise operations, and therefore can achieve the
computational complexity O(M N) for each iteration process.
Furthermore, a rigorous proof of the convergence of BP-
based detectors to the Bayes-optimal solution in the large-
system limit was presented in [11], [13]. However, this proof
requires that the antenna-domain channel matrix entries follow
an independent identically distributed (i.i.d.) with zero mean.
In other words, the convergence property of iterative detection
is severely degraded under the strong spatial fading correlation
found in mmWave MIMO channels. Even when we employ
iterative detectors based on the expectation propagation (EP)
framework [14], which was proposed in [12], [13] to overcome
AMP’s vulnerability against channel correlation, the perfor-
mance degradation is inevitable due to noise enhancement
induced by the spatial filtering step, especially in overloaded
configurations. The matrix inversion operation required for
each iteration is also unsuitable for large-scale MUD.

To solve the lack of an appropriate signal detector, the
present study particularly focuses on the beam-domain signal
processing [15]-[17] on the premise of fully digital beamform-
ing (FDBF) at the receiver. In practice, the user equipments
(UEs) tend to be distributed according to the terrain around the
BS, and the angular spread of receive waves is tightly limited
in mmWave communications. Consequently, the received sig-
nal power is concentrated in a subspace of the beam-domain
channel, and the interference between corresponding UEs at
close angular positions is strongly correlated. In this case, it
is hard to separate multiplexed signals using the typical BP-
based detectors. On the other hand, the interference due to the
sidelobe leakage in beam domain is relatively small and with
low correlation among users with larger spatial separation, and
hence, it is more suitable for the BP-based detection.

Subspace marginalization (SM) uses the ML principle to



jointly detect only a part of signal space and it is one of the
most effective ways to deal with MUD scenarios where the
severe interference is highly concentrated. The origin of SM
method dates back to sphere detection (SD) and tree-search
detection (TSD) [2], [7]. Although these SM-based detection
schemes can achieve the near-ML performance even in the
presence of severe interference among UEs, setting a fixed
criterion of search range is infeasible for large-scale MUD
with many search candidates. To tackle this problem, subspace
marginalization with interference suppression (SUMIS) [18]
was proposed, where the SM method is introduced for mit-
igating the negative impact of the instantaneous correlation
caused by insufficient channel hardening effect [7] in small-
scale MUD. The multiple matrix inversion operations are still
unavoidable, but the near-SD performance can be achieved
with much less computational cost.

Inspired by the idea of [18], in this paper, we propose a
novel beam-domain subspace marginalized belief propagation
(SMBP) which allows us to use BP-based iterative detection
even in mmWave overloaded massive MUD. By taking ad-
vantage of the above statistical properties of beam-domain
channels, the proposed SMBP method marginalizes strongly
correlated signal subspace based on the ML principle while
the remaining complementary subspace is combined using the
Gaussian BP approach with low computational cost.

Throughout this paper, Pap[alb] and pap(alb) respectively
represent the conditional probability mass function (PMF) and
the probability density function (PDF) of a realization a of
random variable a given the occurrence of a realization b of
random variable b. Eg{-} is the expected value of random
variable a. Eap=p{-} denotes the conditional expectation of
random variable a given the occurrence of a realization b
of random variable b. CN(a,b) indicates a complex-valued
Gaussian process with mean a and variance b. I, represents an
axa square identity matrix. diag [a] denotes a diagonal matrix
with the elements of a. © represents Hadamard product.

II. SYSTEM MODEL
A. Antenna-domain signal model

Consider an uplink overloaded MUD system, where the BS
has N’ receive (RX) antennas in uniform linear array (ULA)
pattern and M’ (> N’) UEs are equipped with a single transmit
(TX) antenna. The antenna-domain RX vector is given by the
following linear regression model:

C C C C T C,.C C
y :[yl,...,yn,,...,yN,] =H"x" + 7%, (D)
. . T ’ .
where x¢ = [xlcx,“nxlcw] € XML gpnd z¢ =
[zf,...,zfl,,...,zﬁv,] e CN'x1 respectively denote the TX

and noise vectors. H¢ € CNV*M’ is N’ x M’ antenna-domain
MIMO channel matrix. The m’-th UE conveys a modulated
symbol x,,, which represents one of Q’ constellation points:
X¢ = i)(lc,...,)(;,,..
constellations in the set X¢ is denoted by E,. As an example,
X¢ = {xw, £jw,} (Wwy = \Es/2) for quadrature phase shift
keying (QPSK) signaling. The vector z¢ € CV*! is a complex
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Fig. 1. Intensity of the elements in beam-domain channel =€, where we
assume a (N’, M’) = (32,48) LOS-MIMO configuration. To clarify the
characteristics, all the UEs are equally spread in the angular direction of
the receiver and their indices are ordered based on the angular position.

additive white Gaussian noise (AWGN) vector whose entries
z, obey CN(0,Np), where Ny is the noise spectral density.
The covariance matrix is given by Eze {zCZCH} = Nolpn-.

Without loss of generality, we here assume a LOS channel
from each UE to the receiver at the BS. In this case, the
channel vector for the m’-th UE (the m’-th column vector of
H¢) can be written as follows: [19]

B = ap [1 exp[jQu] exp [j(N" - I)Qm/]]T, (2)

where @, = nsin6,,, and the antenna element space is fixed
to half the wavelength. 6,/ is the m’-th UE location in the
azimuthal direction, and a,, depends on the radial location of
the m’-th UE and wavelength for representing the path loss.

B. Beam-domain signal model

When the discrete Fourier transform (DFT) beamformer is
used as the FDBF, the beam-domain RX vector is given by

T —
r¢ = [rlc,...,rz,,...,rjcv,] =Dy = =% +y°,  (3)

where D € CN'*N’ denotes the DFT matrix. £¢ = DUH®
CN*M" and v¢ = DHz¢ € CV'*! are the beam-domain channel
matrix and noise, respectively. Fig. 1 shows the intensity of
the elements in Z°. According to this characteristic (regularly
biased and partial enhanced) beam-domain channel structure,
SMBP enables to suppress severe interference.

For ease of algebraic manipulations, the complex-valued
signal model of (3) can be interpreted as a double-size real-
valued signal model on the basis of pulse amplitude modula-
tion (PAM) symbols: [7]

r=Ex+v 4)
where
B =[RS
J{re} | J{E} R{=}]
S 11 i ®
Here, we define r € RVX!, & ¢ RVM | x ¢ RM*! and

z € RV where M = 2M’ and N = 2N’. The m-th PAM
symbol x,,, in x represents one of Q(= 4/Q’) PAM constellation
points X = {x1,.... Xg.---» X0} Whose entries are amplitudes
of the real and imaginary components of X°¢. The average



power density of the constellations in the set X is denoted by
Es/2. As an example, X = {xw,} for QPSK signaling. The
n-th entry of r can be represented by

fnx + Vn, (6)

where &, = [é‘n,l, cesEnms - .,fn,M] is the n-th row vector of
H. The noise vector v is a real-valued AWGN vector whose
entries v, obey N (0, Ny/2). With the above-mentioned signal
model, the conditional PDF of RX vector r is given by

N 2
_ nexp [_(rn _]vfonx)

o=

(r —Ex)?
No

@)

III. SUBSPACE MARGINALIZED BELIEF PROPAGATION

Prix(r|x) oc exp [—

n=1

Based on the beam-domain real-valued signal model of
(4), the detailed algorithm of SMBP is presented. SMBP
consists of three modules: soft interference canceller (soft
1C), belief generator, and soft symbol generator (activation
function). By propagating the belief (information reflecting
the detection reliability) between each iteration process via
the modules, SMBP can gradually improve the detection
capability. To simplify the mathematical notations, we assume
QPSK signaling (X = {£wy}, wy = VEs/2) .

A. Initial detection

At the first iteration (k = 1), no soft IC is conducted as
there are no available prior information, thus, signal detection
is performed using the knowledge of r and =. First, the signal
space is divided into the subspace that are combined based on
the ML principle and the remaining complementary subspace
that are combined using the GaBP approach based on the law
of large numbers. For the detection of an arbitrary TX symbol
Xm, dm € {1,...,M}, the RX symbol r,,, In € {1,...,N} can
be expressed as the following partitioned model of (6):

. i
'n = gn,m Xm + [fn m ‘fn,m] S +Vn
’ Xn,m
. \v/
permut. of &u; (i#m) permut. of x; (i#m)
= gn,m-xm + ‘fn,mfn,m + fn,m-fn,m + Vn, (8)

where X, € R**! consists of s TX symbols that are expected
to cause serious interference with x,,, and En,m € RS denotes
the corresponding channel vector. The subspace division of
(8) is described in Section III.D. fn,mfm is the interference
consisting of the other M — (s + 1) TX symbols, and this term
can be regarded as the summation of random variables.

In the large system, therefore, the PDF of (8) approaches
an i.i.d. real Gaussian distribution as a result of the central
limit theorem; this behavior is referred to as scalar Gaus-
sian approximation (SGA) [7]. Accordingly, by approximating
fn,mfm + v, in (8) as a Gaussian random variable, r,, can be
approximated by a Gaussian signal model:

'n ® I'njym = é:n,mxm +Zn,mfm+¢n,m’ ¢n,m ~ N(O, 'J’n,m ), (9)

IThe proposed SMBP detector can be extended to QAM signaling after
some appropriate mathematical manipulations proposed in [9].

where ¢, ,,, is the effective noise, and the variance is derived
from the expectation of random variables z,, and X, as

Unm =B, 5, 100} = (Es/2) - EnméEL,, + (No/2). (10)

From (9) and (10) under the SGA condition, the conditional
PDF of r,,, can be expressed as

prn.m [Xp22: X (rn,m |xm’ Em)

W (rn,m - [fn,mxm +En,mfm])2] (1D

To perform signal detection based on Bayesian statistics, we
need to accurately approximate a posterior log likelihood ratio
(LLR) [1] using the likelihood function of (11).

Applying Bayes’ theorem and sum rule, the posterior LLR
I, for detecting x,,, is given by

oc exp [—

Py ir [xm = +wi|r] Pr|x,, (r] +wy) Py, [+wx]
Lp =1n =In

melr [Xm = —wi|r] Prx,, (r] - Wx)me [—wy]
S8 Prixnion P+ WasXom) Pz [+95 X0 a2
3%, Penin (1= WeX0n) Py %, =920 ]
where x,, € X* represents a realization candidate of random
vector X,,. Note that the exact computation of [, requires the
ML complexity. When the occurrence of TX symbol from X
is equiprobable (Py,,[xq] = é,\v’m, Vq), then

=1In

Z/?m pr‘xm»im (r| + W)ﬁ/?m)
2 Prixn i (P = Wx X0)

Assuming that ry,,..., 7N, are (conditional?) independent
under the SGA condition in (9), /,, can be approximated by
Zym Hf\il Pri o X Xom (”i,ml + Wx’/?m)
Ly = 1In N - —.
Z,?m Hj:] Pr; o X Xom (rj,m| - va/\/m)
According to (14), the posterior LLR can be approximately
computed using the likelihood function of (11). Obviously,
the approximation accuracy depends on the SGA accuracy,
and it can be enhanced when the strongly correlated signal
subspace is properly marginalized by the SM method due to
the sidelobe attenuation in the beam-domain channel.
Nevertheless, if the approximated /,, in (14) is utilized as the
prior belief, SMBP is subject to ill-convergence behavior of
iterative detection, due to the noise correlation between r,, and
rn,m included in [, at the next iteration process. To mitigate
the harmful impact of self-noise regression, in BP regime [8],
the prior belief for the n-th RX symbol 7, is provided by
subtracting the self-likelihood information as
Eym I_L]i] i#n Pri o X Xom (ri,m| + Wx,/?m)

N J—
Z/?m I—[j:l, j#n Pri o X Xm (I’j,m| - Wx’Xm)

(Vi,m ~&im WX_Ei,m/?m)z }

(13)

L =1n

(14)

Lym =In

Z)Ym exp I_ Zf\il, i#n

2'/’i.m
=In - . (15)
(rj,m +§j,m Wx_‘fj,m/?:n)
Sz, exp|-X, :
Xm j=1, j#n 2%,m
2At the second and later iterations, 71, .- -, rN,m are assumed to be

conditional independent given the prior belief from the previous iteration.



Finally, the conditional expectation of x given the prior

belief vector [,, = [ln,l,. Y .,ln,M] is given by
. . N . T
Xpn = [xn,l:- s Xnms - ~’xn,M] = EX|I =, {x}’
_ Paxalx)
= ) xPx, xll] —, (16)
; X Z XS P Uy’

where y € XM represents a realization candidate of random
vector X. Assuming that /,, ,,, satisfies the consistency condition
[20], and that its statistical behavior is uncorrelated among the
elements of I,, under the SGA condition, the entries of (16)
are readily given by the following activation function: [1]

) = wy - tanh

o =1 (um (17)

B. Iterative detection

At the second and later iterations (k # 1), signal detection
is performed with the aid of X, ,,,Vn, and Vm generated in
the previous iteration process. In the detection of x,,, the soft
IC for the n-th RX symbol r,, is conducted by subtracting the
interference fn,mim in (8) as

- -%n,m) + Vn,

(18)
where ¥,,, is the soft replica corresponding to %,. By
approximating the residual interference-plus-noise term in
(18) as Gaussian random variable, the output belief can be
characterized by a Gaussian signal model as

'n — fn,min,m = EnmXm + fn,mfm +&nm (fm

'nm = é:n,mxm + En,mfm + Pums Pm ~ N(O» Wn,m)’ (19)

where the variance of ¢,,,, is derived from the conditional
expectation of random variables z,, and X,,, given l,, = [, as

Unm = Bz, 50, llu=l, {¢i,m}

= Eumdnménn + (No/2), (20)
Anm = By i1, {(fm — Enm) (Em = ’?n,m)T}

= (Ey/2) Ipg—se1) — diag [¥pm © Xpm| . (21

After updating the prior belief in (15) with (19) and (20),
(17) is computed again in each iteration. When the number of
iterations reaches the predetermined value K, x,, is detected
by hard-decision of [, as

Xm = wy - sgn (lm)’ (22)

where sgn(-) denotes the operation for exacting the sign of a
number.
C. Computational reduction with max-log approximation

For the numerical stability, the summations as in (15) are
typically evaluated using the Jacobian logarithm: [1]

U
In (Z exp [au]) = flf(flanaras) . dan)., (23)
u=1

where f(a,b) = max(a,b) + In(1 + exp [—|a — b|]). To avoid
undesirable sequential processing including MNQ**! look-
up-table (LUT) operations for evaluating exp[-], max-log

approximation [21] is effective, where the second term of
f(a,b) is neglected. In the case of (15), there should be a clear
magnitude relationship among the metrics based on the Eu-
clidean distance due to the decaying sidelobes of beam-domain
channels found in Fig. 1, therefore, the accurate approximation
can be expected. Applying the max-log approximation to (15),
the extrinsic belief can be computed as

N 2foi,m (ri,m - Ei,mf?gilna)())
ll’i,m

; (24)
i=1, i#n

where Y% is a realization of X,, to maximize the metric.

Although the complexity order does not change due to the
exhaustive search for max operation, (24) can significantly
reduce the processing delay in practical implementation.

D. Criterion for partitioning signal space

The remaining issue is how to partition the signal space
in (8), i.e., how to select s TX symbols for SM, where
s is a predetermined parameter for trade-off between the
performance and computational complexity. Intuitively, when
considering the detection of x,,, the detection capability of
SMBP is improved as the impact of interference vector X,
on X,, is decreased. This is essentially equivalent to aligning
the interference into the null space of X,,, that is, the signal
space should be partitioned so that the inner product between

—= — =T
the column vectors of =, = [fl,m,. .»En.m| and those
_ - . T
of &, = L le . .,{;‘I,m] becomes as small as possible.
Note that SMBP is exactly the same as the optimal ML

detection if the column spaces of Z,, and £, are orthogonal.
In order to select s symbols based on the above criterion, we
should focus on the intensity of the off-diagonal elements in
the following Gram matrix: G = ETZ. Denotmg the m-th
column vector by g, = [gl,m,. . .,gM,m] , we can select s
indices corresponding to the largest values of |g;,,| (i # m)
as a significant interference source. As a result, an appropriate
subspace =, consists of s corresponding column vectors of
Z, and the rest of column vectors are placed in E,.

In this paper, the signal space partitioning is executed for
each channel realization. However, if the long-term channel
statistics, e.g., channel covariance matrix, is available at the
BS, we can continue to use the same partitioned model,
which is designed based on the average characteristic for each
statistical beam, over multiple channel realization (multiple
coherence times). Particularly in mmWave MU-MIMO chan-
nels, the long-term channel statistics can be clearly described
with spatial correlation matrices, therefore, the signal space
partition requires less frequent updates according to small fluc-
tuation caused by slow UEs movement. It results in significant
computational reduction in practical large-scale systems.

IV. NUMERICAL RESULTS
A. BER performance

Computer simulations were conducted to validate the perfor-
mance of the proposed SMBP detector for overloaded massive
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Fig. 2. BER performances of different detectors in overloaded massive LOS-
MIMO detection, where the predetermined parameter s = 3 in SMBP.

MUD in mmWave communications. To represent the severe
fading correlation, we use the LOS-MIMO channel model in
(2). A sector antenna with 120 degrees opening is considered,
and the UEs are randomly dropped in the above angular region
around the BS, where the performance metrics are averaged
over 1000 independent UE drops and channel realizations®.
The average RX power from each TX antenna is assumed to be
identical on the basis of slow TX power control (a,, = 1,Vm’),
and the time and frequency synchronization are assumed to be
perfect. The modulation scheme is Gray-coded QPSK.

Fig. 2 shows BER performances of different detectors in
(N, M) = (64,80) and (64,96) overloaded MU-MIMO config-
urations, respectively. The low-density parity-check (LDPC)
code of length L. = 648 bits and rate R. = 5/6, 2/3 used in
the IEEE 802.11n standard is applied as the channel code.
The error correction by the channel decoder is conducted
only once after K = 12 iterative detection. To improve the
convergence property, damping method [7] is utilized in all
iterative detectors, where the damping factor £ is set to { = 0.2
for EP and £ = 0.5 for the other detectors*. As a baseline

3We enforce a minimum separation in spatial frequency between any two
UEs for avoiding the occurrence of excessive interference caused by LOS
channels, choosing it as half the 3dB beamwidth: AQyi, = 2282 [19].

4The damping factor ¢ is determined to minimize the BER at E/Ny =
—2.0 dB in computer simulations.
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Fig. 3. BER performances of the proposed SMBP-based iterative detection
with various parameters s = 0, 1, 2, 3, 4, respectively.

performance, the curve of typical linear MMSE filter “linear
MMSE” is drawn. As a comparison with the state-of-the-art
BP-based detectors, “GaBP” [9] and “EP” [12] performances
are also presented. Note that the performances of linear MMSE
and EP are equal in both antenna- and beam-domain because
the impact of D™ in (3) is completely canceled out at the
linear filtering step due to the characteristic of DYD = I'y. By
contrast, GaBP and SMBP should be performed in the beam
domain because the contribution of DY remains through the
non-linear operations in (15), and hence, allows to enhance
the conditional independence among beliefs.

Under the strong spatial fading correlation, GaBP cannot
sufficiently separate MIMO signals based on matched filters
(MFs) [8], resulting in high-level error floors. EP can suppress
the harmful impact of correlation owing to iterative MMSE
filtering in exchange for the high computational burden, but
the ill-convergence due to the noise enhancement at filtering
step caused by under-determined MUD is inevitable. The most
attractive feature is that our proposed “SMBP (beam)” can
significantly improve the detection capability compared to the
other methods. Remarkably, “SMBP (beam)” obtains about 6.5
dB gain from “EP” at BER = 10~ in Fig. 2(a) and achieves
BER = 107> by suppressing the error floor in 2(b). Note that
such performance improvements are not obtained in “SMBP
(antenna)”, where SMBP is performed in the antenna domain.



TABLE I
COMPUTATIONAL COMPARISON OF DIFFERENT DETECTORS
Detector linear MMSE EP [12] SMBP
Complexity order | O(MN?+ N3) | O(K(MN?+ N%) | O(KMNQ**")

These results imply the effectiveness of SM method in the BP-
based detector when utilising the statistical filtering property
of beam-domain processing. Furthermore, even when the max-
log approximation is applied for reducing the processing delay,
the degradation is just 0.5 dB or less.

Let us now focus on the parameter s that determines the
computational cost. Fig. 3 shows BER performance with
various parameter settings s = 0,1,2,3,4. The other system
parameters are the same as in Fig. 2. Note that s = 0
without the SM method is equivalent to GaBP. Interestingly,
even when only s = 2 real-valued symbols (equivalent to 1
QPSK symbol) are marginalized, the convergence property
of iterative detection is significantly improved compared to
“GaBP”. It is because that the high reliability of beliefs
generated based on the SM method becomes the starting point
for iterative convergence and enhances the reliability of the
entire belief via soft IC. For the given system configuration,
setting the parameter s = 2,3 provides a reasonable trade-off
between the performance and computational cost.

B. Complexity analysis

Table I summarizes the order of complexities. For evaluating
the computational cost of iterative detection scheme, let us
focus on the complexity order required for each TX vector
x detection. The complexity bottleneck of EP is the matrix
operations according to NxXM channel matrix in each iteration,
resulting in O(K(MN? + N3)) complexity. It rapidly grows as
M and N increase. On the other hand, SMBP does not require
any matrix operations, and the dominant factor for determining
the computational cost is the computation of extrinsic prior
beliefs in (15), leading to O(KMNQ**!) complexity. That is,
SMBP can perform with lower computational cost compared
to EP in the cases of O°*! < N. As an example, when the
number of RX antennas is fixed to N = 64, the complexity
of SMBP is roughly 7% and 14% fraction of the cases of
EP for s = 2 and 3, respectively. Applying the max-log
approximation, the practical computational burden (e.g., the
required number of multiplications) becomes further smaller
percentage while providing similar BER performance.

V. CONCLUSION

In this paper, we proposed a novel iterative detector based
on beam-domain SMBP for overloaded massive MUD in
mmWave MU-MIMO communications. Under such scenar-
ios, the convergence property of BP-based signal detector is
severely degraded due to under-determined problem induced
by spatial overloading and strong correlation among user
channels induced by narrow angular spread of receive signal
and LOS environments. To deal with these impairments, the
SM method on the premise of DFT beamforming at the
receiver is introduced into the BP framework, according to

the approximate sparsity of beam-domain channels due to
the sidelobe attenuation. Through computer simulations, we
can confirm that the proposed method is able to significantly
improve the detection capability as compared to the EP-based
detector with much lower computational cost.
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