
ar
X

iv
:2

00
4.

07
91

1v
1

 [
cs

.I
T

]
 1

6
A

pr
 2

02
0

A Deep Reinforcement Learning Approach for

Dynamic Contents Caching in HetNets

Manyou Ma and Vincent W.S. Wong

Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada

email: {manyoum, vincentw}@ece.ubc.ca

Abstract—The recent development in Internet of Things ne-
cessitates caching of dynamic contents, where new versions of
contents become available around-the-clock and thus timely up-
date is required to ensure their relevance. The age of information
(AoI) is a performance metric that evaluates the freshness of
contents. Existing works on AoI-optimization of cache content
update algorithms focus on minimizing the long-term average
AoI of all cached contents. Sometimes user requests that need
to be served in the future are known in advance and can
be stored in user request queues. In this paper, we propose
dynamic cache content update scheduling algorithms that exploit
the user request queues. We consider a special use case where
the trained neural networks (NNs) from deep learning models
are being cached in a heterogeneous network. A queue-aware
cache content update scheduling algorithm based on Markov
decision process (MDP) is developed to minimize the average
AoI of the NNs delivered to the users plus the cost related to
content updating. By using deep reinforcement learning (DRL),
we propose a low complexity suboptimal scheduling algorithm.
Simulation results show that, under the same update frequency,
our proposed algorithms outperform the periodic cache content
update scheme and reduce the average AoI by up to 35%.

I. INTRODUCTION

To handle the ever-increasing growth of data traffic, one

promising approach is to cache popular contents using a

heterogeneous network (HetNet) architecture [1]. In HetNet

caching, a macro base station (MBS) and multiple small-cell

base stations jointly serve users within a macrocell. These

small-cell base stations have storage capacity and can act as

content servers (CSs). Previous research has studied different

aspects of caching static contents, such as predicting future

content popularity [2], content placement strategies [3], and

scheduling algorithms design [4], [5]. In the aforementioned

works, the static contents, such as videos, typically do not

change once they have been created and hence only need to

be pushed to the CSs once.

However, with the proliferation of the Internet of Things

(IoT) and the mobile edge computing paradigm, billions of IoT

devices are expected to be connected to the fifth-generation

(5G) and beyond wireless networks. A particular genre of

artificial intelligence (AI)-oriented IoT applications is powered

by deep learning (DL) algorithms [6]. DL techniques have

been applied ubiquitously in domains such as autonomous

driving, natural language processing, and medical diagnosis.

Since the training of DL neural networks (NNs) is computa-

tion and memory-intensive, general-purpose cloud computing

facilities have been developed to train and maintain NNs, using

an ever-growing training dataset with new data continuously

added into those platforms. Once an NN has been trained, its

size is typically small compared to the raw data (e.g., images,

videos) collected by the IoT devices. The size of popular pre-

trained NNs ranges from 5 MB (SqueezeNet) to 500 MB

(VGG11) [7]. Moreover, the implementation of an NN in

the deployment stage is less resource-demanding, compared

to the training step in DL. Therefore, it is desirable for the

IoT devices to download the trained NNs and execute the

AI applications using their onboard chips. Tools have been

developed for the deployment of DL algorithms on light-

weight computational devices, such as smartphones [8]. In the

literature, the DL frameworks, where NNs are trained in a cen-

tralized server and later distributed to the users in the system,

have already been proposed for wireless communication and

robotics applications [9], [10]. In anticipation of the ubiquitous

adoption of these DL frameworks, effective algorithms need

to be developed to deliver the trained NNs to the system users.

We postulate that the trained NNs should be treated as

dynamic contents since we live in a dynamically changing

world with the explosive emergence of new information and

the DL NNs need to be re-trained using the newly available

data to stay adaptive to these new changes. For dynamic

contents caching, ensuring the freshness of the contents that

are delivered to the IoT applications is of equal importance as

satisfying the conventional quality-of-service (QoS) require-

ments, such as delay and throughput. Due to the massive

number of IoT devices connected to the networks, it may not

be possible for the IoT devices to download the NNs directly

from the cloud computing server. This is because sending

all these data packets (with the NNs as payloads) across the

cloud through the core network to the radio access network

introduces extra delay overhead, and may increase the level of

congestion in the core network and the access links. Hence, the

aforementioned HetNet architecture can be adopted to tackle

the NNs caching problem. To reduce the data traffic in the

MBS, recent versions of the NNs can be cached in the CSs.

When a user request arrives, a cached NN is sent to the user

by the CS at a target download time specified by the user.

To ensure the freshness of the NNs delivered to the IoT

user applications, we propose to use the age of information

(AoI) [11], [12] of the delivered NNs as a metric to evaluate

the system performance. The AoI of a file depicts the amount

of time that has elapsed since the current version of a file is

generated. Hence, a smaller AoI corresponds to a file that is

http://arxiv.org/abs/2004.07911v1

more recent. Modelling and optimizing the AoI of a system

have attracted much research interest. In [13], Yates et al.

used AoI as a metric to evaluate the performance of a caching

network, where stochastic arrivals of user requests following

a renewal process are assumed, and the long-term average

AoI of all the files in the system is minimized. However,

we conjecture that in practical systems, many user requests

may require the NN to be sent at a specific time in future

because IoT devices in general submit their request earlier

than the expected time that the NN is being used. Therefore,

the number of NNs or files that need to be transmitted in

the near future are often known ahead of time and can be

used to facilitate the scheduling of cache content update. In

this paper, we consider the scenario where user requests arrive

before their target download time. We employ multiple queues

to keep track of user requests for different NNs that need to

be served at different target download times. We require each

user in the network to submit a request for downloading an

NN before the target download time.

In this paper, we investigate the problem of AoI minimiza-

tion of dynamic contents caching in a HetNet. Compared

to previous studies on AoI in the literature, we utilize the

information of the user request queues and the target download

times to improve the system performance. We consider a

scenario where NNs are being cached by the CSs in a HetNet.

The algorithm we develop can also be applied to caching other

types of dynamic contents. The contributions of our work are

as follows:

• We formulate the problem of caching dynamic contents

in a HetNet as a Markov decision process (MDP). The

objective is to minimize the average AoI of the NNs that

are sent to the IoT applications plus the cost related to

updating the cached NNs.

• We train a deep Q-network (DQN) [14]-based deep

reinforcement learning (DRL) agent to learn the state-

action values of the formulated MDPs, and thus reduce

the memory space required to store the optimal policy.

• We perform simulations and show that compared to

the existing strategies that do not utilize the user re-

quest queues, such as the periodic update approach, our

proposed queue-aware cache content update scheduling

algorithms obtain up to a 35% decrease in the average

AoI of the dynamic contents delivered to the users.

The rest of this paper is organized as follows. The system

model and the MDP problem formulation are presented in

Section II, where methods for obtaining the optimal solution

of the MDP problem are introduced. In Section III, we

propose a DQN-based suboptimal algorithm that solve the

formulated problem. Performance evaluation and comparison

are presented in Section IV. Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a HetNet consisting of one MBS and F CSs.

For the f -th CS, where f ∈ F = {1, . . . , F}, there are Nf

users associated with it and an NN is being cached. We assume

only one NN is cached in each CS both for notation simplicity

MBS

Cloud

Action 1: Update the 1st NN (related

to autonomous driving)

Action 0: Stay idle

Action 2: Update the 2nd NN (related

to video surveillance)

Actions of MBS:

CS

t
t+1

t+3

t+3

CS
t

t

t+2
t+3

Timet t+1 t+2 t+3

v

User Request Queues:

2nd NN

For the

1st NN

t+3

Decision Making

Module

Fig. 1: System model of the HetNet with one MBS, two CSs, and two
NNs. Two different NNs are being cached, one in each CS. One of the NNs
corresponds to a navigation system, and the other NN corresponds to computer
vision applications. The IoT devices correspond to the IoT-enabled cars and
video surveillance cameras in the network. The decision making module is
located at the MBS. At a given time instance t, the target download time
specified by each IoT device is shown above the IoT devices in the figure.
The user request queues, which are stored in the decision making module, at
time instances t, t+1, t+2, and t+3 are shown. The decision making module
chooses one of the (F + 1) available actions, where action 0 corresponds to
staying idle and action f corresponds to updating the f -th NN, for all f ∈ F .

and to ensure that all the CSs can operate simultaneously

to serve user requests1. A sample system topology of the

network with two CSs and two different NNs being cached is

shown in Fig. 1. In this example, one of the NNs corresponds

to the navigation system for IoT-enabled cars and the other

NN corresponds to computer vision-based applications for

reporting suspicious activities.

We consider a time-slotted system, and user requests may

arrive at the beginning of each time slot. The CSs transmit

the latest available cached NN to the users at the beginning of

the target download time via multicasting. We assume that the

transmission of an NN can be finished within one time slot2,

and error-free transmission can be achieved3. We consider the

use case where multiple AI-enabled IoT devices perform tasks

based on NNs stored in their on-board chips. The NNs cached

in these devices need to be updated periodically and every time

prior to their activation. The NNs are trained in the cloud, and

we assume that newer versions of the NNs become available

in every time slot. For example, consider a stochastic gradient

descent [16]–based training algorithm running in the cloud

with new data added into it after each training epoch. The

users can obtain an up-to-date NN after each training step.

This is known as the generate-at-will model [12] in the AoI

literature.

1The model can be extended to the cases where (a) multiple NNs are being
cached in each CS and (b) each NN is being cached in multiple CSs. For
case (a), spectral resources need to be allocated to each CS to ensure the user
requests for different NNs can be served simultaneously. For case (b), an NN
cached in multiple CSs can be updated via multicasting.

2In the case when the NN is large and the transmission cannot be completed
within one time slot, the NN training algorithm, which is executed by the cloud
computing server, will only update and transmit a subset of the parameters in
the NN while the other parameters remain fixed. This approach is known as
transfer learning [15].

3To consider the possibility of transmission errors, one can extend the state
space by including the channel state information.

The CSs are connected to the MBS via a wireless backhaul.

The CSs have disjoint coverage areas. Simultaneous trans-

missions by different CSs can be achieved when appropri-

ate frequency reuse schemes are adopted. The channels or

subcarriers used by the MBS to update the cached NNs are

orthogonal to those used by the CSs to serve user requests. At

the beginning of a time slot, the CSs serve the user requests

that are due at the end of the current time slot. The decision

making module in the MBS decides whether the MBS remains

idle or updates one of the NNs cached in a CS (see Fig. 1).

We assume that apart from updating the NNs cached in the

CSs, the MBS also performs other tasks, such as collecting

and forwarding data collected from the IoT devices. Therefore,

there is a cost associated with allocating time slots for content

updating. We assume the cost is linearly dependent on the

updating frequency (i.e., average number of updates per time

slot), with a coefficient η.

The MBS is connected to the cloud via a high-speed wired

backhaul link. The IoT devices, e.g., the AI-enabled cars

shown in Fig. 1, submit their requests to the CS, which are

then forwarded to the MBS, for the latest version of NNs

at least ∆ time slots before the NN is required. That is, a

request submitted at the t-th time slot needs to be served in

the (t+∆)-th time slot. For example, ∆ can be the number of

time slots that is required for the engine and other hardware in

the car to become ready for using the updated NN to perform

navigation. The car submits the request when it is turned on

at time slot t, and an up-to-date NN is delivered when the car

is ready to be driven at time slot t+∆. Since the car will not

be driven until t+∆, sending the NN too early, for example

in time slot t+ 1, will lead to a larger AoI of the NN, when

the car is actually ready for driving at time slot t + ∆. In

this paper, we consider a simple case where all users send the

request ∆ time slots before the NNs are needed4. We assume

that user request arrivals in the f -th CS follow the binomial

distribution with rate λf .

A. MDP Problem Formulation

1) Decision Epochs and States: We consider an infinite

horizon MDP, where the decision epochs are represented by

the time slots in set T = {0, 1, 2, . . .}. In decision epoch

t ∈ T , let A
f
t denote the AoI of the f -th NN being cached

in the HetNet. To obtain a finite discrete state space, let Â

denote the upper limit of the AoI. Hence, A = {1, 2, . . . , Â}
is the set of all the possible values of AoI of a cached NN. In

this way, we have A
f
t ∈ A, ∀ f ∈ F and t ∈ T .

In decision epoch t, let Q
f,δ
t ∈ Nf

∆
= {0, 1, . . . , Nf}

denote the number of user requests for the f -th NN that

have their target download time at t + δ, where f ∈ F and

δ ∈ {0, . . . ,∆−1}. Since in the networking literature, queues

are usually used to denote the number of user requests that

have arrived and need to be served, we will refer to Q
f,δ
t as a

4In practice, the system only specifies a minimum time interval ∆min,
which represents the minimum time window between the time a user request
is received and the NN is needed. An IoT device may submit a request for
an NN which is due well ahead in the future.

t [Time slot]2 6 87 9

Q
!,"

Q
!,#

Q
!,! $

!

Q
#,"

Q
#,#

Q
#,! $

#

%
#

%
!

AoI evolution of the 2nd NN

AoI evolution of the 1st NN

1 3 4 5

1

2

3

4

0

A
o

I
[T

im
e

 s
lo

t]

5

Fig. 2: Illustration of the system state in time slot t = 6 and window size

∆ = 3, where s
1

6
= (A1

6
, Q

1,0
6

, Q
1,1
6

, Q
1,2
6

, G1

6
) = (3, 1, 1, 0, 2) and states

s
2

6
= (A2

6
, Q

2,0
6

, Q
2,1
6

, Q
2,2
6

, G2

6
) = (5, 2, 0, 1, 1).

user request queue in this paper. We refer to ∆ as the window

size. For example, given the window size ∆ = 3, at decision

epoch t, the user request queues that need to be served in

decision epochs t, t + 1, and t + 2 are known. In decision

epoch t, let G
f
t ∈ Nf denote the user request queue of newly

arrived user requests for the f -th NN, which need to be served

in decision epoch t+∆.

In decision epoch t, as shown in Fig. 2, the set of system

states for the f -th NN can be represented by a finite set Sf =
A × N∆

f × Nf . The state vector for the f -th NN can be

represented as

s
f
t =

(

A
f
t , Q

f,0
t , Q

f,1
t , . . . ,

Q
f,∆−1
t , G

f
t

)

∈ Sf , t ∈ T , f ∈ F .
(1)

In summary, when considering all the F NNs being cached

in the HetNet, the system state space is the finite set S =
S1×· · ·×SF . The state vector St ∈ S, representing the overall

state of the system in decision epoch t, can be represented as

St = (s1t , s
2
t , . . . , s

F
t), t ∈ T . (2)

2) Actions: Let U = {0, 1, . . . , F} denote the set of actions

that can be chosen by the MBS. Let ut denote the action

chosen in decision epoch t, where the MBS stays idle when

ut = 0, updates the ut-th NN in the HetNet when ut > 0.

3) State Transition Probability: Since each individual user

request is independent, in decision epoch t, the number of new

user request arrivals for the f -th NN, G
f
t , f ∈ F , follows the

binomial distribution

P(Gf
t = i) =

(

Nf

i

)

λi
f (1 − λf)

Nf−i, i ∈ Nf . (3)

Given the AoI of the f -th NN in decision epoch t and

the chosen action ut, its AoI in decision epoch t + 1 is a

deterministic value. We have

P(Af
t+1 | St, ut) = I(Af

t+1 = A
f
t + 1)I(ut 6= f)

+ I(Af
t+1 = 1)I(ut = f),

(4)

where I(·) denotes the indicator function. The first case shows

that the AoI of the f -th NN is increased by 1 if no update is

scheduled. On the other hand, if an update is scheduled for

the f -th NN in decision epoch t, then its AoI is reset to 1.

If a user request arrives in decision epoch t, then the target

download time is equal to t + ∆. Hence, in decision epoch

t + 1, the value of Q
f,∆−1

t+1 depends on whether a new user

request arrived in decision epoch t. That is,

P(Qf,∆−1

t+1 | St) = I(Qf,∆−1

t+1 = G
f
t). (5)

For Q
f,δ
t+1, 0 ≤ δ ≤ ∆ − 2, the state transition probability is

given by

P(Qf,δ
t+1 | St) = I(Qf,δ

t+1 = Q
f,δ+1
t). (6)

Given the current state vector St and action ut, the state

transition probability to the next state St+1 is equal to

P(St+1 | St, ut) =

F
∏

f=1

(

P(Af
t+1 | St, ut)

×
∆−1
∏

δ=0

P(Qf,δ
t+1 | St)P(G

f
t+1)

)

.

(7)

4) Cost: A deterministic stationary updating policy π is

defined as a mapping from state space S to action space

U . For a system with state vector St, the policy chooses

an action π(St) = ut, ∀ St ∈ S and t ∈ T . Similar to

the approach in [17], we restrict our attention to uni-chain

policies, whose induced Markov chain has a single recurrent

class (and possibly some transient states) [18, vol. II, Sec. 5.2].

In [18, vol. II, Proposition 5.2.6], it is stated that for systems

satisfying the weak accessibility conditions, there exists an

optimal policy that is uni-chain. Since all the system states

are reachable with non-zero probability, the weak accessibility

conditions hold for our problem. Let

S
π
t =

(

A
1,π
t , Q

1,0,π
t , . . . , Q

1,∆−1,π
t , G

1,π
t , . . . , A

F,π
t ,

Q
F,0,π
t , . . . , Q

F,∆−1,π
t , G

F,π
t

)

, t ∈ T ,
(8)

denote the controlled Markov chain induced by policy π. Note

that Q
f,0,π
t corresponds to the number of user requests for the

f -th NN that need to be served in decision epoch t. Given

policy π, the expected total AoI of all the served user requests

in the first T decision epochs is equal to

Mπ
tot(T) =

T−1
∑

t=0

F
∑

f=1

E

[

A
f,π
t Q

f,0,π
t

]

, (9)

where E denotes the expectation with respect to the user

request arrivals. The average total number of user requests

being served depends on the user request arrival rate and is

equal to

Mnum(T) = T

F
∑

f=1

Nfλf . (10)

Hence, given a policy π, the average AoI and the update

frequency of all user requests can be found as

M(π) = lim sup
T−→∞

Mπ
tot(T)

Mnum(T)
,

C(π) = lim sup
T−→∞

1

T

T−1
∑

t=0

E [I(π(Sπ
t) > 0)] ,

(11)

where S
π
t , ∀ t ∈ T , follows the state transition probability

specified in (7).

The optimal policy π∗ is defined to be the uni-chain policy

that minimizes the average cost, which corresponds to the

average AoI of the served user requests, plus a penalty for

each update that is performed. In this case, we can define the

cost in each decision epoch t as

c(St, ut, η) ,

∑F
f=1 A

f
t Q

f,0
t

∑F
f=1

Nfλf

+ ηI(ut > 0). (12)

The objective is to minimize the average cost, which comprises

the average AoI plus the average updating cost,

L(η, π) = M(π) + ηC(π)

= lim sup
T→∞

1

T

T−1
∑

t=0

E [c(Sπ
t , π(S

π
t), η)] .

(13)

Problem (13) is an infinite horizon average-cost MDP problem.

Finding its optimal solution involves solving the Bellman

equations iteratively, using methods such as the relative value

iteration algorithm (RVIA) [18, vol. II, Section 5.3.1].

III. ALGORITHM DESIGN

Since the RVIA algorithm has a large computational com-

plexity, and that the storage space required for storing the

optimal policy may be too large for implementation in prac-

tical systems, we propose to estimate the state-action value

function Vt(St, ut, η) using DRL. In DRL, the state-action

values are approximated by an NN which takes the state of the

MDP as input5. We adopt a state-of-the-art DRL method called

DQN [14] to approximate the state-action value function. To

avoid overestimating the state-action value function, two NNs

with the same dimensions, a policy network and a target net-

work, are created and being updated during the training steps.

We divide the training process into Nepi episodes to track the

training performance, where each episode contains Tepi train-

ing time steps. Therefore, there are in total NepiTepi training

time steps, represented by the set Ttrain = {0, 1, . . . , TepiNepi}.

At training step t ∈ Ttrain, we denote the parameters of the

policy network as θt and the parameters of the target network

as θ
target
t , which are originally initialized to values sampled

from the uniform distribution and updated at each training

time step.

Accounting for the complexity, training time, and the ac-

curacy in approximation, we design an NN with three hidden

5In this section, the acronym NN is used to denote both the actual neural
network we used to estimate the state-action function in the DQN agent as
well as the NNs being cached in the HetNet.

layers, with 64, 32, and 16 nodes, respectively. The rectified

linear units (ReLUs) are used as the activation functions. In

Monte Carlo reinforcement learning, sampled experience (i.e.,

simulated interaction with an environment) is used to estimate

the state-action value functions instead of RVIA. Given current

state St and decision epoch t, we use a simulator to sample

the next system state St+1 in decision epoch t + 1 and cost

c(St, u
f
t , η).

Let Vt(· | θ
target
t) and Vt(· | θt) denote the state-action

value function approximated by the target network and policy

network with parameters θ
target
t and θt at training time step t,

respectively. We explore an ǫ-greedy policy to avoid overfitting

during the training process [19]. At training time step t,

it either chooses the best available action in a given state

with probability (1 − ǫt) or samples a random action with

probability ǫt. To encourage the DQN algorithm to spend

less time exploring the environment after the DQN is well-

trained, we apply an exponentially decaying exploration factor

ǫt, according to

ǫt = ǫmin + (ǫmax − ǫmin)e
−t/ǫdecay , (14)

where 0 < ǫmin ≤ ǫmax < 1 and ǫdecay > 1. At each training

time step, the best available action is chosen based on the

policy network, according to

ut = argmin
ut∈UF

Vt(St, ut, η | θt). (15)

To remove the degree of correlation among the observed

sequence of data and to improve the stability of DRL, we

adopt the experience replay [20] approach, where the system

transition tuples (St, ut, c(St, ut, η),St+1) are stored in the

replay memory after each training time step t. At training

time step t, a set of Kbatch system transition tuples Kbatch
t are

randomly drawn from the replay memory, and batch gradient

descent [14] is employed to minimize the sum of the loss

functions of all the Kbatch system transition tuples. The loss

function of an average-cost MDP is defined as

L(θt) =
1

2

(

min
u∗∈UF

Vt(St+1, u
∗, η | θtarget

t)

− min
u∗∈UF

Vt(S
ref, u∗, η | θtarget

t)

− Vt(St, ut, η | θt) + c(St, ut, η)

)2

,

(16)

where S
ref is a fixed state that can be chosen arbitrarily

and remains fixed during the entire training process [18]. A

stochastic gradient descent step can be expressed as

θt+1 = θt − β∇θt
L(θt), (17)

where β is the learning rate for stochastic gradient descent.

To avoid overestimating the state-action value function of

the optimal action, the parameters of the target network are

updated less frequently compared to the parameters of the

policy network. The parameters of the target network are

updated every Tupdate training time steps, by copying θt into

θ
target
t . In Algorithm 1, we list the key steps of the algorithm

we used to implement the DQN algorithm.

Algorithm 1 Deep Q-Network (DQN) Algorithm

Input: η, ǫmin, ǫmax, ǫdecay, β, Nepi, Tepi, Tupdate, and Kbatch

1: Initialize the replay memory, DQN network parameter θ0, and
the target network parameter θ

target
0

2: Observe the initial state S0 and select a random action u0

3: for t ∈ Ttrain do
4: System samples St and c(St, ut, η)
5: Save the system transition tuple to the replay memory
6: Calculate ǫt according to (14)
7: Sample a standard uniform random variable ǫ
8: if ǫ < ǫt then
9: Randomly select an action ut ∈ UF

10: else
11: Choose action according to (15)
12: end if
13: Randomly sample a set of Kbatch

t system transition tuples from
the replay memory

14: for j ∈ Kbatch
t do

15: Calculate the loss function based on (16)
16: end for
17: Update policy network parameter θt based on (17)
18: if t mod Tupdate = 0 then

19: θ
target
t ← θt

20: end if
21: end for
22: θ

target
← θ

target
t and θ ← θt

23: return θ
target

IV. PERFORMANCE EVALUATION

In this section, we perform simulation studies to validate

the analytical results in the paper. Unless specified otherwise,

we set T = 10, 000, Â = 50, ∆ = 4 and Nf = 2,

∀f ∈ F . We compare the proposed optimal and suboptimal

algorithms with the periodic update heuristic proposed in [13].

The DQN algorithm was implemented using PyTorch [7], and

the parameters used for DQN are as follows: ǫmin = 0,

ǫmax = 0.99, ǫdecay = 200, β = 0.01, Nepi = 200,

Tepi = 3, 000, Tupdate = 3, 000, and Kbatch = 1, 000. In this

paper, we consider the simple case where F = 1, and will

address the more general case where F > 1 in the journal

version [21] of this work. Each data point represents the

average performance over 30 experiments.

In Fig. 3, we plot the average AoI obtained by the opti-

mal algorithm, the DQN algorithm, and the periodic update

heuristic. The periodic update heuristic corresponds to the

optimal solution of the formulated MDP problem when ∆ = 0
whereas the optimal algorithm is the optimal solution of the

formulated MDP when ∆ = 4, both of which were found via

the RVIA algorithm. We observe that the performance of the

DQN algorithm outperforms the periodic update heuristic and

is close to the optimal algorithm. To illustrate the advantage

of the proposed algorithms, in Fig. 4, we plot the average AoI

achieved by the three aforementioned algorithms, against the

average updating frequencies of them. The different updating

frequencies are achieved by varying η, where a larger η

corresponds to updating the NNs less frequently. We observe

that under the same updating frequency, the proposed DQN

approach can reduce the average AoI up to 35% and its

5 10 15 20 25 30
2

3

4

5

6

7

8

9

Fig. 3: The average cost obtained by the DQN-based approach compared to
the periodic update heuristic and the optimal algorithm. ∆ = 4 in this case.

0.1 0.15 0.2 0.25 0.3
1.5

2

2.5

3

3.5

4

4.5

35%

Fig. 4: The average AoI obtained by the DQN-based approach compared to
the periodic update heuristic and the optimal algorithm v.s. update frequency.

0 10 20 30 40 50
0

10

20

30

40

50

Fig. 5: The average cost from subsequent episodes in the DQN training.

performance is close to the optimal algorithm found by RVIA.

In Fig. 5, we plot the convergence performance of the DQN

algorithm with three different values of η. We observe the

average cost converged in all three cases after around 20

episodes. Therefore, our choice of training the DQN for 200

episodes is appropriate.

V. CONCLUSION

In this paper, we studied the problem of caching dynamic

contents using a HetNet architecture. We formulated the

problem where the target download time for user requests in

a short future time window is known, and designed a strategy

where the scheduling decision depends on the user requests

that need to be served in the near future. We formulated

the problem as an MDP. To reduce the memory required to

store the optimal policy of the MDP, we proposed a DRL

framework based on DQN to estimate the state-action values

of the MDP. Simulation results show that the DQN-based

approach has close-to-optimal performance. Both the optimal

and suboptimal algorithms outperform the periodic update

scheme in different settings. One of the limitations of the

DQN approach is that the training time required for good

performance is long when multiple NNs are being cached, due

to the enlarged state space and action space. We will address

this in the journal extension [21] of this work.

REFERENCES

[1] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “FemtoCaching: Wireless content delivery through distributed
caching helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 8402–
8413, Dec. 2013.

[2] T. Hou, G. Feng, S. Qin, and W. Jiang, “Proactive content caching by
exploiting transfer learning for mobile edge computing,” in Proc. of

IEEE Global Commun. Conf. (GLOBECOM), Singapore, Dec. 2017.
[3] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”

IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.
[4] B. Zhou, Y. Cui, and M. Tao, “Stochastic content-centric multicast

scheduling for cache-enabled heterogeneous cellular networks,” IEEE

Trans. Wireless Commun., vol. 15, no. 9, pp. 6284–6297, Sep. 2016.
[5] M. Ma and V. W. S. Wong, “An optimal peak hour content server cache

update scheduling algorithm for 5G HetNets,” in Proc. of IEEE Int’l

Conf. on Commun. (ICC), Shanghai, China, May 2019.
[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

no. 7553, pp. 436–444, 2015.
[7] PyTorch. (2019) torchvision.models. [Online]. Available:

https://pytorch.org/docs/stable/torchvision/models.html
[8] Google. (2019) Introduction to TensorFlow lite. [Online]. Available:

https://www.tensorflow.org/lite/overview
[9] O. Naparstek and K. Cohen, “Deep multi-user reinforcement learning for

distributed dynamic spectrum access,” IEEE Trans. Wireless Commun.,
vol. 18, no. 1, pp. 310–323, Jan. 2019.

[10] G. Sartoretti, Y. Wu, W. Paivine, T. S. Kumar, S. Koenig, and
H. Choset, “Distributed reinforcement learning for multi-robot decen-
tralized collective construction,” in Distributed Autonomous Robotic
Systems. Springer, 2019, pp. 35–49.

[11] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often
should one update?” in Proc. IEEE Int’l Conf. on Computer Commun.
(INFOCOM) Mini-Conf., Orlando, FL, Mar 2012.

[12] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” IEEE Trans. Inf. Theory,
vol. 63, no. 11, pp. 7492–7508, Nov. 2017.

[13] R. D. Yates, P. Ciblat, A. Yener, and M. Wigger, “Age-optimal con-
strained cache updating,” in Proc. IEEE Int’l Symp. on Inf. Theory (ISIT),
Aachen, Germany, Jun. 2017.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[15] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable
are features in deep neural networks?” in Proc. of Advances in Neural

Information Processing Systems Conf., Montreal, Canada, Dec. 2014.
[16] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

in Proc. Int’l Conf. on Learning Representations (ICLR), San Diego,
CA, May 2015.

[17] B. Zhou and W. Saad, “Joint status sampling and updating for minimiz-
ing age of information in the Internet of things,” IEEE Trans. Commun.,
vol. 67, no. 11, pp. 7468–7482, Nov. 2019.

[18] D. P. Bertsekas, Dynamic Programming and Optimal Control, 4th

Edition, Vol. I & II. Athena Scientific, 2017.
[19] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,

2nd Edition. MIT Press, 2018.
[20] S. Kapturowski, G. Ostrovski, J. Quan, R. Munos, and W. Dabney,

“Recurrent experience replay in distributed reinforcement learning,” in
Proc. Int’l Conf. Learn. Representations (ICLR), New Orleans, LA, May
2018.

[21] M. Ma and V. W. S. Wong, “Age of information driven cache content
update scheduling for dynamic contents in heterogeneous networks,”
submitted to IEEE Trans. Wireless Commun., 2019.

https://pytorch.org/docs/stable/torchvision/models.html
https://www.tensorflow.org/lite/overview

	I Introduction
	II System Model and Problem Formulation
	II-A MDP Problem Formulation
	II-A1 Decision Epochs and States
	II-A2 Actions
	II-A3 State Transition Probability
	II-A4 Cost

	III Algorithm Design
	IV Performance Evaluation
	V Conclusion
	References

