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Abstract—This paper studies the potential performance im-
provement that can be achieved by enabling multi-operator
wireless connectivity for cloud/fog computing-connected vehic-
ular systems. Mobile network operator (MNO) selection and
switching problem is formulated by jointly considering switching
cost, quality-of-service (QoS) variations between MNOs, and
the different prices that can be charged by different MNOs
as well as cloud and fog servers. A double deep Q network
(DQN) based switching policy is proposed and proved to be
able to minimize the long-term average cost of each vehicle with
guaranteed latency and reliability performance. The performance
of the proposed approach is evaluated using the dataset collected
in a commercially available city-wide LTE network. Simulation
results show that our proposed policy can significantly reduce the
cost paid by each fog/cloud-connected vehicle with guaranteed
latency services.

Index Terms—Multi-operator networks, fog computing, cloud
computing, workload allocation, double DQN.

I. INTRODUCTION

Cloud and fog computing-based vehicular systems have

recently been embraced by both industry and standardization

institutions as a promising solution to support computationally

intensive services with low-latency requirements by deploying

a large number of low-cost fog nodes close to the users. One

of the key pre-requisites for the success of such a system is to

maintain a ubiquitously available wireless connectivity with

ultra-low latency and ultra high reliability data transferring

links between vehicles and cloud data center and fog nodes.

Unfortunately, due to the random nature of wireless channel,

it is generally impossible to always maintain a performance-

guaranteed wireless link when driving into different locations

across a wide-geographical area [1], [2]. One possible solution

is to adopt a multi-operator approach. Recent results [3] as

well as our own measurement suggest that the performance of

different mobile network operators (MNOs) may exhibit strong

spatial and temporal variations. By allowing a connected-

vehicle to dynamically switch to the MNO’s network with the

lowest latency and the highest reliability, it has the potential

to significantly improve the performance of the wireless con-

nectivity as well as the service coverage for cloud and fog-

supported vehicular system without deploying new wireless

network infrastructure.

Despite of its great promise, multi-operator-supported ve-

hicular system has been hindered by the following challenges:

1) The performance of wireless connectivity offered by

different MNOs is typically temporally-spatially varying,

unpredictable and uncontrollable. It is generally impossi-

ble for each vehicle to instantaneously detect the best-

performed MNO’s networks and make the switching

decision.

2) Frequent switching between the networks of MNOs can

result in extra cost, communication overhead as well as

computational load. Also, switching between different

MNO’s networks and base stations (BSs) may result in

increased latency and unreliability of wireless connection.

3) High speed vehicles may move into different locations

from time to time. Keeping track of the changes for the

fast-changing networking environment is known to be a

notoriously challenging problem.

The main contribution of this paper is to address the above

challenges by proposing a novel multi-operator switching pol-

icy for each connected vehicle to dynamically switch between

different MNOs’ networks as well as the connected cloud

and fog servers. As such, the service latency and reliability

performance can be guaranteed throughout the entire driving

route with minimized cost for switching among different

MNOs’ networks. We summarize our main contributions as

follows:

1) We formulate the multi-operator switching problem for a

cloud and fog-supported vehicular system as a dynamic

programming problem by taking into consideration of

the MNO switching cost, service variations of connected

vehicle, and different price that can be charged by cloud

and fog servers when connecting to different MNOs.

2) We derive the optimal volume of workload allocated to

fog and cloud servers when connecting to each MNO’s

network and then propose a double deep Q networks

(DQN) based MNO switching policy to minimize the

overall cost paid by each vehicle with guaranteed latency

and reliability performance. We prove that our proposed

policy can always approach the optimal MNO switching

policy with much less computational complexity com-

pared to the traditional Q-learning based approach.

3) We evaluate the performance of our proposed approach

by using the round-trip-time (RTT) datasets collected

in a commercially available LTE network for over four

months of measurement throughout a mid-sized city.

Simulation results show that our proposed policy can
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significantly reduce the cost paid by each fog/cloud-

supported vehicle with guaranteed latency services when

driving into different locations.

II. RELATED WORKS

Fog computing has been considered as one of the key

solutions to support computational-intensive services with low

end-to-end latency requirements [4]–[7]. However, due to the

limit in cost, space, and resource, the computing capability of

each individual fog node is quite limited, especially compared

with the cloud data center. Many existing works focused on

balancing the workload between fog nodes and cloud data cen-

ter. In [5], the authors proposed an optimal workload allocation

scheme to minimize the power consumption of fog nodes

with constraints on service delay. An online, low-complexity

algorithm for joint resource allocation among collaborative fog

nodes was proposed in [7].

Fog computing has also been applied in smart vehicular

networks to meet the stringent demand on latency-sensitive

services such as autonomous driving and intelligent driving

assistance [6], [8]–[10]. In [9], the authors proposed a novel

offloading framework in smart vehicle systems to reduce the

end-to-end latency and transmission cost. In [10], a novel

framework was introduced to optimize the operation of vehicle

platoon with constraints on the delay of the wireless vehicle-

to-vehicle (V2V) networks and the stability of the vehicular

system.

Multi-operator resource sharing has attracted significant in-

terest recently due to its capability of expending the accessible

resource of each MNO without the need to deploy any new

infrastructure. Most existing works focused on jointly optimiz-

ing the resource utilization among MNOs. For instance, the

authors in [11] introduced an infrastructure-sharing approach

for MNOs to collaborate with each other to reduce the energy

consumption by deactivating the under-utilized base stations.

In [12], the authors investigated various benefits generated by

spectrum sharing for all MNOs when multi-operator coopera-

tion can be enabled.

III. BACKGROUND AND ARCHITECTURE OVERVIEW

We consider a cloud and fog supported vehicular system

consisting of a set M of M MNOs that can offer wireless

connection between vehicles and servers at the cloud data

centers (CDCs) or fog nodes. We assume that each MNO has

deployed an exclusive set of fog nodes inside of its wireless

network infrastructure. Let Fm be the set of fog nodes in

MNO m’s network, for m ∈ M. Each connected vehicle

can generate a sequence of workloads to be submitted and

processed by servers at fog nodes and CDC.

Without loss of generality, we consider slot-based process

and assume each vehicle can only connect to one MNO’s

network during each time slot. Let mt be the MNO selected

by the considered vehicle in time slot t for mt ∈ M. We

follow a commonly adopted setting and assume the workload

generation process of each vehicle in each time slot follows

a Poisson distribution with parameter λt, i.e., we write the

TABLE I
SERVICE LEVEL LATENCY AND RELIABILITY ILLUSTRATED IN [13]

Type of services Service

Level

Latency(τ )

Service

Level

Reliability(γ)

Cross-Traffic Left-Turn Assist 100 ms 90%
Emergency Brake Warning 120 ms 99.9%
Lane Change Warning 400 ms 99.9%

number of workloads wt generated by each vehicle during

time slot t as wt ∼ P(λt).
At the beginning of each time slot, each vehicle can decide

whether or not to switch to another MNO’s network or

maintain its current choice. Once a vehicle makes its decision,

it cannot switch to another MNO’s network during the rest

of the time slot. We consider a dynamic decision problem

with a finite horizon, in which a vehicle driving from the

start point to the final destination experiences T time slots of

driving. The vehicle can dynamically switch between different

MNOs’ networks across different time slots with the goal of

optimizing its average service performance during the entire

route. Note that switching between different MNOs’ networks

generally results in extra delay that can be caused by service

handover and resource release and re-allocation. To simplify

our discussion, we assume the extra delay for each vehicle to

switch between any two MNOs’ networks to be a constant,

denoted as d ms.

As observed in [13], a connected vehicle can request differ-

ent services when driving into different locations. In this paper,

we use X to denote the set of all possible service. For example,

a vehicle trying to take left-turn at a cross-road location will

be more likely to request accurate driving trajectory guidance

service. When driving on a highway, however, a vehicle is

more likely to periodically request route information update

and front road condition report. In general, different services

may have different latency and reliability requirements. We

have listed several typical connected vehicular services as

well as their corresponding latency and reliability requirements

reported in [13] in Table I. In our previous work [3], we

have already observed that service latency characterized by

the RTT between a vehicle and a given server at a fog node

or CDC at given location can be considered as a stationary

probability distribution. Let Prc(η, lt,mt) and Prf (η, lt,mt)
be the probability distribution functions of service latency η

between vehicle and CDC and that between vehicle and the

closest fog node when connecting to MNO mt at location lt
1. Each service x requested by the vehicle at location lt has

a specific requirement characterized by the service confidence

level, which is defined as the probability that a given service

latency τx ms can be satisfied, i.e., f(x,mt, lt) = Pr(η ≤
τx | lt,mt) =

∫ τx

η=0
Pr(η, lt,mt) dη where Pr(η, lt,mt) is the

probability that the service latency in the location lt when

connecting to MNO mt is η ms. Note that if the vehicle

1Note that Prc(η, lt,mt) and Prf (η, lt, mt) are also related to the driving
speed. However, it has been observed in [3] that the driving speed of the
vehicle at a given location falls into a specific range. We therefore let
Prc(η, lt,mt) and Prf (η, lt,mt) are the average probability that the vehicle
driving into a given location lt within the given range of driving speed.



changes the network at time slot t, the service level latency

τx corresponding to the generated service x needs to be

reduced to overcome the extra switching delay. We assume

there is a lower bound γx on the confidence level for each

service requested at location lt, i.e., f(x,mt, lt) ≥ γx. For

example, as shown in Table I, the requirement of cross-

traffic left-turn assistant service can be written as f(τ = 100
ms,mt, lt) ≥ 0.9.

In our model, we assume that all MNOs have service

coverage throughout the entire driving route. Fog nodes and

CDC charge different prices for workload processing service.

Let µ $ per TB and ν $ per TB be the prices charged by fog

nodes and CDC for processing each workload respectively. In

general, we have

µ > ν. (1)

In other words, if the CDC can offer service with satisfac-

tory latency requirement, each vehicle should always submit

all of their workload to the CDC. In here, we consider a more

general setting and assume each vehicle in each time slot t

can offload its workload to the fog node of the selected MNO

with probability αt and submit the workload to the CDC with

probability (1 − αt), i.e., we write the total cost paid by the

vehicle in time slot t as

̟(mt, αt) = µαtwt + ν(1 − αt)wt. (2)

It is therefore very important for the vehicle to choose the

MNO’s network that offers satisfactory service performance

with the lowest cost.

In other words, we can write the optimization problem for

the considered vehicle as follows:

min
α,m

E{

T∑

t=1

̟(mt, αt)}

s.t. f(xt,mt, lt) ≥ γxt
,

(3)

where α and m denote the vectors of all parameters αt and mt

at all time slots respectively, i.e., α = 〈αt〉,m = 〈mt〉, ∀t ∈
{1, 2, 3..., T }.

Remark: We assume in each location lt on the driving path,

there is always at least one MNO that can offer satisfactory

service to the vehicle, i.e., we have ∃mt ∈M, f(xt,mt, lt) ≥
γxt

, ∀lt ∈ L, where L is the set of all possible locations

of the driving route. Note that the service confidence level

offered by different MNOs can vary from one time slot to

another. However, it is generally impractical for each vehicle

to always switch to the MNO that offers the highest service

confidence level at each time slot, especially considering the

extra delay caused by MNO switching. Each vehicle must

carefully decide a sequence of MNOs with minimized number

of MNO switching, so the average cost can be minimized

while the required confidence level can be satisfied throughout

the entire journey.

IV. OPTIMIZATION FOR MNO SWITCHING

We observe that solving problem (3) requires each vehicle to

careful select a sequence of MNO networks and the connected

fog nodes and cloud data center when driving into each

location. In particular, when deciding the optimal MNO to

connect, each vehicle not only needs to evaluate the network

performance of different MNOs but also the optimal amount of

workload that can be processed by the corresponding fog node

and cloud data center. Each vehicle also needs to evaluate the

cost for MNO switching, i.e., the vehicle should not switch to

another MNO if the MNO switching cost exceeds the current

and future performance benefit achieved by the switching.

A. Optimal Task Assignment

Let us first consider the case that a vehicle has already

selected an MNO at a given location in time slot t. This vehicle

will then need to carefully decide the portion of the workload

to be allocated to the fog node and the cloud data center.

More specifically, the vehicle needs to solve the following

optimization problem,

min
αt

µαtwt + ν(1 − αt)wt

s.t. f(xt,mt, lt) ≥ γxt
,

0 ≤ αt ≤ 1.

(4)

According to (1), we can rewrite the objected as follows:

min
αt

αt

s.t. f c(xt,mt, lt)(1− αt) + ff (xt,mt, lt)αt ≥ γxt
,

0 ≤ αt ≤ 1.

(5)

Hence, the optimal task assignment is

α∗
t (mt, lt, xt) =

(γxt
− f c(xt,mt, lt))

(ff (xt,mt, lt)− f c(xt,mt, lt))
. (6)

B. Finite Horizon MNO Switching Problem

In the MNO switching problem, we need to carefully decide

which MNO we should select or switch to at different time

slots to maximize the long-term performance. Suppose that

the state in this time slot only depends on the state and

switching decision made in the previous time slot. We can

then formulate the network switching problem as a Markov

decision Process (MDP) with finite horizon consisting of the

following components:

• State space S: is a finite set of the vehicle’s location l,

the generated service x, and the selected MNO m. We write

the state in time slot t as st = 〈lt, xt,mt〉 for lt ∈ L, xt ∈ X ,

and mt ∈M.

• Action space A: is a finite set of all possible MNOs which

can be connected to. We write an instance of action at time

slot t as at for at ∈ A.

• State transition function T : S × A × S −→ [0, 1]:
the probability of state transiting from one state to another.

In particular, the probability of the state transferred from

state s to s′ when taking action a can be expressed as

T (s′, s, a) = Pr(s′|s, a). In this paper, the type of service

and the location only depends on the service type and the

location in the previous time slot, Without loss of gener-

ality, we assume the transition probability of location and

requested service is independent with the selection of MNOs,

i.e., we have Pr(s′|s, a) = Pr(x′, l′|x, l) Pr(m′|m, a). This



assumption is reasonable because in most practical scenarios,

the local and service requested by users are depending on

the users’ preference and driving behavior both of which are

typically independent with the MNO connectivity. To simplify

the problem, we assume Pr(x′, l′|x, l) can be pre-calculated

and assumed to be known by the vehicle. The MNO m′

selected in the next time slot will be decided by the MNO

selected action a. We assume the vehicle can always connect

to the intended MNO according to its MNO selection, i.e., we

assume Pr(m′|m, a) = 1 if a = m′.

• Utility function: The main objective is to minimize the

total cost by choosing the optimal action at each time slot.

We follow a commonly adopted setting and write the utility

function as Rt(st, at) = ̟(mt, α
∗
t (st)) at state st and time

slot t. An MNO switching policy is defined below:

Definition 1: switching policy is a function mapping the

time slot and the corresponding state s into an action:

π : {1, ..., T } × S → A. (7)

The total expected utility achieved by policy π for initial

state s0 is given by

V π = E{

T∑

t=1

Rt(st, at)|s0, π}. (8)

C. Double DQN approach for MNO switching

1) Q-learning method: As a reinforcement learning

method, Q-learning [14] is usually chosen to find the optimal

policy for sequential decision problems. In particular, the Q-

learning algorithm can be implemented based on a value table

commonly referred to as Q-table which is used for storing

all the possible Q-value, the expected long-term utility that

can be achieved by various possible pairs of state and action.

The vehicle will choose an action that minimize the Q-value

when a state has been observed. Q-learning algorithm will also

update the Q-value according to the observed results, which

consist of the current utility and the state in the next time

slot. This process will be repeated. Q-learning algorithm can

always learn from the previous decisions and adjust its Q-

table and the corresponding policy accordingly. It has already

been proved that Q-learning can always converge to an optimal

policy after a finite number of iterations [14]. In this paper,

our main objective is to obtain the optimal switching policy

π∗ : S × {1, 2, ..., T } → A for the vehicle to minimize its

long-term average cost.

The optimal policy can be written as follows.

a∗t = arg min
at∈A

Q(st, at), (9)

where the Q-function is evolved as follows:

Q(st, at) = Q(st, at) + g[Rt(st, at)

+ bmin
at+1

Q(st+1, at+1)−Q(st, at)].
(10)

where 0 ≤ b ≤ 1 denotes the discount factor which embodies

the weight of the long-term reward [14], and g is the learning

rate which represents the influence of the new value to the

existing one.

Algorithm 1 MNO Switching Policy Based on Double DQN

1) Initialize the replay memory pool

2) Initialize the Q-network Q and the target Q-network Q̂ with arbitrary

weight ϑ and ϑ
−

For episode = 1 to N do

1) Set t = 1 and observe the initial state s1

Repeat:

1) Select an arbitrary action at with probability ǫ or a deliberate

action at = argmin
at

Q(st, at;ϑ) with probability 1− ǫ

2) Obtain the observation including the immediate reward Rt and

the next state st+1 and putting the transition (st, at, Rt, st+1)

into the memory pool.

3) t = t + 1

Until st+1 is the terminal state.

2) Sample minibatch of experience (si, ai, Ri, si+1) from the mem-

ory pool arbitrarily.

3) Compute yi = Ri + gQ(si+1, arg min
ai+1

Q̂(si+1, ai+1;ϑ);ϑ
−)

4) Use the gradient descent method on (yi − Q(si, ai;ϑ))
2 with

regard to the parameter ϑ

5) Update the Q̂ = Q for every C steps

end for

Fig. 1. The proposed double DQN-based framework.

2) Double deep Q network: Since Q-table needs to store all

the possible pairs of state and action in each time slot, a large

amount of storage space is required and will typically result in

a slow convergence rate. The double DQN algorithm [15] is

introduced to address the above problem. The key idea of the

double DQN algorithm is to introduce a deep neural network,

referred to as the primary Q-network, to select an action. To

stabilize the primary Q-networks, another deep neural network,

called the target Q-network, is introduced to frequently (but

slowly) update to the primary Q-network values to reduce

the correlations between the target and estimated Q-values,

thereby stabilizing the algorithm.

We describe the architecture of our proposed algorithm

in Fig 1. Specifically, the training process consists of many

episodes. In each episode, an action will be selected based

on the ǫ-greedy algorithm. In this algorithm, the vehicle will

randomly choose an arbitrary action with probability ǫ in each

episode. Otherwise, an optimal action which minimizes the Q-

value Q(st, at;ϑ) will be selected. In addition, the algorithm

initializes parameter ǫ with a large value, e.g., 0.8, in the

beginning and gradually (e.g., linear rate or exponential rate)

decreases the parameter to a small value such as 0.05. In this

way, the action of the vehicle will be randomly selected at the

beginning and will then gradually approach to a deterministic

policy with high probability to make the optimal decision. For

instance, the vehicle will choose an action at for the current



state st and obtain the current utility Rt and observe the next

state st+1. The observation (st, at, Rt, st+1) will then be put

into a memory, called replay memory pool [16].

After that, the learning process will be executed based on

random samples from the pool. In this way, the data would be

more likely to be independent and the transitions generated

at the previous episodes can be exploited more times. The

main role of the training process is to use the deep neural

network to estimate the Q-value for each action in a given

state at each time slot. The neural network is trained based

on the random samples of the previous experience stored in

the replay memory pool. Specifically, we consider three main

features, location, type of service, and the selected MNO, for

each state at each time slot.
We then use the stochastic gradient descent algorithm to

optimize the primary Q-network’s parameter, denoted as ϑ.

The basic idea of using stochastic gradient descent is to esti-

mate the gradient based on a small set of samples. Generally,

a minibatch of experience will be sampled uniformly from

the memory pool during each episode and the minibatch size

denoted as D′ is set to be a small number compared with

the number of experiences in the pool. The estimation of the

gradient can be calculated as

ζ =
1

D′
∇ϑ

D′∑

i=1

L((s, a, R, s′)(i),ϑ). (11)

where L((s, a, R, s
′

)(i),ϑ) is the loss function defined as

L((s, a, R, s′)(i),ϑ)

= E(s,a,R,s′)[((R + gQ(s′, argmin
a′

Q̂(s′, a′;ϑi);

ϑ−

i )−Q(s, a;ϑi))
2], (12)

where ϑi and ϑ−
i denote the parameter of the primary Q-

network and the target Q-network, respectively.

The stochastic gradient decent algorithm can then update

the parameter as

ϑ← ϑ− υζ (13)

where υ is the learning rate.
Note that the algorithm only replaces the parameter ϑ−

i

of the target neural network by the Q-network parameter ϑi

every C episodes. Hence, the main Q-network value would

be updated more smoothly by the target Q-network every C
episodes. More details of our proposed algorithm is described

in Algorithm 1.

V. EXPERIMENTAL RESULTS

We use the dataset collected from a four-month city-wide

measurement. We have developed a smart phone App using

Android API to periodically ping the IP address of the most

likely fog node location and the Amazon cloud server at every

500 ms. The resulting RTT will be recorded for evaluating

the latency performance offered by MNO networks when

connecting to cloud and fog servers. A smart phone installed

with our developed App was mounted on a moving vehicle to

collect the RTT data. The RTT data collected in each MNO

network consists of two parts: Cloud latency and fog latency,

which are measured by pinging the IP address of the CDC

server and the first hop IP address in the core network of

each MNO’s network, respectively. We can then calculate the

latency probability distribution of each individual MNO when

driving in the main routes of a mid-sized city and use it

to evaluate the possible performance of task assignment and

MNO switching policy.

In Figures 2(a) and 2(b), we present the empirical prob-

ability distribution of latency when connecting to fog and

cloud servers via different MNO networks in two different

fixed location measurements. We can observe that the latency

performance of MNOs can vary significantly at different time

and locations. In particular, MNO 1 provides a better average

cloud latency and worse average fog latency performance in

location 1, compared to MNO 2. MNO 1 however offers a

worse average cloud latency and better fog latency perfor-

mance in average in location 2.

To evaluate the impact of the value of α, the portion of

workload offloaded by fog nodes, on the confidence level of

different services, we compare the average confidence level

of three types of services measured at a fixed location when

connecting to two MNOs’ networks. The detailed service

requirements are listed in Figure 2(c). We can observe that

when increasing the portion of workload to be offloaded by

the fog nodes, the increasing rate of the average confidence

level offered by MNO 1 as shown in Figures 2(d) is lower

than that achieved by MNO 2. This is because the performance

difference between cloud and fog latency in MNO 1 is smaller

than that in MNO 2. Also we can observe that for delay-

tolerant services, the cloud latency offered by MNO 1 is

better than MNO 2. However, when the service is more delay-

sensitive, the fog node offered by MNO 2 offers a better

performance than that of MNO 1. This again verifies our

observations that the service performance of different MNOs

can vary significantly.

In Figure 2(f), we present the convergence rate of double

DQN and Q-learning, compared with the average payment

when choose a single MNO (MNO 2). It can be observed

that the proposed double DQN-based approach converges to a

neighborhood of the optimal solution within 100 training time,

while Q-learning requires over 200 training time.

In Figure 2(g), we investigate how the extra delay d caused

by switching MNOs will influence the utility values of the

vehicle. It is obvious that the total cost is a non-decreasing

function of the value of d. This is because the value of d

directly affects the frequency for the vehicle to switch between

MNOs, i.e., the higher the value of d, the less frequency for the

vehicle to change its currently selected MNO. This will reduce

the potential performance improvement that can be achieved

by MNO switching. Also for delay-tolerance applications (e.g.,

service 3), it is less sensitive for the change of d because its

service requirement can be satisfied by choosing any MNO

which reduces the need for MNO switching.

In Figure 2(h), we fix the price of cloud service and compare

the average payments made by the considered vehicle under

different price charged by fog services offered by two MNOs.

We can observe that the total payment is increased with the

prices of the fog services. Also the vehicle tends to choose
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Fig. 2. (a)(b) Empirical PDF of cloud and fog latency of both MNOs at different locations. (c) The requirements of the considered three types of service (d)
Average confidence level under different values of α on MNO 1’s network. (e) Average confidence level under different values of α on MNO 2’s network.
(f) Convergence rate of double DQN and Q-learning. (g) Average payments under different values of d with using MNO switching. (h) Average payments
under different values of fog price.

the MNO with the lowest fog price.

VI. CONCLUSION

In this paper, we have studied the potential performance

improvement for a cloud/fog computing-supported vehicular

system that can be achieved by enabling multi-operator wire-

less connectivity support. We have formulated the multi-MNO

switching problem as a dynamic programming problem taking

into consideration the switching cost, service variations of

connected vehicle, and different prices charged by cloud and

fog servers. To find the optimal MNO switching policy, an

optimal workload allocation policy has been introduced. We

have then proposed a double DQN method to minimize the

cost paid by the considered vehicle with guaranteed latency

and reliability. We have evaluated our approach using the

dataset collected in a commercially available LTE network

for over four months of measurement in a mid-sized city.

Numerical results have shown that the double DQN algorithm

converges with much shorter training time compared to the

traditional Q-learning approach. Also MNO switching policy

can significantly reduce the average payment for connected

vehicular systems.
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